
8
Unification: the fabric of
understanding Nature
Just as done several times in the previous chapters, we reconsider the historical development
of the key aspects of modern physics, using the benefit of hindsight to perceive the character
of this development. Throughout the foregoing material, the Democritean atomism provided the
warp, complemented by the gauge principle as its weft. Along the way, however, this fabric re-
veals the ubiquity of the third conceptual strand (woof , as it were [☞ lexicon entry on p. 508, in
Appendix B.1]) – unification; we now turn to explore this more closely.

8.1 Indications

The Newtonian theory of gravity unites the mechanics of the so-called terrestrial and the celestial
objects and so eradicates this difference postulated within the Aristotelian philosophy of Nature,
which the Roman Catholic clergy (sanctioned by the AD 313 Edict of Milan) imposed as exclusive
of all other world views from the pre-hellenic and the hellenic cultures. According to Newton’s
law of gravity – as a descriptive model of this natural phenomenon – gravity is obeyed equally by
both the Sun and the Moon, and the planets and the stars, by the communication satellites and
the rockets as well as the Rockettes, by both the basketball and the baseball balls as well as the
players in those games, and of course also by the apple that supposedly fell from the tree under
which Newton sat. . .

Of course, Newton’s unified description of Nature is not a unification of pre-existing theo-
retical models – in the contemporary sense of the word “model.” It is, however, one of the first
rigorous applications of the principle that Nature is one and that it can be understood in a unified
fashion, and not as a (jury rigged) patchwork of different and diverse ideas – each with but a very
narrow aim and applicability.

It behooves us then to examine also the nature of our ideas about unification.

8.1.1 Unification of relativistic and quantum physics

Modern fundamental physics is based on the requirement that a description of Nature include both
its quantumness and its relativity, in the senses of the general theory of relativity.
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294 Unification: the fabric of understanding Nature

Special relativistic unification
The first example of unification of existing scientific models is provided by the Maxwell equa-
tions: Indeed, Ampère’s and Faraday’s laws and Gauss’s laws (5.72) were already known, as
well as experimentally verified in situations for which those laws of Nature had been identi-
fied.1 Their combination into one unified, electromagnetic system – and the extension of Ampère’s
law for the sake of agreement with the continuity equation and general consistency in the
non-static/stationary case – has far-reaching consequences:

1. The electric field and the magnetic field (viewed as two distinct physical phenomena) are
the limiting cases of a unified electromagnetic field, in the formal limit c → ∞; accordingly,
the Maxwell equations (5.72), without magnetic (monopole) charges and currents, become
(using the relation 1/ε0c2 = μ0)

�∇·�E =
4πρe

4πε0
, �∇×�B =

4π
4πε0c2�je +

1
c2
∂�E
∂t

→ μ0�je, (8.1a)

�∇·�B = 0, −�∇×�E =
∂�B
∂t

. (8.1b)

Thus, in the formal limit c →∞, only the last relation (Faraday’s law) still relates the elec-
tric and the magnetic fields, and only when the magnetic field varies in time and the
electric field varies in space, so as to have a nonzero curl: �∇×�E �= 0. In turn, the full elec-
trodynamics (5.72) is then the extension of this electro-and-magneto-static system, both
self-consistent and consistent with Nature.

2. Changes in the electromagnetic field propagate with the speed of light, in the form of waves.
Using the Lorenz gauge, the Maxwell equations (5.72) without magnetic (monopole)
charges and currents produce the wave equation for the 4-vector gauge potential (5.92),
so that their changes propagate at the speed of light in vacuum, c. The electromagnetic
field, as gauge-invariant derivatives of the gauge potentials (5.15), also satisfies the wave
equation


�B = �∇×(μ0�je), 
�E = −�∇
( ρe

ε0

)
− ∂(μ0�je)

∂t
. (8.2)

3. The system of Maxwell equations (5.72) has symmetries:
(a) Lorentz transformations of spacetime (3.1), i.e., (3.13) and corresponding transforma-

tions of the electromagnetic field (5.75),
(b) duality (5.86) between the electric and the magnetic field.

4. The existence of magnetic (monopole) charges and currents would obstruct the (unambigu-
ous) expression of the electromagnetic field in terms of a gauge 4-vector potential [☞ Com-
ment 5.6 on p. 185].

5. The regime where the unified electrodynamics may be regarded as a collection of separate
subjects of electro-statics, magneto-statics and wave optics is the “c → ∞” formal limit.

Comment 8.1 Since c is a natural constant, the formal limit “c → ∞” makes sense only
in the form of dimensionless ratios vij/c → 0, where vij ranges over all relative speeds
observable in the considered system. This has three significant consequences:

1. Non-relativistic physics is a special, limiting case of relativistic physics, which
is in turn an extension of non-relativistic physics. For any given system, in the

1 Maxwell noticed that without the displacement current, −μ0∂(ε0�E)/∂t, the divergence of Ampère’s original law, �∇×�B =
μ0�je, produces �∇·�je = 0, which holds only in the restricted cases when the free charge density in the entire observed
space is unchanging in time, i.e., only in the static/stationary situations for which Ampère originally identified the law.
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space of all possible relative speeds {v12, v13, . . . }, the non-relativistic regime
involves only the lowest-order nonzero results in the vij/c � 1 approximation,
i.e., near the point: vij = 0 for all i, j; everything else is relativistic physics.

2. By non-relativistic systems one may understand only the cases where the rel-
ativistic corrections are negligible – for which the limits of precision are
necessarily subject to convention.

3. Since the changes in the electromagnetic field propagate at the speed of light,
all systems with variable electromagnetic fields are unavoidably relativistic.

The property that changes in the electromagnetic field propagate as waves, at the speed of light,
unifies the (electro- and magneto-)static phenomena with the wave phenomena (ultraviolet ra-
diation, light, heat radiation and radio-waves, which were known by the end of the nineteenth
century to be but different types of electromagnetic radiation), and then also the high-frequency
limit of wave optics known as geometric optics.

Digression 8.1 From the contemporary, symmetry vantage point, the symmetries of the
Maxwell equations are the Lorentz transformations [☞ Section 3.1]. The symmetries
of Newtonian mechanics are the Galilean transformations, which differ from Lorentz
transformations in that the boost transformations do not change time:

Galileo �r ′ =�r −�vt, t′ = t, (8.3a)

Lorentz �r ′ =�r − γ�vt + (γ−1)(v̂ ·�r) v̂, t′ = γ
(

t − �v ·�r
c2

)
. (8.3b)

In Newtonian physics, time is absolute. Since charged particles interact with the electro-
magnetic fields and when they move, it is necessary that the theoretical model of those
interactions is a single, coherent and consistent theoretical system – which can happen
only if one can either:

1. adapt the Maxwell equations so as to exhibit Galilean symmetries of Newto-
nian physics,

2. or adapt Newtonian laws so as to exhibit Lorentz symmetries of relativistic
physics.

As is well known, Nature picks the second, and not the first of these logical possibilities.

General relativistic unification
Chapter 9 will provide a telegraphic review of the general theory of relativity, but let us note here
that the “general theory of relativity” (and then also its special case, the special theory of relativity)
is in fact a theoretical system [☞ Section 8.3.1]. The pivotal idea in the theory of relativity is also
the gauge principle, but applied to the “real,” i.e., concrete spacetime, rather than to an abstract
space of phases as was the case with electroweak and strong interactions [☞ Chapter 5]:

1. To describe physical systems, one uses coordinate systems the points of which are the points
of spacetime in which the parts of that system move. To this end, one uses the 4-vector of
spacetime coordinates, x.

2. The coordinates in such coordinate systems are not themselves physically observable, i.e.,
they cannot be measured. Indeed, absolute positions of various objects cannot be measured,
but distances between them can.
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296 Unification: the fabric of understanding Nature

3. To measure distances,

s(xi, x f ) :=
∫ x f

xi

ds, where ds2 := gμν(x) dxμdxν, (8.4)

one must know the metric tensor g(x) in the chosen coordinate system, represented by
x = (x0, x1, x2, x3). The components gμν(x) are – in principle, and definitely in the general
case corresponding to the general theory of relativity – arbitrary functions of the coordinates
x. For special relativity, gμν(x) = −ημν; see (3.17)–(3.19).

4. Since the coordinates x cannot be observed directly, it ought be possible to change the
coordinate system – through the substitution x → y, but so that

ds2
(x) = gμν(x) dxμdxν != gμν(y) dyμdyν = ds2

(y), (8.5)

from which it follows that [☞ Digression 3.2 on p. 88, and Chapter 9]

gμν(y) =
∂xρ

∂yμ
∂xσ

∂yν
gρσ(x), (8.6)

that is, that the metric tensor is indeed a tensor, of rank 2 and of type (0, 2).
5. Chapter 9 shows how invariance with respect to general coordinate transformations im-

plies the existence of gauge potentials and the gravitational interaction – exactly the way
invariance with respect to local phase transformations implies the Yang–Mills type gauge
interactions [☞ Chapters 5–6].

Comment 8.2 For the special theory of relativity, we have gμν(x) → −ημν,2 which is the
constant metric tensor (3.19) of the “flat” spacetime. In this sense, the special theory of
relativity is a “ limit-point” in the space of all possible general coordinate systems and cor-
responding metric tensors described in the general theory of relativity. In turn, the general
theory of relativity is then an extension of the special theory of relativity.

The practical demarcation between special and general theories of relativity may thus naively
be estimated by considering the departure of the actual metric tensor gμν(x) from the metric tensor
of flat spacetime, −ημν. This, however, is not well defined. Indeed, owing to the relation (8.6),
neither is specifying any particular component of the metric tensor nor is its comparison with the
same component from another metric tensor independent of the choice of coordinates. However,
there do exist so-called curvature invariants, the values of which are independent of coordinate
choices, and these then may serve for demarcation purposes. In (3 + 1)-dimensional spacetime,
there are 20 such invariants, of which the simplest one is the so-called scalar curvature, R :=
gμρRμνρν, where Rμνρσ is the so-called Riemann tensor [☞ Chapter 9]. Suffice it to say, if any one of
these 20 curvature invariants cannot be neglected (in the considered processes and in comparison
with some earlier specified precision limits), the system is generally relativistic.

The general theory of relativity contains (Einstein’s) model of gravity, while the special theory
of relativity pertains to flat spacetime, with no gravitational effects. Thereby, the special theory of
relativity may be regarded as the formal GN → 0 limit of the general theory.

Comment 8.3 As in the case of the formal limit “c → ∞” and since GN is a natural constant,
the formal limit “GN → 0” may be understood only as a statement that all characteristic
quantities of the system commensurate with GN (of the same physical units) are much larger

2 The expression (8.4) defines the metric tensor gμν by way of defining the distance, while the expression (3.17) defines
the proper time in spacetime. The signs in ημν are therefore opposite from the signs in gμν.
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than GN. Intuitively, these characteristic quantities ought to be some invariant measures of
the spacetime curvature, but all such invariants are computable from the Riemann tensor,
the dimensions of which are [Rμνρσ] = L−2. On the other hand, [GN ] = L3T−2M−1 and
curvature invariants (obtained as various contractions of various tensor products of the
Riemann tensor) cannot be compared with GN, but can be compared with the constant
�P :=

√
h̄GN/c3, the Planck length [☞ Table 1.1 on p. 24].

Thus, for the purposes of estimating the “non-gravitational” limiting case, it is more
convenient to use the natural constant �P instead of Newton’s gravitational constant. This
limiting case then may be written formally as “�P → 0,” understanding here relations of the
type |Ri|�P � 1, where:

1. |Ri| is the norm of the ith curvature invariant, defined so as to have dimensions
[Ri] = L−1;

2. the relation “�” here means “smaller than a previously set limit of precision.”

In this sense, the notation “GN → 0” is being used as a synonym for the formal limit “�P →
0”, while keeping h̄ and c constant [☞ Comments 8.1 on p. 294 and 8.4 on p. 298].

Quantum unification
As the Maxwell equations – the theoretical model of the electromagnetic field – indicate that the
electro-static and the magneto-static fields are only limiting cases of the electromagnetic field
whereby the descriptions of these natural phenomena are unified, so does quantum mechanics
unite the notion of a particle and that of a wave.

The very notion of a particle presupposes that the position of the observed object in “ordinary”
space may be localized arbitrarily well, i.e., that the object is ideally located in a perfectly well-
specified (mathematically dimensionless) point of “ordinary” space: the position of this object is
perfectly precisely specified. In a complementary fashion, the very notion of a (plane) wave presup-
poses that the position of the observed object in momentum space may be localized arbitrarily well,
i.e., that the object is ideally located in a perfectly well-specified (mathematically dimensionless)
point of momentum space: the wave vector of the object is perfectly precisely specified.

However, the Heisenberg indeterminacy relations, �x �px � 1
2 h̄, imply that a quantum ob-

ject cannot be localized more precisely than within a region in the phase space,3 the “surface area”
of which is never smaller than 1

2 h̄. This gives the phase space in quantum physics a “granular” struc-
ture. In turn, it is also known that functions (or, more generally, distributions) over the phase space
that may be used to represent classical observables cannot reproduce consistently and completely
all properties of the quantum state operator; see quantum mechanics textbooks such as Ref. [29].
Thus, quantum physics cannot be described simply as classical physics with the additional require-
ment of a “granular” phase space. Quantum mechanics teaches us that real “things” are neither
ideal particles nor ideal waves, but “something else”; something that in appropriate circumstances
may be approximated by the limiting case of a point-particle, while in other circumstances an
approximation by the limiting case of a wave is more precise.

The conceptual analogy with electro-static and magneto-static fields on one hand, and elec-
tromagnetic waves (always moving) on the other should be manifest. It should then come as no
surprise that field theory in this conceptual sense interpolates between particles and waves. How-
ever, field theory is not a theory of a collection of wave packets – that literally interpolate between
particles represented by the Dirac δ-function as one limiting case, and plane waves as the other

3 The geometric shape, and even connectedness of this region remains a-priori undetermined, regardless of the choice of
a system, and its evolution during the passage of time.
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298 Unification: the fabric of understanding Nature

limiting case. Field theory contains both wave packets as limiting cases – less special than particles
and plane waves, but limiting cases nevertheless.4

Finally, the transition from quantum to classical physics is often cited as the formal limiting
process h̄ → 0, which identifies classical physics as a limiting case of quantum physics.

Comment 8.4 Since h̄ is a natural constant, this limiting process makes sense only as the
limit (h̄/Si) → 0 for i = 1, 2 . . . , where Si are various physical observable quantities char-
acteristic for the given system and with units ML2

T , such as the angular momentum and
Hamilton’s action, S =

∫
dt L, where L is the Lagrangian of the system. In this precise

sense, classical (non-quantum) physics is a limiting case of quantum physics, which is in
turn an extension of classical physics.

The theoretical system of relativistic quantum physics
The combination of limiting processes described in Comments 8.1, 8.2 and 8.4 in this section
then provides the complete depiction (see Figure 8.1) of the theoretical system within which the
Standard Model of elementary particle physics is formulated [☞ Section 8.3].

For all Standard Model purposes, suppose that the spacetime curvature and corresponding
gravitational effects are negligible, i.e., that a full sequence of conditions of the form Ri�P → 0 is
satisfied, as discussed in Comment 8.3 [☞ also Chapter 9, as well as Refs. [508, 62, 367, 548, 66]],
and that reduces Einstein’s general theory of relativity to the special theory of relativity with no
gravitation; the Newtonian theory of gravity may be derived as a lowest-order nonzero effect near
this limit [95, 96, 271, 58]; see also Section 9.2.4. In individual interaction processes between
elementary particles, the gravitational interaction is many orders of magnitude weaker than the
strong or even the electroweak interactions, whereby special relativity suffices for all Standard
Model purposes.

With this assumption, the schematic diagram in Figure 8.1 reduces to the first quadrant in the
coordinate ( 1

c , h̄)-plane, which represents (specially) relativistic quantum physics, i.e., field theory.

GN

h̄

1/c

“GN
→ 0”

“h̄→
0”

“0 ← 1/c”

non-relativistic and
non-quantum physics
in flat space & time

Non-relativistic quantum
physics in flat space & time

Relativistic non-quantum
physics in flat spacetime

Relativistic quantum physics in
flat spacetime
(field theory)

Newtonian
gravity

General theory of relativity
(in curved spacetime)

Quantum
gravity

general-relativistic
quantum field theory

general-relativistic
quantum field theory

general-relativistic
quantum field theory

general-relativistic
quantum field theory

Figure 8.1 A sketch of the limiting cases of the general and special theory of relativity as well as
quantum physics. The boundaries of the formal transitions into the approximations “c → ∞,” “h̄ → 0”
and “GN → 0” (i.e., “�P → 0”; see text) are conventionally defined, as depicted by gradual shading.
General-relativistic quantum field theory is up front, well inside the first octant.

4 It may help to imagine the palette of possibilities covered by field theory as a multi-dimensional geometric object with an
“edge.” The points of this “edge” correspond to various wave-packets, and its two end-points correspond to the particle
and the plane wave, respectively.
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The demarcations that determine the negligibility of characteristic quantities (h̄/Si) and (vjk/c)
of the system are conventional, and this is represented in Figure 8.1 as a gradual change in the
shading. Here, the non-relativistic physics is “sufficiently near” the vertical axis, and non-quantum
physics is “sufficiently near” the horizontal axis. The practical criteria for this “nearness” – i.e., the
boundary where the non-relativistic or non-quantum approximation is no longer sufficiently good –
depends on the adopted conventions regarding the required precision of computational results.

Let us then emphasize the conceptual differences:

1. in phase transitions, the boundary between the symmetric and the non-symmetric phase is
precisely determined by the system: see Conclusion 7.5 and relation (7.45);

2. the transition from quantum (or relativistic) physics into the non-quantum (non-relativistic)
approximation is conditioned by the convention of computation precision. Strictly speaking
(with absolute precision), non-quantum and non-relativistic physics are merely idealized
limiting cases.

The transition from the regime where the electroweak interaction is united into the regime where
electrodynamics essentially differs from weak interactions (photons are massless, W±-, Z0-bosons
are massive) is manifestly a phase transition and not a conventional approximation. In turn,
the transition from the regime of electrodynamics into the regime where we – practically and
pragmatically – separate electro-statics from magneto-statics is conditioned by the convention of
computational precision, i.e., whether or not relativistic corrections may be neglected.

However, there do exist significant similarities. The conceptual similarity is reflected in the
facts that both electrodynamics and electroweak interactions have both a “unified” and a “sepa-
rated” regime, as well as that the symmetries of the system in the unified regime are larger than
the symmetries in the separated regime; see Table 8.1.

Table 8.1 Conceptual similarities and differences between the unification of the electric and the mag-
netic fields into the electromagnetic (EM) one, and the electromagnetic and weak fields into the
electroweak (EW) field. Po(1, 3) is the Poincaré group of linear transformations of spacetime: Lorentz
transformations and translations.

United regime Separated regime

El
ec

tr
om

ag
ne

ti
sm

The relative speed between at least two
subsystems is not negligibly small, vij/c �� 1.

The relative speed between at least two
subsystems is negligibly small, vij/c � 1.

The transition demarcation is specified by a convention in resolution.

Separation and differentiation between the �E-
and the �B-fields depends on the choice of the
coordinate system; see Example 5.1 on p. 183,
and relations (5.75) and (5.77).

In a system where the free charges are static
and the idealized currents stationary, the
electric and the magnetic fields are static and
perfectly separated.

The symmetries of the Maxwell equations
form the Lorentz group, together with
spacetime translations, i.e., the Poincaré
group, Po(1, 3).

The symmetries of electro- and magneto-static
systems are limited to rotations in space,
Galilean boosts and translations in space and
time, Ga(1, 3) � Po(1, 3).

El
ec

tr
ow

ea
k

in
t. Particles in a process have energies

Ei > h̄ c
√
λ〈H〉|κ<0 ∼ MW± c2.

Particles in a process have energies
Ei < h̄ c

√
λ〈H〉|κ<0 ∼ MW± c2.

The transition demarcation (the order parameter critical value) is determined by the system.

W±, W3
μ and Bμ are the normal modes,

and are all massless.
Bμ and W3

μ are not normal modes;
Aμ (massless) and Zμ (massive) are;
see relations (7.85)–(7.86).

Local (gauge) symmetries of electroweak
interactions form the SU(2)w × U(1)y group.

Local (gauge) symmetries of electroweak
interactions reduce U(1)Q ⊂ SU(2)w × U(1)y.
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Conclusion 8.1 (unification) Since Newton’s Principia (1687) and through the unification of
electroweak interactions (Glashow, Weinberg and Salam, 1979 Nobel Prize), three distinct
notions of unification have grown into fundamental physics:

(a) conceptual in the sense that Nature is one and that its scientific descriptions (mod-
els) should be conceptually uniform, and not a patchwork (hodgepodge) of
diverse and disparate ideas;

(b) limiting in the sense that one marked “regime” of behavior of a system is, strictly
speaking, merely a special limiting case (i.e., approximation) of another, more
general and/or more exact description;

(c) phase/regime where the description of a system contains a definition of an order
parameter and its critical value that divides two phases, i.e., regimes of a system.

Note the double duty pulled by the word “regime,” used in two different senses in the second and
third notions of unification as listed here. Similarly, the word “phase” is used here in the sense
exemplified by solids vs. liquids – very different from its use in Chapters 5–7.

8.1.2 Indications for exploring beyond the Standard Model
The Standard Model explains a lot, but also indicates the unknown source of some of the basic
characteristics of this model and the state of understanding Nature that this model represents:

Spacetime For Standard Model purposes, one assumes the spacetime to be a continuous
topological real 4-dimensional space with a flat metric tensor −ημν of signature (1, 3), i.e., that
one of the four dimensions is of a time-like and three are of a space-like character. We do not know
why this is so☞ .

The interaction hierarchy The fundamental interactions in the Standard Model emerge from the
gauge principle and the local (gauge) symmetry group SU(3)c × SU(2)w × U(1)y. The dependence
of the interaction strength on the 4-momentum transfer involved where this strength is measured
as well as the electroweak symmetry-breaking SU(2)w × U(1)y → U(1)Q are described within the
Standard Model. However, the relative intensities of the concrete values of the parameters αs, αw
and αy (i.e., αe) – obtained by measuring at any one concrete energy – are not determined within
the Standard Model and may only be regarded as given (and unexplained☞ ) “initial data.”

The scale and the mass hierarchy structure All Standard Model fermions acquire their mass via
interaction with the Higgs field, through the field shift H → H + 〈H〉 [☞ relations (7.109)–
(7.113)]. However, nothing in the Standard Model determines the concrete values☞ of the specific
constants hΨ that describe the intensity of the direct (Yukawa) interaction of the Standard Model
fermions with the Higgs boson – and thus also the masses of these fermions [☞ Tables 4.1
on p. 152 and C.2 on p. 526]. Since 〈H〉 is determined from the experimental data for mZ =
91.187 6 GeV/c2 [☞ relation (7.81) and (7.86)], it follows that

〈H〉 ∼ 102 GeV/c2, and hu, hd ∼ 10−5, hs ∼ 10−3, hc, hb ∼ 10−2, ht ∼ 1. (8.7)

Neither the general smallness hΨ (except ht) nor the hierarchy of these parameters is explained in
the Standard Model☞ . Until the Higgs particle is fully confirmed and its characteristics (including
all the coupling parameters hΨ) are measured, the fermion masses remain without explanation in
the Standard Model.

CKM quark mixing The very fact that the eigenstates of the free Hamiltonian are also the eigen-
states of the strong, electromagnetic and gravitational interactions, but not also of weak interaction
is not unusual: there is no a-priori theoretical reason for a coincidence of eigenstates of all various

https://doi.org/10.1017/9781009291507.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291507.012


8.1 Indications 301

interaction terms in the Hamiltonian. However, the origin and the concrete values of the Cabibbo–
Kobayashi–Maskawa parameters (angles) that control the quark mixing in weak interactions (2.53)
are not determined at all by the Standard Model and remain unknown ☞ .

Neutrino mixing and oscillations Similarly to quarks, there is no a-priori theoretical reason for
a coincidence of the eigenstates of the free and the (only) weak interactive term in the Hamil-
tonian for neutrinos. However, the origin and the concrete value of the parameter Mν in
equation (7.132) and, more generally, the origin and the concrete values of the parameters (in
the PMNS-matrix [☞ Section 7.3.2]) that control the neutrino mixing in free propagation (as
compared the neutrinos defined by the weak interactions) are also not determined at all by the
Standard Model, and this remains an open problem☞ .

The number of fermion families The Standard Model simply includes the fact that there exist three
families of fundamental fermions [☞ Table 7.1 on p. 275], but this fact is neither mandated nor
explained and remains one of the puzzles of the Standard Model☞ .

CP-violation The combined discrete CPT -operation must be a symmetry in all Lorentz-invariant
models [☞ Section 4.2.3]. However, the combined CP-operation need not be (and is not) a
symmetry of Nature, and neither need then the time reversal operation be. On the other hand,
T-violation is necessary for the irreversible creation of a sufficient surplus of matter (as compared
to antimatter) in the first seconds of the Big Bang, and CP-violation via weak interactions is,
roughly and little as it is, of just the sufficient amount. However, nothing in the Standard Model
explains the concrete value of the angle δ13 in the CKM matrix (2.53), nor the complete absence
of the otherwise perfectly possible – and many orders of magnitude larger – CP-violation through
strong nuclear interactions [☞ Section 6.3.1], which remains a complete mystery☞ .

Cosmological constant Phase transitions always have excess energy density [☞ Conclusion 7.1 on
p. 258 and Comment 7.3 on p. 265]. For water to freeze, an external heat reservoir must remove
this excess energy. However, when the entire Universe undergoes a phase transition, there is no
“external heat reservoir,” and this energy remains as a homogeneous and isotropic background
energy. The recent discovery that the expansion of the Universe is in fact accelerating implies the
existence of some kind of background “dark energy” – however, the observed value of even the so-
called cosmological constant is many tens of orders of magnitude smaller than the excess energy
density of the electroweak phase transition; the origin and the concrete value of this astoundingly
extravagant discrepancy remains a puzzle; see Comment 7.3 on p. 265☞ .

Dark matter Observations of the distribution of rotation speeds of stars about their galactic centers
imply the existence of an invisible source of gravity (mass), the quantity and volume of which
surpasses the mass and volume of the visible matter in galaxies. The Standard Model contains
no adequate candidate for such matter, the origin and nature of which then remain a puzzle☞ .
The variants of the cosmological “inflationary model” require that the total amount of matter in
the Universe should even be ten times more than the best estimates for the amount of visible
matter. For these models – which successfully describe most cosmically large-scale properties of
our Universe – the existence of dark matter is crucial.

— ❦ —

The questions that the Standard Model uncovers may in many cases be formulated only based on
the description of Nature and insights into its properties given precisely by that same Standard
Model. It is then not inappropriate to regard the Standard Model as a tool for systematizing our
questions about Nature that are conceptually beyond reach of the Standard Model. We thus speak
of research “beyond the Standard Model.”
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Theoretical, experimental – and even aesthetic – successes of the electro-weak unification
inspired many a researcher in the last quarter of the twentieth century to formulate a model that
would unify the strong with the electroweak interaction, as well as explain at least some of the
Standard Model puzzles. This idea receives significant support from the fact that the coupling pa-
rameters αs, αw and αy change with the magnitude of the 4-momentum transfer at which these
parameters are measured – and in a, roughly, convergent fashion. That is, if we suppose that above
the energies ∼102 GeV there exist no new fundamental fermions as well as no new interactions –
which is referred to as the “grand desert hypothesis” – the functions αs(q), αw(q) and αy(q) con-
verge and meet approximately at the energy |q|c ∼ 1015−17 GeV. The details of this convergence
and of this “merging” depend on the concrete model and additional assumptions and so are nec-
essarily of a speculative nature; finally, one talks about an extrapolation over 15–16 orders of
magnitude, with no precedent in the history of physics!

Consider the relation (5.202), as well as (6.79), which holds for the general case of
SU(n)-gauge interactions of n f fermion flavors, and note that the reciprocals of the fine struc-
ture parameters are approximately linear functions of the logarithm of the magnitude of the
4-momentum transfer |q| at which the parameters are measured:

U(1) :
1

α1,R(|q2|) ≈ 1
α1,R(μ2c2)

− 4
12π

ln
( |q2|
μ2c2

)
SU(n) :

1
αn,R(|q2|) ≈ 1

αn,R(μ2c2)
+

11n−2n f

12π
ln
( |q2|
μ2c2

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ |q2|  μ2c2, (8.8)

where μ is the largest fermion mass that can occur in the loops such as (5.201), the total number
of which equals n f . At energies over μc2 = mτc2 = 174.2 GeV, we have

SU(3)c : n f = 3× 2(w), 11n − 2 n f = + 21, (8.9)

SU(2)w : n f = 3× (3(c)+1), 11n − 2 n f = − 2, (8.10)

for SU(2)w and the same μ, and where the number of SU(3)c-interacting quarks equals 6 (one dou-
blet of quark SU(3)c-triplets in each of the three families) and the number of SU(2)w-interacting
fermions equals 12: one (color) triplet of quark SU(2)w-doublets and one lepton SU(2)w-doublet
in each of the three families. One thus obtains

U(1)y :
1

αy,R(|q2|) ≈ 1
αy,R(μ2c2)

− 4
12π

ln
( |q2|
μ2c2

)
, (8.11a)

SU(2)w :
1

αw,R(|q2|) ≈ 1
αw,R(μ2c2)

− 2
12π

ln
( |q2|
μ2c2

)
, (8.11b)

SU(3)c :
1

αs,R(|q2|) ≈ 1
αs,R(μ2c2)

+
21

12π
ln

( |q2|
μ2c2

)
. (8.11c)

where the values of αy,R(μ2c2), αw,R(μ2c2) and αs,R(μ2c2) are experimentally determined.
The depiction of the system (8.11) in Figure 8.2 is very suggestive: the magnitudes of the
SU(3)c-, SU(2)w- and U(1)y-interactions converge and become approximately equal somewhere
around |q| ∼ 1015 GeV/c. The details that ensure that the three functions (8.11) really merge in
one point include an increasing precision of the measurements of the “initial” values, as well as
the assumption of possible new particles with masses between mt ∼ 174.2 GeV/c2 and the energy
where the functions (8.11) acquire the same value.
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Figure 8.2 The convergence of the SU(3)c × SU(2)w × U(1)y gauge interaction strengths in the Stan-
dard Model. The slope changes indicate energy thresholds where new real quarks may be produced.
The shaded area indicates the SU(2)w × U(1)y → U(1)Q phase transition.

The simplest assumption – that in this enormous span of energies nothing new exists – in
fact does not lead to a precise merging of all three functions. In turn, in some of the possible and
explored extensions of the Standard Model, this agreement is much better. One such extension is
the so-called Minimally (extended) Supersymmetric Standard Model (MSSM), where this “grand
desert” is populated by new particles: one superpartner for each Standard Model particle.

Of course, only concrete experiments may decide and provide the ultimate conclusion about
the best model of unification of gauge interactions – as well as whether such a unification even
takes place at all. As is known from even the popular literature and daily newspapers, the in-
stallations that such experiments require have in the twentieth century grown ever larger and
more complex, and so are subject to both financial and political difficulties – already of in-
ternational proportions. A glance into the past and the much more modest requirements of
epoch-making experiments at the turn of the nineteenth into the twentieth century implies
the practical impossibility of continuing one of the two pillars of experimental physics (and
Rutherford’s legacy): colliders (where beams of particles are accelerated and then collided, and
where real collision processes are observed to happen) are becoming prohibitively expensive and
complex.

The other conceptual type of experiments is based on the quantum essence of natural pro-
cesses: Even if the energy in a system is insufficient for the interaction mediator in the process to
be produced as a real particle, the process may nevertheless occur by exchanging virtual mediating
particles. Although this significantly diminishes the probability for the observed process to happen,
one then observes an enormous amount of matter (an enormous ensemble of particles) where such
a process may happen, and then. . . waits for an unambiguous signal that the process really did
happen. Until a concrete event is registered, the experiment produces only an upper bound for the
probability for this process to happen, and cannot show if the process is in fact forbidden.

A new epoch-making advance in experimental physics will most probably require the inven-
tion of a radically new conceptual set-up of the experiment☞ that would, in lieu of an opportunity to
produce the concrete process or interaction as a real process, give a lower bound for the probability
of this process occurring – complementary to the “waiting” experiments.
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The combination of some such new experiments with a previous type of “waiting” experi-
ment could then narrow the limits on the probability of a process happening – which is anyway the
essential goal of natural sciences [☞ Conclusion 1.1 on p. 6]. Also, if a so-obtained lower bound
should surpass the independently obtained upper bound, the possibility of the process occurring
would certainly be ruled out. To some extent, the existing experimental results from diverse instal-
lations and experiments are already being combined in such a conceptual fashion; as time passes
and experimental precision grows, the available parameter space for the possible values of a con-
sidered physical quantity narrows and diminishes. However, this strategy cannot be applied to the
measurement of all (20 and more, depending on the precise definition and counting) Standard
Model parameters, and only a radically new type of experiments can change this.

8.2 Grand unified models
The next few sections will skim through some of the possible schemes of unification of electroweak
and strong interactions.

8.2.1 The Pati–Salam SU(4)c × SU(2)L × SU(2)R model
In a series of papers [411, 410, 412] in 1973–4, Jogesh C. Pati and Abdus Salam proposed a
unification scheme based on two simple ideas:

1. that “lepton-ness” is the fourth color (extending the three quark colors), and
2. that there exists a phase in which parity is an exact, i.e., restored symmetry.

These two ideas may be presented rather effectively in the form of a table:

C
h

ir
al

it
y SU(4)cElectroweak

interaction
SU(3)c

r y b �

SU(2)L
+ 1

2 L
ur uy ub ν�

e

− 1
2 dr dy db e−�

SU(2)R
+ 1

2 R
ur uy ub ν�

e

− 1
2 dr dy db e−�

plus two more “families”
of fundamental fermions,
each with an identical
structure.

(8.12)

In the fully symmetric phase, the “Pati–Salam” group SU(4)c × SU(2)L × SU(2)R specifies the
gauge symmetries of the model, and this certainly contains the Standard Model gauge symmetry
group SU(3)c × SU(2)L × U(1)y as a subgroup. Reference [412] describes several variants of
this unification, but over the subsequent years this concrete model was singled out as the most
successful. The 16 fermion states in the table (8.12) are denoted typically as the

(4, 2, 1)L ⊕ (4, 1, 2)R (8.13)

representation of the SU(4)c × SU(2)L × SU(2)R �Z2 group, where Z2 = {1, P} and P is the
operation of parity; the symbol “�” denotes the semidirect product [☞ the lexicon entry, in
Appendix B.1]. With respect to this complete symmetry of the Pati–Salam model, the represen-
tation (8.13) is irreducible, i.e., there is no proper subset of the fermions in the table (8.12),
which all elements of the complete symmetry

(
SU(4)c × SU(2)L × SU(2)R

)
�Z2 transform into

that same subset only. In turn, since parity is a symmetry of the model, the SU(2)L and SU(2)R

coupling parameters must be equal, but the SU(4)c coupling parameter is independent.
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With respect to the SU(3)c × SU(2)w × U(1)y ⊂ SU(4)c × SU(2)L × SU(2)R �Z2 subgroup,
the representation (8.13) decomposes into

[
(4, 2, 1) → (3, 2) 1

3
⊕ (1, 2)−1

]
L
⊕ [

(4, 1, 2) → (3, 1) 4
3
⊕ (3, 1)− 2

3
⊕ (1, 1)−2 ⊕ (1, 1)0

]
R
. (8.14)

This is the “physics-standard” notation, where the group representations are denoted by their
dimensions [☞ Appendix A].5 In particular, (m, n, p) denotes the SU(4)c × SU(2)L × SU(2)R-
representation, which is the tensor product of the m-dimensional representation of the SU(4)c
group, the n-dimensional representation of the SU(2)L group and the p-dimensional representa-
tion of the SU(2)R group. Thus, (4, 2, 1) is an SU(4)c-quartet of SU(2)L-pairs of quark-leptons,
which decompose (8.14) into

(4, 2, 1) =
{

ur, uy, ub, ν�
e

dr, dy, db, e�−
}

L

→
[
(3, 2) 1

3
=

{
ur, uy, ub

dr, dy, db

}]
L

⊕
[
(1, 2)−1 =

{
ν�

e
e�−

} ]
L

, (8.15a)

(4, 1, 2) =
{

ur, uy, ub, ν�
e

dr, dy, db, e�−
}

R

→
{[

(3, 1) 4
3

=
{

ur, uy, ub}]
R
⊕ [

(1, 1)−2 =
{

e�−}]
R[

(3, 1)− 2
3

=
{

dr, dy, db}
R

]
R
⊕ [

(1, 1)0 =
{
ν�

e
}]

R

. (8.15b)

In distinction from the left–right asymmetric interactions in the Standard Model [☞ Table 7.1
on p. 275], the extended electroweak interaction with the SU(2)L × SU(2)R gauge symmetry is
universal. That is, the table (8.12) makes it clear that this model unavoidably predicts the existence
of the right-handed neutrino. The right-handed neutrinos were indeed listed in Table 7.1 on p. 275,
but the Standard Model does not mandate their existence. The right-handed neutrinos are invariant
under the action of the Standard Model gauge symmetries and those symmetries do not link them
with any other particles. In fact, all right-handed fermions in Table 7.1 on p. 275 do not partake
in weak interactions and are invariant under its gauge symmetry SU(2)L. In stark contrast, the
left–right symmetric gauge group SU(4)c × SU(2)L × SU(2)R in the Pati–Salam model includes
right-handed neutrinos in the SU(2)R-doublets, extends weak interactions to left-handed particles,
and thus provides the system a phase with a weak interaction that is universal (and not restricted
to left-handed particles only) and where the symmetry of parity is restored.

In turn, this model then also makes it possible to describe the spontaneous breaking of the
parity symmetry.

In the early 1970s, one could only suppose that there should exist a method of endow-
ing the left- and the right-handed neutrino with masses non-symmetrically. The so-called see-saw
model [☞ discussion of the relation (7.132a)–(7.132b)] was discovered only much later, and this
model – the only one known – requires a mass parameter Mν � 1015 GeV/c2. This then cannot stem
from the Standard Model but may easily be the consequence of some symmetry breaking in the
diagram (8.16); the critical energy of such symmetry breaking must be many orders of magnitude
larger than mW± c2, mZ c2 ∼ 102 GeV. The technical method for parity breaking, so as to reproduce
the experimentally observed phenomena, still remains insufficiently understood in left–right sym-
metric constructions such as the Pati–Salam model☞ . In principle, one expects to be able to come
up with some variant of spontaneous symmetry breaking à la Sections 7.1.1–7.1.2, but none of the
explored models seems to be able to reproduce all experimental details.

5 In the general case, this is not sufficiently precise, as all Lie groups except SU(2) ∼= Spin(3) have distinct representations
of equal dimensions, but this ambiguity turns up very rarely within the examples of interest, and in those exceptional
cases those distinct representations of equal dimensions are distinguished by additional decorations such as 15 and 15′
in SU(3).
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The complete phase diagram – which in the 1970s was not discussed in detail – contains (at
least) the five regimes (“phases”)

SU(4)c × SU(2)L × SU(2)R �Z2 SU(3)c × U(1)y′ × SU(2)L × SU(2)R �Z2

SU(4)c × SU(2)L × U(1)R SU(3)c × U(1)y′ × SU(2)L × U(1)R

→ SU(3)c × SU(2)L × U(1)y

(8.16)

and the existence or absence of these (and possibly many other) regimes (and phase transitions
between them) depends on the choice of the Higgs field(s) that control the symmetry-breaking
process. In the display (8.16), the “vertical” phase transition (between the first two rows) is charac-
terized by the breaking of the right-handed copy of the weak isospin gauge group, SU(2)R → U(1)R,
as well as the parity Z2. The “horizontal” transition is characterized by the breaking of the ex-
tended color symmetry, SU(4)c → SU(3)c × U(1)y′ . Finally, the phase transition from the regime
in the right-hand side region in the second row into the regime in the last row is characterized
by the breaking of the abelian (commutative) symmetries U(1)y′ × U(1)R → U(1)y. The origi-
nal work on this model [412] indicated that there exists a choice of (by now reduced to eight)
Higgs fields that can describe the required symmetry breaking, SU(4)c × SU(2)L × SU(2)R →
SU(3)c × SU(2)L × U(1)y.

Besides, this model also predicts the possibility of proton decay! Namely, the symmetry SU(4)c
also contains transformations of any one quark into a corresponding lepton, such as ur,y,b → νe
and dr,y,b → e−. The gauge bosons that mediate such interactions, collectively named X, must
violate the baryon and the lepton number, but preserve the fermion (i.e., “quark+lepton”) number.
Nevertheless, the decay of the proton into lighter particles – electrons, positrons, (anti)neutrinos
and pions – is not possible in this model by way of exchanging only the gauge bosons, but requires
also the exchange of some Higgs field(s). Owing to the conservation of the fermion number, the
simplest such proton decay could be of the form p+ → 3νe + π+ or p+ → 4νe + e+.

The possibility that the proton is not stable was first seriously considered within this Pati–
Salam model, but proton decay has not been experimentally confirmed to date.

8.2.2 The Georgi–Glashow SU(5) model
Almost at the same time, Howard Georgi and Sheldon Lee Glashow suggested a competing unifi-
cation model, based on the gauge group SU(5) [202]. This model explicitly contains the left–right
asymmetry of the Standard Model. Also, the Standard Model fermions appear within two distinct
representations of the gauge group, SU(5). However, since the gauge group has a single factor,
unlike the Pati–Salam group, there is only one coupling parameter, and this model explains the
relative ratio of the coupling parameters αs, αw and αy (i.e., αe).

The Standard Model fermions of each family are herein grouped:

( f10)[AB] =

⎡⎢⎢⎢⎢⎢⎣
0 e+ ur uy ub

0 dr dy db

0 ub uy
anti-
symmetric
rank-2 tensor

0 ur
0

⎤⎥⎥⎥⎥⎥⎦
L

, ( f 5∗)A =

⎡⎢⎢⎢⎢⎢⎣
e−
νe

dr

dy

db

⎤⎥⎥⎥⎥⎥⎦
L

, f1 = (νe)L, (8.17a)

10 → (3, 2) 1
3
⊕ (3∗, 1)− 4

3
⊕ (1, 1)2, 5∗ → (3∗, 1) 2

3
⊕ (1, 2)−1, 1 → (1, 1)0, (8.17b)

where only the left-handed fermions are listed; clearly, (νe)L = νe,R, so the anti-fermions of left-
handed chirality represent fermions of right chirality. The indices A, B = 1, · · · , 5 here count the
components of the fundamental, 5-dimensional representation of the SU(5) group, and ( f10)[AB]
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denotes the components of the antisymmetric matrix that represents the 10-dimensional represen-
tation. f 5∗ represents the conjugate fundamental, 5-dimensional representation but is here shown
as a column-matrix rather than a row-matrix to save space.

The SU(3)c × SU(2)w × U(1)y gauge subgroup representations (8.17b) are identified akin to
the decomposition (8.15), and were already indicated in the decomposition (8.17):

(1, 1)2 ↔ {
e+}

L
, (3, 2) 1

3
↔

{
ur, uy, ub

dr, dy, db

}
L

, (3∗, 1)− 4
3
↔ {

ur, uy, ub
}

L
, (8.18a)

(1, 2)−1 ↔
{
νe
e−

}
L

, (3∗, 1) 2
3
↔ {

dr, dy, db
}

L
, (1, 1)0 ↔ {

νe
}

L
. (8.18b)

The SU(5) gauge bosons in this model contain the SU(3)c × SU(2)L × U(1)y Standard Model
gauge bosons, and also six additional gauge bosons, which form an SU(2)L-symmetry doublet, and
an SU(3)c-symmetry triplet:{

Xr

Yr

}
,

{
Xy

Yy

}
,

{
Xb

Yb

}
:

I3(X) = + 1
2 ,

I2(Y) = − 1
2 ,

Q(X) = 4
3 ,

Q(Y) = 1
3 .

(8.19)

It is easy to find X- and Y-mediated processes in this model whereby the proton decays; for
example,

p+ = (u + u + d) → (
u + u + (X + e+)

) → (
u + (u + X) + e+) → (

u + u + e+)
→ π0 + e+ → 2γ+ e+.

(8.20)

Estimates of the proton lifetime then give the basic bounds for the X and Y gauge boson masses,
and thus also the critical energy of the SU(5) → SU(3)c × SU(2)L × U(1)y phase transition. Con-
versely, using the results MX , MY ∼ 1015 GeV/c2 from estimates such as Figure 8.2 on p. 303, it
follows that the proton lifetime is τp ∼ 1028–1029 years, which is too short: Experiments have by
now raised the lower bounds to about 6.6× 1033 years [293].

In turn, although the right-handed neutrino may be added to the fermions f10 ⊕ f 5∗ , as in the
decomposition (8.17), it is an SU(5)-invariant, i.e., neutral (chargeless) with respect to all SU(5)-
gauge interactions. Thus, the right-handed neutrino may only have interactions of the Yukawa type
(a product of two fermions and a scalar in the Lagrangian density), the coefficients of which are
completely free parameters.

8.2.3 More complex models
Since the Pati–Salam SU(4)c × SU(2)L × SU(2)R model and the Georgi–Glashow SU(5) unification
model leave some of the Standard Model questions unanswered, it is reasonable to seek models
with a gauge group that contain both the Pati–Salam and the Georgi–Glashow gauge group. It is
interesting that the model built using the SO(10) gauge group6 contains both:

(8.21)

In this model, all Standard Model fermions of one family – together with the right-handed
neutrino – form the 16-dimensional irreducible spinor representation of the gauge group. The

6 To be precise, this is in fact the Spin(10) group, the double covering of the SO(10) group, so that the spinor rep-
resentations are faithful, i.e., single-valued. However, in the physics literature one usually writes SO(10), implicitly
understanding the single-valuedness requirement.
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model is explicitly left–right symmetric and the coupling parameters αs, αw and αy (i.e., αe)
all stem from a single coupling parameter of the SO(10)-gauge interaction. The SO(10) unifica-
tion thus contains the unification characteristics of both the Pati–Salam and the Georgi–Glashow
models.

The number of both principal and practical puzzles of the Standard Model is thus reduced,
but some of the questions still remain unanswered. Amongst them is the question: Why are there
three fundamental fermion families? It would then seem reasonable to extend the gauge symmetry
so as to also include a symmetry that mixes these fundamental fermion “families,” the breaking of
which should also explain the differences in the average masses of the fermions in the first, second
and third “families.” The simplest suggestion is the addition of another SU(3) factor,7 but this is
evidently ad hoc, and it would be more desirable if this “familial” symmetry were a subgroup of
some grand-unifying group.

The extension of the SO(10) symmetry that would suffice in unifying all three fundamen-
tal fermion families into one irreducible gauge group representation, and where there exists
a symmetry-breaking possibility such that precisely the three known families remain relatively
light while all others (if any) acquire masses of the order � 1015 GeV/c2 must be SO(18).
In models with such a large gauge group the number of additional particles (additional fun-
damental fermions, additional gauge bosons and Higgs fields) reaches many thousands, and
such models are not easy to take seriously [☞ Refs. [104, 285], and the references cited
therein].

Researchers of so-called GUT8 models have explored most of the Lie groups that are suffi-
ciently large to contain the Standard Model, but are in one way or the other minimal. In other
words, since this research is mostly speculative owing to the extrapolations over enormous ener-
gies, the researchers mostly adhere to the Ockham principle, whereby the symmetry structure and
the content (the fundamental particles list) of the Standard Model is extended only if this extension
offers an explanation for one of the Standard Model puzzles.

Superstring theory revived interest in some of the earlier explored exotic unifying models,
and foremost in a model based on the E6 gauge symmetry group. In this model, the fermions of
one family fit into the smallest (27-dimensional!) irreducible representation of the E6 group, so
each family of E6-fermions also contains 11 completely new fermions, the absence of which from
experiments must be explained separately. With the E6-model, one often mentions a model based
on the SU(3)c × SU(3)L × SU(3)R ⊂ E6 subgroup, dubbed “trinification.”9

8.3 On the formalism and characteristics of scientific systems

The unification of our knowledge about Nature into a single, coherent, comprehensive and log-
ically consistent system with as few as possible basic concepts and ideas is the leitmotiv of the
foregoing exposition. The same guiding idea also permeates the remainder of this book, where the
understanding of Nature so far acquired will be expanded with considerations about gravity and
the geometrization of physics, aspects of a possible unification of bosons and fermions, as well as
a final unification of matter, all its interactions and even spacetime.

It behooves us then to summarize the hierarchical structure that is usually referred to as a
“scientific system,” somewhat as a reprise of the introductory thoughts of Chapter 1, but now with
the background of Chapters 2–7.

7 This “familial” factor in the symmetry group must have a 3-dimensional representation to represent the three “families,”
and this 3-dimensional representation must be complex, as are the wave-functions of the fundamental fermions.

8 GUT stands for “Grand Unified Theory.”
9 This term is indeed the amalgamation of “trinity” and “unification”. Herein, trinity indicates the three SU(3) factors in

the gauge group; the double entendre allusion to the Holy Trinity may well be on purpose.
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8.3.1 The hierarchical structure of scientific systems
First of all, following the discussion in Section 1.1.2, by “scientific systems” one understands
systems of understanding Nature that are based on iterating the cycle of observing–predicting–
checking, which asymptotically improves this understanding. During this iterative process, the
mathematical models and the apparatus we use to describe natural phenomena are extended and
become technically more complex, and also describe Nature ever better and indicate an ever-
increasing wealth of detail. No Student could fail to notice that the mathematical language that
sufficed in the introductory hours of the first physics course quickly became inadequately scant, and
that mastering new material in physics made it necessary to develop this mathematical language.

In retrospect, both the material mastered in other courses and that presented in Chapters 2–7
indicate the following categories of descriptive structures:

A model provides a mathematical description (surrogate) for a concrete physical system, whether
this concerns a description of a concrete and simple physical system such as the pendulum
or the lever, or a similarly concrete but complex system such as the Standard Model of el-
ementary particle physics. In this description, every parameter quantifies a characteristic of
the given and concrete physical system. For a more precise definition, see Procedure 11.1 on
p. 416.

A theory is an axiomatic system in which a small number of physically motivated and logically
consistent axioms (postulates) determines an infinite sequence of consequences that ensue
with logical and mathematical rigor. Of course, we are interested in physics theories, of which
one also expects that neither its axioms nor any of their consequences contradict Nature;
the logically and mathematically incontrovertible consequences that (as yet) have not been
tested are thus the predictions of the theory.

A theoretical system is a coherent and logically consistent axiomatic system that contains several
distinct and otherwise independently defined and separately applicable theories.

Comment 8.5 Here, we are primarily interested in the theoretical approach, hence we
speak of theoretical systems . The analogous category of scientific systems of course
includes both theoretical and experimental aspects of the system.

During the second half of the twentieth century a subfield emerged within elementary
particle physics that is usually referred to as phenomenology, and which effectively connects
the ever more separated theoretical and experimental research. The scientific system then
of course includes this bridging subfield.

Strictly in form, a theoretical system is indistinguishable from a theory; the difference stems
from the physics application that dictates the source/motivation and justification of the axioms, as
well as whether a sub-system can be applied separately. The following concrete example of two
well-known theories as well as two theoretical systems containing those may serve to illustrate this.

Example 8.1 The special theory of relativity is based on two well-known postulates [☞ in-
troductory part of Section 3.1, and in particular Definition 3.1 on p. 84, and comments],
and of course the requisite mathematical apparatus that is well known from various
earlier courses and was used in Chapter 3.

Similarly, quantum physics may also be introduced axiomatically. Various Authors
cite different numbers of axioms: six [110], four [480], three [391] or two [29],
mostly because the longer lists also contain some purely mathematical results, whereas
the shorter lists presuppose the mathematical apparatus as independent (prerequisite)
material [29].
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In turn, there exist two relatively well distinguished theoretical systems, both of which
include both the special theory of relativity and quantum theory:

1. relativistic quantum mechanics, and
2. relativistic quantum field theory.10

Both theoretical systems satisfy the above-cited requirement to contain (at least) two dis-
tinct and otherwise independently defined and separately applicable theories. The latter
theoretical system is however more general: relativistic quantum field theory contains
relativistic mechanics. The precise distinction between these two systems is beyond the
scope of this book, but suffice it to state that an axiomatic approach to relativistic quan-
tum field theory also requires the system of so-called Wightman axioms [572] or the
Haag–Kastler alternative approach to local quantum physics, dubbed algebraic quantum
field theory [254], or some other effective substitute for these.

The difference is simplest to see by comparing two standard texts, by the same Au-
thors: Ref. [64] for relativistic quantum mechanics and Ref. [63] for relativistic quantum
field theory.

The objective of distinguishing these categories of descriptive structures is to identify the
important characteristics that distinguish models from theories and from theoretical systems. Con-
sider again a concrete example: the success of Bohr’s model of the hydrogen atom is oft cited as
the turning point in adopting quantum physics.

Simplified, one says that classical physics cannot describe the hydrogen atom. Notice that
classical physics is certainly a theoretical system, even if by classical physics one understands only
classical mechanics with the additional, and simplest description of the Coulomb interaction.

We are now in a position to note the finesse (and trap) of Popper’s falsifiability crite-
rion [☞ Digression 1.1 on p. 9] – and so also of Conclusion 1.2 on p. 9: The necessity of quantizing
the angular momentum indicates the falsifiability of one concrete model of classical physics – the
classical planetary model of the atom by Rutherford, implicitly including the assumption of contin-
uously variable angular momentum. This does not speak of the theoretical system (called classical
physics) as a whole. As the classical planetary model predicts that the electrons in the orbit must
lose energy via Bremsstrahlung – which of course is not the property of true atoms in Nature – one
faces the format of a proof by contradiction. The logic of that type of proof indicates that at least
one of the concrete assumptions (premisses) of the model must be at fault. As this includes all
implicit/tacit assumptions, it is not a-priori clear that the non-classical quantization of the angular
momentum is the only resolution of the disagreement between the model and Nature.

The fact that no one came up with a construction of a classical but stable planetary model of
the atom11 and many other results (Planck’s black body spectrum formula, Einstein’s explanation
of the photoelectric effect, Compton’s explanation of the effect that is now named after him) jointly
indicate that the quantumness is convincingly indispensable in the description of Nature. That is,

10 In practice, one always understands “quantum field theory” to be relativistic. As our present aim is to explicitly
emphasize both relativity and quantumness of this theoretical system, both adjectives are explicitly stated.

11 Note that Bohr’s postulate of orbital angular momentum quantization all by itself does not necessarily preclude a
purely classical explanation. For example, the complex system of Saturn’s rings exhibits resonance phenomena that do
provide excellent explanations for the stability of at least some of them. Similarly, the Titius–Bode rule, 1

10 (4+3·2n) for
n = −∞, 0, 1, 2, 3 . . . and in units of Earth’s semi-major axis, specifies the semi-major axis of each solar planet to within
a small percentage except for Neptune. Neither this rule nor its generalization, Stanley Dermott’s law (which then also
applies to major satellites of solar planets), have a known theoretical explanation, although simulations support the
belief that the regularity stems from many-body resonant phenomena [262]. It therefore simply does not follow that
some as yet unknown but purely classical resonance phenomena could not in principle provide for the stability of certain
select – quantized as it were – atomic orbits.
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the quantum description of Nature is the only known one, wherein models are as best as known
consistent with all these and a vast many other phenomena observed in Nature.

However, the quantum description of Nature cannot possibly refute (or falsify) classical theory,
since classical theory is a limiting case (i.e., an approximation [☞ Figure 8.1 on p. 298]) and so
also an integral part of the quantum theory. It makes no sense to state that the whole refutes one
of its integral parts or limiting cases. Quantum theory extends classical theory and is applicable
to concrete systems where classical theory is no longer sufficiently accurate: recall the gradual
transitions in the sketch in Figure 8.1 on p. 298 and the dependence of this feature on the adopted
conventions of accuracy.

The analogous situation holds for the theory of relativity which of course does not refute
its “non-relativistic” limiting case. The situation is analogous also with the (desired, but not yet
existing) generally relativistic quantum field theory – i.e., the theory that coherently and con-
sistently unifies both quantumness and general relativity in Nature. All so far known models
that faithfully describe the various natural phenomena and aspects of Nature must be integral
parts (as limiting or special cases, or as concrete applications) of this all-encompassing theoretical
system.

Some of these objections to the ideas regarding falsifiability also emerge upon exam-
ining more closely the helicoidal cycle that Popper uses to describe advances in scientific
knowledge [442]:

Problem
situation 1

→ Tentative
theory

1
→ Error

elimination 1
→ Problem

situation 2
→ · · · (8.22)

Here the appearance of a “problem situation” (such as an unexplained observation) triggers the
creation of several competing “tentative theories” that do explain the problem situation. These
are then subject to increasingly more rigorous testing (attempts at falsification), which eliminates
those that turn out to be erroneous in this third step. The remaining (unfalsified) theory is then
upheld until the next “problem situation” emerges and the cycle repeats.

This reminds us of the three-step iterative process “observe–model–predict” described in
Section 1.1.2, which may be recast into the above format for comparison:

Observation 1 → Model 1 → Predict 1 → Observe 2 → · · · (8.23)

The following observations are immediate on comparison:

1. The outcome of an observation need not pose a “problem situation,” i.e., a conflict with the
previously established/trusted theory. It could be anywhere between complete confirmation
and outright conflict, including indications for minor corrections. But most importantly, new
observations may well imply wholly new phenomena, the qualitative separateness of which
may not be fully understood until much later. For example, both electric and magnetic phe-
nomena had been noticed some 24 centuries before they were systematically represented in
mathematical models by Coulomb, Gauss, Ampère, Faraday, etc.

2. Models are neither theories, nor tentative theories nor conjectures, but concrete mathemati-
cal surrogates of a predefined accuracy and tolerance, and constructed within the framework
provided by one or more pertinent theories or theoretical systems.

3. Comparisons of model predictions against Nature rarely have a binary outcome of either-
true-or-false, and so can rarely lead to outright falsification of the model at hand. This is
even more true of theories and theoretical systems, as discussed above and in Digression 1.1
on p. 9, but cannot be overemphasized:
(a) relativistic physics does not falsify non-relativistic physics, but extends it;
(b) quantum physics does not falsify classical physics, but extends it.
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Conclusion 8.2 It is a historical fact that the contemporary description of Nature is a grow-
ing and integrated theoretical system, based on a number of postulates that is relatively
small as compared to the scope and span of this description, and where the whole system
as well as the candidates for additions are continually filtered by comparison with Nature
and also by the need to form a coherent and logically consistent integration.

In this sense is the contemporary description of Nature a growing organism.

We will return to this discussion in Section 11.5.

8.3.2 Inside indications of limitations
One of the systemically interesting characteristics of classical field theory, which includes the spe-
cial theory of relativity, is that the field theory (theoretical system) indicates the limits of its own
applicability.

The electrodynamics of charged particles
Start with the fact that both the formulation and the understanding of electrodynamics – as the
basic example of a concrete classical field theory and with concrete application in mind – has
essentially changed since the original, James Clerk Maxwell description in 1873.

In this original description, the electromagnetic field represented the deformation of aether,
just as sound is a wave-like deformation of the medium through which it passes. For the aether
itself, one supposed that it is at rest in Newton’s absolute space and time. In this description,
charged matter appears as a discontinuity in aether and in this sense is of secondary meaning.

In 1892, Hendrik A. Lorentz reformulated electrodynamics as a theory of the interactions
between atomistic material particles and the all-permeating electromagnetic field, which perme-
ates even the interior of the material particles. Lorentz initially had in mind the ions as these
basic charged particles, but upon Thomson’s discovery of electrons, in 1897, Lorentz’s reformu-
lation of electrodynamics focused on interactions of the electrons and the electromagnetic field.
Following Lorentz’s description, the charged particles are represented as little pellets of a finite
size [☞ Digressions 4.1 on p. 132, 3.13 on p. 123, and 8.2 on p. 313], the electric charge of which is
distributed over the surface and possibly also in the interior. Einstein’s special theory of relativity –
introduced as the basis for a description of electrodynamics of charged objects in motion – de-
mands that the energy and momentum of a particle under the action of the Lorentz transformations
change as components of a 4-vector, that the mass of the particle is Lorentz-invariant [☞ Chap-
ter 3], and that they are related by equation (3.36), i.e., that the mass is the Lorentz-invariant
magnitude of the 4-momentum, i.e., energy–momentum.

A way to satisfy this requirement in the Abraham–Lorentz model of an electron was never
found, and all indications are that the 4-momentum, and then also the mass obtained from the
relation (3.36), may be defined independently from the interactions of the electron with the elec-
tromagnetic field. From a contemporary, symmetry vantage point, the electric charge is a conserved
Noether charge that corresponds to the continuous gauge symmetry (5.14), while the 4-momentum
is the conserved Noether charge corresponding to spacetime translations [☞ Section 2.4.2, as well
as Conclusion 9.6 on p. 329]. Since the gauge transformations (5.14) and spacetime translations
are both logically and functionally independent, it follows that the mass of a particle must be
independent of its electric charge.

Thus, it follows that classical electrodynamics is not complete in the sense that it does not
seem capable of producing a consistent and complete model for charged material particles. As the
well-known Michelson–Morley, Fizeau and other experiments imply that the concept of aether does
not describe the experimental facts, it follows that one cannot go back to the original Maxwell view
either, wherein material particles are “merely” discontinuities in aether.

https://doi.org/10.1017/9781009291507.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291507.012


8.3 On the formalism and characteristics of scientific systems 313

As noted in Digression 3.13 on p. 123, the total energy (mass) of the electric field of a point-
like electron diverges. Paul A. M. Dirac, in 1938, suggested a covariant procedure for separating
the finite portion of this energy.12 This procedure, however, results in a reactive force that is pro-
portional to the derivative of acceleration, changes the familiar expression for the Lorentz force
in electrodynamics, and causes the pre-acceleration effect, where a particle starts accelerating be-
fore a force is applied [35]! It would seem to be possible to avoid the effects of pre-acceleration
only if the electron were large enough so that the (changes in the) field would need enough time
to permeate the particle. The current experimental bounds are orders of magnitude smaller than
the so-obtained estimates; see, however, Refs. [420, 421, 336, 17, 464, 78, 79] for a rather more
complex non-point-like model, which is argued to be consistent with contemporary experiments.

Digression 8.2 Digression 3.13 on p. 123 showed that the energy of the electric field of an
electron – which is in the Abraham–Lorentz model to be thought of as a rotating sphere
of radius re – equals αeb h̄ c

re
. The value b = 1

2 holds if the electric charge of the electron
is uniformly distributed over the surface of the sphere, and b = 3

5 if it is uniformly
distributed over the interior of the sphere. At any rate, b is a constant of the order ∼1,
which is true even for more complex electron charge distributions.

If this energy – by definition necessary to bring the electric charge of the electron
from infinite distances into any concrete configuration – is identified with the electron
rest energy, mec2, one obtains that the electron classical radius is

re = αeb
h̄

mec
= αe b λ̄e = 2.817 940 289 4× 10−15 b m, (8.24)

where λ̄e = λe
2π is the so-called (reduced) Compton wavelength [☞ Table C.3 on p. 527]

and which – up to the factor b – agrees with J. J. Thomson’s estimates from collision
processes. Namely, Thomson found the effective cross-section for electromagnetic radia-
tion scattering off of non-relativistically moving electrons to be proportional to the area
r 2

e , which agrees with the elementary analysis such as shown in Example 3.2 on p. 111.
It follows that b � 1, and that b cannot be much smaller than 1. Interestingly, it is
again Compton scattering – albeit at novel high-energy regimes – that may provide new
information in this continuing quest [78, 79]; see also Refs. [420, 421, 336, 17, 464, 57].

In modern experiments, electrons are collided with energies of the order of 102 GeV, indi-
cating that they come to a distance of about 10−18 m from each other – and do not show any
sign of spatial structure. Down to such distances, electrons behave as point-like material parti-
cles, in full agreement with the relativistic quantum field theory, and the Gaussian distribution
of the probability of finding the electron about this point, completely typical in quantum theory.
The Abraham–Lorentz (and any other, classical) model of charged material particles thus does not
agree with the experimental fact that (re)exp. < 10−18 m, nor with the general theoretical result
about the minimal size of the charge distribution [☞ Section 11.4]. Even the proton, which is not
an elementary particle, is 2–3 orders of magnitude smaller than the classical radius of a particle
with the elementary unit of electric charge.

From this one concludes that, for particles of mass m and electric charge q e, the classical
radius rcl ∼ αe

q h̄
m c and the corresponding time tcl ∼ αe

q h̄
m c2 are the (lower) bounds of applicability of

this scientific system called the classical electrodynamics of charged bodies. Notice that h̄ appears

12 This type of procedure is today referred to as “regularization” and is an integral part of renormalization computations.
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explicitly in these bounds only owing to the definition of αe; writing rcl ∼ q e2

4πε0m c2 and tcl ∼ q e2

4πε0m c3

instead gives these definitions a decidedly more classical appearance.

Pointillist quantum gravity
Section 1.3, and especially 1.3.3, has already discussed the joint characteristic of the combination
of quantum theory and the qualitative characteristic of the theory of relativity: the existence of
a minimal, Planck length. The analysis of Section 1.3.3 indicates that it suffices to endow the
quantum theory with Newtonian gravity and the relativistic requirement that no material object
can travel faster than the speed of light in vacuum. However, it also indicates that the Planck
length, as a (lower) bound of resolution and knowledge, is not a characteristic of the quantum
theory by itself, but of the theoretical system obtained by joining the quantum theory with (at least
Newtonian and also with Einsteinian) gravity, and the relativistic limit on speeds v < c.

One thus expects this amalgamated theoretical system not to be fundamental, but to be an
approximation to a more complete theoretical system. In fact, with the view that physics theories
and theoretical systems only asymptotically approach their aim, the Final Theory is of course just
a dream, and even an impossible dream – to paraphrase Refs. [553] and [549, 338], respectively.
Nevertheless, the contemporary physics en route to that dream is no less real, pragmatic and
successful in describing Nature as comprehensively, coherently and consistently as possible.

The (super)string theory (in fact a theoretical system) is currently the most complete candi-
date, and it necessarily contains quantum general-relativistic field theory, but we do not at present
know enough about this complex theoretical system for a final estimate as to the measure in
which this theoretical system can contain a faithful description of (our) Nature. For the most part,
this uncertainty derives from the fact that many of the questions raised within and about (su-
per)string theory have simply never before been posed. Other attempts, such as loop gravity and
spacetime foam [489], as well as some more recent attempts, are insufficiently developed even
just as (merely) theories of quantum gravity, and they certainly do not include matter and other
interactions as (super)string theory does; we will return to these issues in Chapter 11.
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