
THE STEINER POINT OF A CONVEX POLYTOPE 

G. C. SHEPHARD 

1. Introduction. Associated with each bounded convex set K in n-dimen-
sional euclidean space En is a point &(K) known as its Steiner point. First 
considered by Steiner in 1840 (6, p. 99) in connection with an extremal problem 
for convex regions, this point has been found useful in some recent investiga
tions (for example, 4) because of the linearity property 

(1) s(Xi Ki + X2 K2) = À! s(Ki) + X2 s(K2). 

Addition on the left is vector addition of convex sets. 
A definition of s(K) (which differs from that of Steiner, but is more con

venient here) will be given in §2. We mention, by way of example, that if K 
is a line segment, then &(K) is its mid-point, and if K is a convex p-gon with 
internal angle dt at the vertex Vt (i = 1, . . . , p), then &(K) is the centroid 
of a system of masses, the mass -K — 0* being attached to the vertex Vt; see (4). 

The purpose of this paper is to establish an interesting identity connecting 
the Steiner point of a convex poly tope and the Steiner points of its faces: 

(2) THEOREM. Let P be any d-dimensional convex poly tope in En and, for 
0 < j < d — 1, let Fij (i = 1, . . . tfj) be its j-faces. Then 

(3) (1 + ( - î y - ' M P ) = £ sOF,0) - £ s(F/) + . . . 
1=1 1=1 

+ (-iriz1s(^/-1)-
i=i 

This relation resembles the well-known identity of Euler and Schlâfli: 
(1 + ( - l ) ^ 1 ) = / o - / l + . . . + ( - I )"- 1 /*-! , 

but is of a different nature being a vector, as opposed to a scalar, identity. 
If we conventionally p u t / d = /_i = 1 and s(7V) = s(Frl) = s (P) , then (3) 
can be written in the more symmetrical form 

z (-D'iS(JV) = o. 
j=-i t=i 

The proof of the theorem will be given in §§2 and 3, and in §4 we shall show 
that, in the case of simple polytopes, there exist further linear relations between 
the Steiner points that are analogous to the Dehn-Sommerville relations 
between the numbers ft. 
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I am indebted to Professor C. A. Rogers for reading an early version of this 
paper and suggesting a number of improvements that have been incorporated. 

2. External angles of polytopes. Let P be any ^-dimensional convex 
polytope in En and let 5W_1 denote the unit (n — l)-sphere centred on the 
origin 0. For any vertex F° of P , denote by V(F°, P) the subset of Sn~l con
sisting of all those unit vectors u which are normal to the supporting hyper-
planes L(u, P) of P for which i ( u , P) C\ P = F°. It is clear that V(F°, P) 
is a convex spherical polytope in 5W_1 since it is the intersection of Sn~l with a 
convex polyhedral cone bounded by hyperplanes through 0 which are per
pendicular to the edges of P that meet in F°. The ratio of the (n — l)-content 
of V(F°f P) to the 0 - l)-content of S*1'1 is denoted by x//(F°, P) and is, for 
obvious geometrical reasons, called the external angle of P at the vertex F°. 
We now establish a simple formula for s(P) in terms of these external angles. 

(4) LEMMA. Let v3- be the position vector of the vertex Fj° of P (j = 1, . . . , / 0 ) . 
Then 

(5) s(P)=f:yjHFj\p). 
3=1 

Proof. The Steiner point of an arbitrary closed bounded convex set K in En 

is conveniently defined by (4, p. 11) 

(6) 8 ( 2 0 = — f uH(u,K)dœ, 

where u is a variable unit vector, H(u, K) is the supporting function of K 
(2, p. 23), dœ is an element of surface area of the sphere 5W_1, and on is the vol
ume of the ^-dimensional unit ball. From this definition, the linearity (1) of 
&(K) is immediate and so is the fact that s (20 is a continuous function of K. 

If K is a strictly convex body that is sufficiently smooth for the supporting 
function to have a continuous gradient vector Vi7(u, K) everywhere except 
possibly at 0, then for u ̂  0, the point of contact £(u, K) = L(u, K) C\ K 
is given by £(u, K) = VH(u, K) (2, p. 26). Following a suggestion of C. A. 
Rogers, we integrate this over the unit ball Bn to obtain 

f è(u,K)du= f VH(u,K)du= ( uH(u,K)da>, 

the singularity at the origin being so mild that there is no difficulty in the 
necessary justification. Hence from (6) we deduce 

8(20 = ~ f £(u,K)du. 

Since £(u, K) = £(Xu, K) for X > 0, this can also be written 

(7) 8(20 = - f Z(u,K)dœ, 

where rn = ncrn is the (n — l)-dimensional surface area of Sn~1. 
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We shall now show that (7) holds generally, that is, without the conditions 
of smoothness, so long as the integral is interpreted in the sense of Lebesgue. 
Let Ki, K2, . . . , be a sequence of convex bodies converging to any given 
closed bounded convex set K, where each Kt satisfies the smoothness conditions 
mentioned above. Then (7) holds for each Kf and, as i —> 00, the left side 
approaches &(K) by continuity. For each u, the sequence of points {£(u, Kt)} 
is uniformly bounded and so some subsequence converges to a point p. Since 
L(u, Ki) —> L(u, K), we deduce p Ç L(u, K), and since Kt —» K, we deduce 
p e K. Hence p <G L(u, K) C\K. Now L(u, K) Pi K is the single point 
£(u, 2£) except when u belongs to a set of measure zero on Sn~l\ see (1). 
Consequently the Lebesgue integral 

(8) f £(u,K)dœ 

exists, and by the bounded convergence theorem, 

lim I £(u,Ki)da = I £(u,K)do>. 

We deduce that (7) holds for the set K. 
Suppose, in particular, that K = P. In this case £(u, P ) takes the constant 

value \j on the region V(Fj°, P) C Sn~1 and these open spherical polytopes 
(one corresponding to each vertex) cover 5W_1 except for a set of measure zero. 
From (7), therefore, s(P) is equal to 

i>,vcF,°,p) 

and the lemma is proved. 

If K is any closed bounded convex set in En, then it is easy to deduce 
from the definition (6) that the position of s(K) relative to K is independent 
of the value of n. In the case of a polytope this also follows simply from the 
lemma, for the value of \p(F°, P) does not depend on n, Hence we may assume, 
without loss of generality, that the ^-dimensional polytope P lies in Ed. 

We remark that relation (5) may be used, instead of (6), to define the Steiner 
point of the polytope P , and in some ways it is more convenient to do so. 
Proceeding in this way has the disadvantage that relation (1) is no longer 
obvious. We digress briefly to show the geometrical significance of (1) when 
interpreted in terms of the external angles of polytopes and their vector sums. 

Let P and Q be two polytopes in Ed, P having vertices P*° with position 
vectors v*, and Q having vertices Gj° with position vectors w ; . Writing 
F / = F _ ( P , ° , P ) , VjQ = V(Gj°, Q), and Vtj = Vf C\ VjQ

y we see that 
{ViP}j {VjQ}> {Vij} are three coverings of 5 d _ 1 by closed spherical polytopes, 
the third being a common refinement of the first two. Let rd\l/i

P, rd-^jQ, Td\pij 
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be the (n — l)-contents of Vt
p, V'}

Q, Vtj respectively, where rd is defined as 
in (7). Then, by (5), 

8(P) + S((2) = E Vt*? + E W, *? = E (V, + W,)*.,. 
i j i, j 

If u £ Va, then L(u,P) HP = Ft° and L(u, Q) C\ Q = G/ . We deduce 
that v* + W; is the position vector of a vertex of P + Q and ^/tj is the external 
angle of P + Q at this vertex. Hence 

E (V« + W,)*„ = 8 ( P + Q ) , 

and the additivity of &(K) is proved. This, together with s(\K) = \s(K) for 
any real X, yields (1). 

3. Proof of the theorem. For any vertex Ff of P consider the region 
V(Fi°, P). This is an open spherical convex polytope in Sd~l and its (d — 1)-
content may be computed from the well-known formula of Sommerville 
(5, p. 157). In this way we obtain for \£(/<\0, P ) the expression 

0) (i + (-D*-1) W , P) = E (-i)*-*-V, 

where at
j denotes the sum of the (d — j — l)-dimensional solid angles sub

tended by the polytope V{Ft°, P) dit itsj-faces. (In this formula, ad~2 = \rn, 
where m is the number of (d — 2)-faces of V(Fi

{)
J P) and, conventionally, 

a.id~l = 1.) Now the (d — 2)-faces of V(Ft
0, P) lie in hyperplanes through the 

centre of Sd~l which are perpendicular to the edges of P meeting at Ff. Hence 
the solid angle at a j-face of V(Fi°, P) is bounded by the hyperplanes per
pendicular to the edges of a (d — j — l)-face of P meeting at Fi°, and so is 
equal to the external angle at F^ of that face. Thus 

on = ui~l *(Fi°, pr1-1), 
k=i 

where \l/(Fi°, Fk
d~j~l) is put equal to zero if Ft° is not a vertex of Fk

d~j~l. If 
we substitute these values of at

j in (9), multiply by v*, and sum for i from 
1 to/o, using (5), we obtain 

/o /d-1 / fd-j-i \ \ 

(i + (-iri)s(p)=Evi(E(-D^-1( E MF^Fr*-1))) 
i=l \ ; = 0 \ k=l / / 
d-1 / fd-j-i / /o \ \ 

= E(-ir^( E i v ^ ( ^ , r H ) 
3=0 \ k=l \ 2=1 / / 
d-1 / fd-j-i \ 

= E ( - i r ; - 1 ( E 8(#-'-1)). 
This is (3), and concludes the proof of the theorem. 
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4. Simple polytopes. In §1 we remarked on the resemblance between 
relation (3) and the Euler-Schlâfli identity. We now consider other ways in 
which linear relations between the Steiner points of a polytope and of its faces 
are analogous to those connecting the numbers ft. In the first place it is not 
difficult to see that (3) is the only such relation that is true for all convex 
polytopes, just as the Euler-Schlâfli identity is unique. On the other hand, 
there are further relations connecting the Steiner points of a simple convex 
polytope and its faces which are analogous to the Dehn-Sommerville relations. 
(The Dehn-Sommerville relations are usually stated for simplicial polytopes 
(3, §7.1), those for simple polytopes following by duality. There appears to be 
no corresponding duality for the relations between Steiner points of simple 
and simplicial polytopes.) 

We recall that a simple ^-polytope is one with the property that, for 

j < r < d, each j-face of P is incident with exactly ( . J r-faces. Applying 

(3) to an r-face Fr of P gives 

(io) (l + (-i)'-i)s(F0 = L,s(^°) - E's(/7) + . . . 
+ (-i)r-1L's(/Y-1), 

where £7 nieans summation over those suffixes i for which the face Ft
j (J < r) 

is incident with Fr. Now when relation (10) is summed over all the r-faces of P , 

noticing that each s (TV) occurs exactly f .1 times, we obtain, 

(11) (1 + ( - îr-OZsCiY) = Ç ) Z s(Ff°) - ^ ~ | ) £ 8(7-7) + . . . 

+ (-rf~; + 1 )zm, 
where X) means summation over all the faces of P whose dimension is indicated 
by the superscript of F. Putting r = 1, . . . , d, we obtain d relations of type 
(11). These are not all linearly independent, as we shall now prove. 

(12) THEOREM. For a simple d-polytope there are exactly [\{d + 1)] linearly 
independent relations of type (11), for example those corresponding to the values 

r = 1, 3, 5, . . . , m 

where m is the largest odd integer not exceeding d. 

Proof. Rewrite equations (11) in the form 

0 = (-Dr(d 1 r)l«W) + (-D'-1^ 1 1 ) ^ 8 ^ + • • • 

+(-D1^ ~d
rJ~r ^Zsw-1)+(i+(-D'-1)!^'), 

and denote the right side of this equation by (5 / ) (r = 1, . . . , d). 

https://doi.org/10.4153/CJM-1966-128-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-128-4


THE STEINER POINT OF A CONVEX POLYTOPE 1299 

If d is even, then it is simple to verify that 

(13) 2(S/)+^(Sr
a) =0. 

If r is even and r < d, then 

(") 5('r;ty~>-* 
To see this, we notice that for 0 < k < r — 1, the coefficient of J^sCF^) in 
the left side of (14), after slight simplification, is equal to 

But this is the coefficient of xr~k+1 in the formal product of 

<i+"~-(V) + ( 'TV- + (î:i>" 
and 

and so is zero. Hence (14) is proved. 
Relations (13) and (14) show that (Sr

d) is, for even r, linearly dependent 
on (Sf) (j = 1, . . . , r), and so the equations (Sr

d) = 0 (r even) are redundant. 
The remaining equations (those with odd r) are linearly independent since the 
matrix of coefficients is of triangular form, (ST

d) containing no term £s (7V) 
for j > r. This proves Theorem (12). 

5. Remarks. It seems reasonable to conjecture that every linear relation 
connecting the Steiner points of a simple polytope and of its faces must be 
linearly dependent on the [\{d + 1)] relations given in (12), but this has yet 
to be proved. Another open question is whether there exist any other interesting 
classes of polytopes, besides the simple ones, for which there exist more than 
one linear relation between the Steiner points. 

Theorems (3) and (12) can be generalized in a similar manner to that sug
gested by Grunbaum (3, §14.3) for the Gram relations between the angles of a 
polytope. Let n be any centrally symmetric countably additive set function 
defined on the Borel sets of .S^-1, with /x(5w_1) = 1. Then define 

UF»,P) =y.{V{F>,P)) 

and 

%{P) = E vAW. P) ; 
3 

cf. (5). This jLt-Steiner point, as it may be called, has the additive property (1), 
satisfies (3), and, in the case of a simple polytope, also satisfies (11). These 
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assertions are easily proved by modifying the arguments given above. However, 
unless /x is a constant multiple of the (n — l)-content, the /x-Steiner point is 
not congruence-invariant, that is 

will not hold for every congruence transformation T. Hence the special case 
discussed above is geometrically the most interesting. 
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