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Zeta Functions of Supersingular Curves of
Genus 2

Daniel Maisner and Enric Nart

Abstract. We determine which isogeny classes of supersingular abelian surfaces over a finite field k of

characteristic 2 contain jacobians. We deal with this problem in a direct way by computing explicitly

the zeta function of all supersingular curves of genus 2. Our procedure is constructive, so that we are

able to exhibit curves with prescribed zeta function and find formulas for the number of curves, up to

k-isomorphism, leading to the same zeta function.

Introduction

This paper was motivated by the problem of determining which isogeny classes of
abelian surfaces over a finite field k contain jacobians. In [MN] we performed a
numerical exploration of this problem which led to several conjectures. We present in
this paper a complete answer for supersingular surfaces in characteristic 2 (Section 5).

We deal with this problem in a direct way by computing explicitly the zeta function
of all supersingular curves of genus two (Section 4). Our procedure is constructive,
so that we are able to exhibit curves with prescribed zeta function and to count the
number of curves, up to k-isomorphism, leading to the same zeta function.

We base our work on the ideas of van der Geer and van der Vlugt [VV1, VV2],
who expressed the number of points of a supersingular curve of genus two in terms
of certain invariants. In Section 2 we explicitly compute these invariants in terms of
the coefficients of a defining equation and in Section 3 we compute the number of

points of the curve over the quadratic extension in terms of objects defined over k.

1 Supersingular Curves of Genus 2 in Characteristic 2

In this section we review the results of van der Geer–van der Vlugt and we fix some
notations. Let k = Fq be a finite field of even characteristic with q = 2m. We recall
some basic facts concerning the Artin–Schreier operator:

AS : k → k, AS(x) = x + x2.

This is an F2-linear operator with kernel F2. The image AS(k) is an F2-subspace of k

of codimension one; hence, |AS(k)| = q/2 and k/ AS(k) ≃ F2.
We shall denote simply by Tr or Trk the absolute trace Trk/F2

. For any x ∈ k we
have Tr(x) = Tr(x2), because x2 is a galois conjugate of x over the prime field F2.
Therefore, AS(k) = Ker(Tr).
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For any a ∈ k, the polynomial x2 + x + a ∈ k[x] is separable. Its roots are in k if
and only if a ∈ AS(k).

Lemma 1.1 A quadratic polynomial f (x) = x2 + ax + b ∈ k[x] is separable if and

only if a 6= 0; in this case, f (x) is irreducible if and only if b/a2 6∈ AS(k).

Throughout the paper we shall denote by µn ⊆ k̄ the group of the n-th roots of 1
and we let ǫ ∈ µ3 be a fixed root of the polynomial x2 + x + 1. Also, we denote
kn := Fqn . Note that k ⊆ AS(k2), since Trk2/k(k) = 0. Clearly,

1 ∈ AS(k) ⇐⇒ F4 ⊆ k ⇐⇒ m even,

µ3 ⊆ k ⇐⇒ (k∗)3  k∗ ⇐⇒ m even,

µ3 ⊆ AS(k) ⇐⇒ F16 ⊆ k ⇐⇒ m ≡ 0 (mod 4),

µ5 ⊆ k ⇐⇒ (k∗)5  k∗ ⇐⇒ m ≡ 0 (mod 4).

Every projective smooth curve of genus 2, defined over k and supersingular, i.e.,

with supersingular jacobian, admits an affine model of the type:

(1) C : y2 + y = ax5 + bx3 + cx + d, a ∈ k∗, b, c ∈ k, d ∈ k/ AS(k),

which has only one point at infinity. We can think that the term d takes only two
values, d = 0 or d = d0, with d0 ∈ k − AS(k) fixed. To apply the hyperelliptic twist

to the curve C consists in adding d0 to the defining equation. If we denote by Cτ the
twisted curve, we have

(2) |C(Fq)| + |Cτ (Fq)| = 2q + 2.

The curves C and Cτ are isomorphic over the quadratic extension of k through the
mapping (x, y) 7→ (x, y + u), where u ∈ k2 satisfies u + u2

= d0.

Throughout the paper by abuse of terminology, we identify the curve C given by
(1) with the 4-tuple (a, b, c, d) of parameters involved in the defining equation.

Remark 1.2 The mappings (x, y) 7→ (x, y + cx), (x, y) 7→ (x, y + cx + c2x2) set
respective k-isomorphisms between the curve (1) and the curves

y2 + y = ax5 + bx3 + c2x2 + d, y2 + y = ax5 + c4x4 + bx3 + d,

which are the models used respectively in [VV1, CNP]. We ask the reader to pay
attention to this change of models when we quote results from these two papers.

By (2), in order to study the number of points of these curves, we can assume
d = 0. Consider the linear polynomial R(x) = ax4 + bx2 + c2x. Since Tr(cx) =

Tr(c2x2), the function:

Q : k → F2, x 7→ Tr(ax5 + bx3 + cx) = Tr(xR(x)),
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is a quadratic form associated with the simplectic form:

k × k → F2, (x, y) 7→ 〈x, y〉R = Tr(xR(y) + yR(x)),

since clearly,

(3) Q(x + y) = Q(x) + Q(y) + 〈x, y〉R , ∀x, y ∈ k.

The number of zeros of Q determines the number of points of C :

|C(Fq)| = 1 + 2|Q−1(0)|.

The radical of the simplectic form 〈 , 〉R coincides with the set of roots in k of the
F2-linear and separable polynomial (independent of c):

Eab(x) := a4x16 + b4x8 + b2x2 + ax.

Let W = Ker(Eab) denote the subspace of k̄ formed by the 16 roots of this polynomial.
We denote

W := rad 〈 , 〉R = W ∩ k, w := dimF2
(W ), 0 ≤ w ≤ 4.

From (3) we deduce:

Q(x + y) = Q(x) + Q(y), ∀x ∈ k, y ∈ W.

In particular, Q defines a linear form, Q : W → F2. The space V := Ker(Q|W )
controls the behaviour of Q on the classes x + W ; for all x ∈ k, y ∈ W :

Q(x + y) = Q(x) ⇐⇒ y ∈ V.

This subspace V of W has codimension 0 or 1. If V  W , in each class x + W the
quadratic form Q vanishes on half of the elements; therefore |Q−1(0)| = q/2 and
|C(Fq)| = 1 + q.

If V = W , the quadratic form Q is constant on each class x + W . Hence, it
factorizes through a quadratic form, which we still denote by Q,

Q : k/W → F2,

associated to the non-degenerate simplectic form induced by 〈 , 〉R on k/W . In par-
ticular, the dimension of k/W is even, so that m, w have the same parity. Moreover,
if m − w = 2n, the number of zeros of Q can take only two values: 2n−1(2n + 1) or

2n−1(2n − 1). Thus,

|C(Fq)| = 1 + 2
(

2w(2n−1(2n ± 1))
)

= 1 + q ±
√

2wq.

Summarizing,
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Theorem (van der Geer–van der Vlugt).

V  W ⇒ |C(Fq)| = 1 + q,

V = W ⇒ |C(Fq)| = 1 + q ±
√

2wq.

There are, thus, three invariants that determine the number of points of C : the

dimension w of the space W , the codimension 0 or 1 of the subspace V ⊆ W and
the sign “+” or “−” indicating the parity, even or odd, of the quadratic form Q, in
the case V = W . Actually, the last two invariants can be unified using the following
terminology:

sgn(Q) :=

{

0 if V  W ,

+/− the parity of Q |(k/W ), if V = W .

We end this section of preliminaries by recalling the conditions that are necessary
and sufficient for two models (1) to give k-isomorphic curves. In general (cf. [VV2,
Lemma 2.3] or [CNP, Proposition 10]), the supersingular curves given respectively

by (a, b, c, d), (a ′, b ′, c ′, d ′) are k-isomorphic if and only if there exist λ ∈ k∗, ν ∈ k

such that

(4) (a ′, b ′, c ′, d ′) =

(

λ5a, λ3b, λ
(

c + 4

√

Eab(ν)
)

, aν5 + bν3 + cν + d
)

,

the equality d ′
= aν5 + bν3 + cν + d being understood in k/ AS(k).

There are 4q − 2 + [8]4|m k-isomorphism classes of supersingular curves [CNP,
Theorem 2], where +[8]4|m means “add 8 if 4 | m”.

The two cases b = 0, b 6= 0, give disjoint families of isomorphism classes. The
curves with b = 0 are all isomorphic to the curve y2 + y = x5 over k̄ and they have
160 automorphisms. The curves with b 6= 0 are k̄-isomorphic to curves of the type
y2 + y = a(x5 + x3) and have 32 automorphisms.

Note that if b 6= 0, we can achieve λ5a = λ3b by taking λ =

√

b/a. Hence, in this
case we can always assume that a = b.

As a consequence of (4) we see that any curve with |C(Fq)| = q+1 is isomorphic to
its own hyperelliptic twist. In fact, since V  W , there exists ν ∈ W with Q(ν) 6= 0,

that is, aν5 +bν3 +cν 6∈ AS(k). Hence, the curve (a, b, c, 0) is isomorphic to the curve
(a, b, c, d0).

2 Computation of the Invariants W , V

In this section we compute explicitly the subspaces W , V in terms of the parameters
a, b, c of the defining equation of the curve.

2.1 Computation of W

The polynomial Eab factorizes in k[x] [VV1, Theorem 3.4]:

Eab(x) = a4x16 + b4x8 + b2x2 + ax

= x(a2x5 + b2x + a)(a2x10 + b2x6 + ax5 + 1) = xP(x)(1 + x5P(x)),
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with P(x) := Pab(x) := a2x5 + b2x + a. Hence, we have v5P(v) = 1, 0 respectively for
10, 6 elements v ∈ W .

Lemma 2.1

(i) Any family of four roots of P(x) is a basis of W .

(ii) The ten elements v ∈ W such that v5P(v) = 1 can be expressed in a unique way

as the sum of two roots of P(x).

Proof Let z1, z2, z3, z4, z5 ∈ k̄ be the roots of P(x) and let us check that z1, z2, z3, z4

are linearly independent. They are all non-zero and different, hence, the sum of any
two of them cannot vanish. Since z1 + z2 + z3 + z4 + z5 = 0, the sum of any three or

four of them cannot vanish either.

The ten elements z ∈ W , such that vP(v) = 1 are the sum of two or three of the
elements of the basis. In any case, they are the sum of two roots of P(x), uniquely
determined.

Lemma 2.2 Let v = z + z ′ be a root in k of v5P(v) = 1, with z, z ′ roots of P(x). Then

(av5)−1 ∈ AS(k) =⇒ z, z ′ ∈ k,

(av5)−1 6∈ AS(k) =⇒ z, z ′ ∈ k2 − k and they are conjugate over k.

Proof Let us impose that v + z is a root of P(x):

0 = a2(v + z)5 + b2(v + z) + a = a2v5 + a2v4z + a2vz4 + a2z5 + b2v + b2z + a

= a2v5 + a2v4z + a2vz4 + b2v = v(a2v4 + a2v3z + a2z4 + b2).

We deduce that a2v4 + a2v3z + a2z4 + b2
= 0. If we multiply by z and apply a2z5 +

b2z = a, we get a2v3z2 + a2v4z + a = 0, or equivalently, z2 + vz + (av3)−1
= 0. Since

v 6= 0, this equation in z is separable and the two roots are z, z ′. By Lemma 1.1, the
roots belong to k if and only if (av5)−1 ∈ AS(k).

We are ready to see that the factorization of P(x) as a product of irreducible poly-
nomials determines w. We shall write P(x) = (n1)(n2) · · · (nt ) to indicate that P(x)
factorizes in k[x] as the product of t irreducible polynomials of degrees n1, n2, . . . , nt .

Proposition 2.3 Let P(x) = a2x5 + b2x + a, with a ∈ k∗, b ∈ k. Then,

(i) w = 0 ⇐⇒ P(x) is irreducible.

(ii) w = 1 ⇐⇒ P(x) = (1)(4) or P(x) = (2)(3).

(iii) w = 2 ⇐⇒ P(x) = (1)(1)(3) or P(x) = (1)(2)(2).

(iv) w = 3 ⇐⇒ P(x) = (1)(1)(1)(2).

(v) w = 4 ⇐⇒ P(x) = (1)(1)(1)(1)(1).
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Proof If P(x) = (1)(1)(1)(1)(1), we have W = W by Lemma 2.1 and w = 4.
If P(x) = (1)(1)(1)(2), we have W  W and W contains the three roots of P(x)

in k, which are linearly independent by Lemma 2.1. Hence, w = 3.
Suppose that P(x) = (1)(1)(3) and let z, z ′ be the roots of P(x) in k. By Lemma 2.2,

z + z ′ is the only root of 1 + x5P(x) that belongs to k. Hence, W is the subspace
generated by z, z ′ and w = 2. Now suppose that P(x) = (1)(2)(2). By Lemma 2.2,

the two traces of the quadratic factors of P(x) are the only roots of 1 + x5P(x) that
belong to k. Thus, W has four elements and w = 2.

Similarly, by Lemma 2.2 we have w = 1 if P(x) = (1)(4) or P(x) = (2)(3), and we
have w = 0 if P(x) is irreducible.

Since we have considered all possible factorizations of P(x), the converse implica-
tions hold too.

We proceed now to find explicit criteria to determine the factorization type of P(x)

in terms of a, b. We start with an auxiliary result.

Lemma 2.4 Let e ∈ k∗. The polynomial f (x) = x4 + x3 + x2 + x + e has the following

decomposition in k[x] as a product of irreducible factors:

e 6∈ (k∗)3
=⇒ f (x) = (1)(3),

e = λ3, λ ∈ k − AS(k), m odd =⇒ f (x) is irreducible,

e = λ3, λ ∈ AS(k), m odd =⇒ f (x) = (1)(1)(2),

e = λ3, λµ3 * AS(k), m even =⇒ f (x) = (2)(2),

e = λ3, λµ3 ⊆ AS(k), m even =⇒ f (x) = (1)(1)(1)(1).

Proof We check first that e = λ3, λ ∈ AS(k), are necessary and sufficient conditions
in order that f (x) decomposes in k[x] as the product of two polynomials of degree 2,
not necessarily irreducible. In fact, assume that we have such a decomposition:

(5) x4 + x3 + x2 + x + e = (x2 + ux + s)(x2 + (u + 1)x + t).

This amounts to

s + t = 1 + u + u2, u(s + t) + s = 1, st = e.

From the first and second equations we deduce s = (u + 1)3, t = u3, so that e = (u +
u2)3. Conversely, if e = λ3 and λ = u + u2, with λ, u ∈ k, we get the decomposition

above by taking s = (u + 1)3, t = u3.
By Lemma 1.1, the quadratic factor x2 + ux + (u + 1)3 is irreducible if and only if

(u + 1)3/u2 does not belong to AS(k). Since (u + 1)3/u2
= u + 1 + u−1 + u−2, this

condition is equivalent to u+1 6∈ AS(k). Similarly, the quadratic factor x2+(u+1)x+u3

is irreducible if and only if u 6∈ AS(k).
Now we start the proof of the lemma. Assume that e 6∈ (k∗)3. Then x3 + e is

irreducible in k2[x]. Therefore, f (x) = (1)(3), since this is the only factorization for
which f (x) is not the product of two polynomials of degree 2 over k2.
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If m is odd, then e = λ3 for a unique λ ∈ k. If λ 6∈ AS(k), then f (x) does not
factorize as the product of two polynomials of degree 2 in k[x], but it admits such a

factorization over k2[x]; hence, f (x) is irreducible. On the other hand, if λ = u + u2,
with u ∈ k, we have a factorization (5). Now, since m is odd, we have 1 6∈ AS(k) and
necessarily f (x)=(1)(1)(2), since exactly one of the two conditions, u + 1 6∈ AS(k),
u 6∈ AS(k), is satisfied.

Suppose now that e ∈ (k∗)3 and m is even. If λ3
= e, with λ ∈ k, the elements

λǫ and λǫ2 are cubic roots of e, too. Since their sum is zero, either all three belong to
AS(k), or only one of them. This corresponds to f (x) having three different decom-
positions (5) or only one, that is, to f (x) = (1)(1)(1)(1) or f (x) = (2)(2).

In order to study the decomposition of Pab(x), we can assume that b = 0 or b = a,
as remarked at the end of Section 1.

Proposition 2.5 Let a ∈ k∗ and Pa0(x) = a2(x5 + a−1). Then

Pa0(x) =



















(1)(4) if m is odd,

(1)(2)(2) if m ≡ 2 (mod 4),

(1)(1)(1)(1)(1) if m ≡ 0 (mod 4), a ∈ (k∗)5,

irreducible if m ≡ 0 (mod 4), a 6∈ (k∗)5.

Proof Suppose first a 6∈ (k∗)5, or equivalently, that Pa0(x) has no roots in k. We
have necessarily m ≡ 0 (mod 4) and µ5 ⊆ k. Thus, if we adjoin to k any root of
Pa0(x), this polynomial will split completely in the larger field. Thus, Pa0(x) cannot
be (2)(3) and it must be irreducible.

Suppose now a ∈ (k∗)5 and let z ∈ k satisfy z5
= a−1. We have

x5 + a−1
= (x + z)(x4 + zx3 + z2x2 + z3x + z4),

and the quartic factor has the same factorization type as the polynomial x4 + x3 + x2 +
x + 1 that was studied in Lemma 2.4.

Proposition 2.6 Let a ∈ k∗ and Paa(x) = a2(x5 + x + a−1). Suppose that Paa(x) has

no roots in k. Then

Paa(x) =

{

(2)(3) if m odd,

irreducible if m even.

Suppose that Paa(x) has a root z ∈ k. Then for e = 1 + z−4, we have

Paa(x) =































(1)(1)(3) if e 6∈ (k∗)3,

(1)(4) if e = λ3, λ ∈ k − AS(k), m odd,

(1)(1)(1)(2) if e = λ3, λ ∈ AS(k), m odd,

(1)(2)(2) if e = λ3, λµ3 * AS(k), m even,

(1)(1)(1)(1)(1) if e = λ3, λµ3 ⊆ AS(k), m even.
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Proof If the polynomial has no roots in k, the assertion is a consequence of Propo-
sition 2.3 and the fact that m and w have the same parity.

If the polynomial has some root z ∈ k, then

x5 + x + a−1
= (x + z)(x4 + zx3 + z2x2 + z3x + z4 + 1),

and the quartic factor has the same decomposition type as the polynomial x4 + x3 +
x2 + x + (1 + z−4) that was obtained in Lemma 2.4

This result allows us to count the number of times that each decomposition of

Paa(x) appears, when a varies. In Section 4, this computation is crucial to finding
explicit formulas for the number of curves with prescribed zeta function.

Corollary 2.7 The following two tables give the number of values of a ∈ k∗ leading to

each of the possible factorizations of Paa(x) in the cases m odd and m even, respectively.

(2)(3) (1)(1)(1)(2) (1)(4)

(q + 1)/3 (q − 2)/6 (q/2) − 1

(1)(1)(3) (1)(2)(2) (1)(1)(1)(1)(1) irreducible

(q − 1)/3 (q/4) − [1]4∤m ((q − 4)/60) −
[

1
5

]

4|m
2
5
(q + 1 − [2]4|m)

Proof Suppose that m is odd. By Proposition 2.6, the values of a ∈ k∗ leading to

Paa(x) = (1)(4) are parameterized by elements λ ∈ k − AS(k), λ 6= 1, via

(6) 1 + z−4
= λ3, a = (z5 + z)−1.

These two relations set λ in a one-to-one correspondence with z (since (k∗)3
= k∗)

and z in a one-to-one correspondence with a (since z5 + z = a−1 has only one root).
We get (q/2) − 1 values of a.

Similarly, the values of a ∈ k∗ leading to Paa(x) = (1)(1)(1)(2) are parameterized
by choosing λ ∈ AS(k), λ 6= 0 and taking z, a as before. The relation between λ and
z is still one-to-one, but now there are three different values of z linked to the same

a. We get 1/3 of the values computed above.

All other values of a ∈ k∗ lead to Paa(x) = (2)(3).

Now suppose m even. There are 2(q − 1)/3 values of z ∈ k satisfying 1 + z−4 6∈
(k∗)3, and each pair of these values give the same a = (z5 + z)−1. We have thus
(q − 1)/3 values of a with Paa(x) = (1)(1)(3).
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In order to ensure the factorization Paa(x) = (1)(2)(2), we take λ 6∈ AS(k) ∪ F4

and consider z, a determined by (6). The fact that λ 6∈ F4 guarantees that z 6= 0, 1

and a 6= 0. The number of different values of λ with these properties is

(7)
q

2
− 2, if 4 ∤ m,

q

2
, if 4 | m.

Since λ + λǫ + λǫ2
= 0, in the pair λǫ, λǫ2 exactly one element belongs to AS(k).

The element not belonging to AS(k) and λ both give the same value of a. Hence, the
number of values of a is half of the quantities given in (7).

For Paa(x) to split completely, we have to take λ ∈ k such that λ, λǫ ∈ AS(k); this
will ensure that λµ3 ⊆ AS(k). By the non-degeneracy of the pairing Tr(xy), there are

q/4 values of λ ∈ k with this property: λ ∈ 〈1, ǫ〉⊥ = F
⊥
4 . Also, we need λ 6∈ F4 in

order that z 6= 0, 1. Since F
⊥
4 ∩ F4 = {0} if 4 ∤ m and F

⊥
4 ⊇ F4 if 4 | m, the number

of values of λ is,

(8)
q

4
− 1 if 4 ∤ m,

q

4
− 4, if 4 | m.

Every three values of λ give the same z and every five values of z give the same a.

Hence, the number of different values of a is obtained by dividing by 15 the numbers
given in (8).

All other values of a ∈ k∗ lead to Paa(x) irreducible.

2.2 Computation of V

We can use Lemmas 2.1 and 2.2 to reinterpret the linear form Q|W in a way that

provides an explicit computation of codim(V,W ). Let us start with some remarks on
linear forms over k. For any c ∈ k, let us denote by Lc the linear form,

Lc : k → F2, x 7→ Trk(cx).

The non-degeneracy of the pairing Tr(xy) allows us to consider a linear isomorphism:

L : k → Hom(k, F2), c 7→ Lc

In particular, for any subspace W ⊆ k of dimension w, the linear mapping,

L : k → Hom(W, F2), c 7→ Lc |W ,

is onto and each linear form over W has q/2w preimages.

Proposition 2.8 Let (a, b, c, d) be parameters defining a supersingular curve (1). Let

ℓ, ℓc : W → F2 be the linear forms determined by:

ℓ(z) = Tr(1), if P(z) = 0,

ℓ(v) = 0, if v = z + z ′, with z, z ′ roots of P(x) in k,

ℓ(v) = 1, if v = z + z ′, with z, z ′ roots of P(x) in k2 − k,

and ℓc = Lc+b2a−1 restricted to W . Then Q|W = ℓc + ℓ. In particular, V = W if and

only if ℓc = ℓ.
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Proof Suppose that P(z) = 0, with z ∈ k. We have a2z5 + b2z + a = 0. If we
multiply by z5, we get az5 + a2z10

= b2z6, so that b2z6 ∈ AS(k) and, in consequence,

bz3 ∈ AS(k). We can now compute

Q(z) = Tr(az5 + bz3 + cz) = Tr(b2a−1z + 1 + cz) = ℓc(z) + Tr(1).

If v5P(v) = 1, we have a2v10 + b2v6 + av5 + 1 = 0, so that b2v6 ≡ 1 (mod AS(k))

and, in consequence, bv3 ≡ 1 (mod AS(k)). On the other hand,

av5
= b2a−1v + 1 + (av5)−1,

so that,

av5 + bv3 ≡ b2a−1v + (av5)−1 (mod AS(k)).

By Lemma 2.2, Tr((av5)−1) = 0, 1 according to z, z ′ belonging to k or to k2 − k. This

ends the proof.

Note that ℓ depends on a, b and ℓc depends on a, b, c. Thus, for a, b fixed, the
invariant codim(V,W ) is determined by the linear form ℓc, or equivalently, by the

linear form Lc|W . Let us check now that this linear form determines in most of the
cases the k-isomorphism class of the curve too, up to hyperelliptic twist.

Lemma 2.9 Let C = (a, b, c, 0) and suppose that b 6= 0 or 4 ∤ m. Then for any c ′ ∈ k,

the following conditions are equivalent:

(i) C ′
= (a, b, c ′, 0) is k-isomorphic to C, if V  W ,

C ′
= (a, b, c ′, 0) is k-isomorphic either to C or to Cτ , if V = W .

(ii) c ′ ∈ c + 4
√

Eab(k),

(iii) Lc|W = Lc ′ |W ,

(iv) ℓc = ℓc ′ .

Proof Conditions (i) and (ii) are equivalent by (4), since our hypothesis on b and/or
m imply that λ = 1 in (4).

In order to check that (ii) and (iii) are equivalent, let us show that Eab(k) =

(W 4)⊥, where the orthogonal is taken with respect to the isomorphism of k with
its dual obtained from the perfect pairing Tr(xy). In fact, for an arbitrary ν ∈ k we
have

(9) 0 = 〈z, ν〉R = Tr(z(aν4 + bν2) + ν(az4 + bz2)), ∀z ∈ W.

Clearly,

z(aν4 + bν2) ≡ z4(a4ν16 + b4ν8) (mod AS(k)), νbz2 ≡ ν2b2z4 (mod AS(k)),

so that (9) is equivalent to

(10) Tr(z4Eab(ν)) = 0, ∀z ∈ W.

Hence, Eab(k) ⊆ (W 4)⊥ and, having the same dimension, they coincide. Therefore,

condition (ii) is equivalent to c ′ ∈ c+W⊥, which is equivalent to (iii) by the definition
of Lc.

Finally, it is obvious that (iii) and (iv) are equivalent.
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3 Computation of the zeta Function

Let C be a smooth projective curve of genus 2, defined over k. The zeta function of C

is a formal series in one indeterminate, which can be expressed as a rational function:

(11) Z(C/Fq, t) = exp
(

∑

n≥1

Nn

tn

n

)

=

1 + a1t + a2t2 + qa1t3 + q2t4

(1 − t)(1 − qt)
,

where Nn := |C(Fqn )| and a1, a2 ∈ Z. From this identity one deduces immediately
that

N1 = q + 1 + a1, N2 = q2 + 1 + 2a2 − a2
1.

Thus, the zeta function is determined by the pair (N1, N2).

Let JC be the jacobian variety of C . The polynomial t4 + a1t3 + a2t2 + qa1t + q2 is
the characteristic polynomial of the Frobenius endomorphism of the abelian surface
JC . This polynomial determines the k-isogeny class of JC . Thus, two curves have the
same zeta function if and only if their jacobian varieties are k-isogenous.

Let C be a supersingular curve defined by (1), with parameters (a, b, c, 0). Denote
by w, V , W , Q, ℓ, ℓc the objects associated to C|k in Sections 1 and 2 and by w̃, Ṽ , W̃ ,

Q̃, ℓ̃, ℓ̃c the corresponding objects associated to the curve C|k2
.

In this section we compute N2 = |C(Fq2 )| in terms of a, b, c. The idea is to apply
the results of the last section and take advantage of the fact that the curve is defined
over k to avoid any computation in k2. More precisely, we shall see that the linear
form ℓc on W contains already sufficient information to determine N2.

To begin with we recall some observations on linear forms over k2/k. For any
c ∈ k, we denote by L̃c the linear mapping:

L̃c : k2 → F2, x 7→ L̃c(x) = Trk2
(cx).

As before, we can consider the isomorphism,

L̃ : k → Hom(k2/k, F2), c 7→ L̃c.

Lemma 3.1 Think of Trk2/k as a linear isomorphism between k2/k and k and denote

by (Trk2/k)∗ its dual isomorphism. We have a commutative diagram of linear isomor-

phisms:

Hom(k, F2)
(Trk2/k)∗

// Hom(k2/k, F2)

k

L

ccHHHHHHHHHH L̃

99ttttttttttt

Proof By the transitivity of the trace, for any x ∈ k2 we have

L̃c(x) = Trk2
(cx) = Trk(Trk2/k(cx)) = Trk(c Trk2/k(x)) = Lc(Trk2/k(x)).

The invariant w̃ is completely determined by the factorization of P(x) in k[x],
which was obtained in Propositions 2.5 and 2.6. The invariant codim(Ṽ ,W̃ ) can be
determined as follows.
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Proposition 3.2 We have Ṽ = W̃ if and only if the following two conditions are

satisfied:

(i) ℓc(v) = 0, for v = z + z ′ ∈ W , with z, z ′ roots of P(x) in k2 − k;

(ii) ℓc(z) = 1, if P(x) = (1)(4) over k[x] and z is its root in k.

Proof Assume first that Ṽ = W̃ . By Proposition 2.8, we have ℓ̃c = ℓ̃. If v =

z + z ′ ∈ k, with z, z ′ roots of P(x) in k2 − k, we have ℓ̃(z) = 0 by definition. Hence,
by Lemma 3.1, ℓc(v) = ℓ̃c(z) = ℓ̃(z) = 0. If P(x) = (1)(4), then it factorizes
over k2 as P(x) = (x + z)(x2 + ux + t)(x2 + u ′x + t ′), with u, u ′ ∈ k2 − k galois

conjugate and z + u + u ′
= 0. By definition, ℓ̃(u) = 1; hence, by Lemma 3.1,

ℓc(z) = ℓ̃c(u) = ℓ̃(u) = 1.

Assume now that conditions (i) and (ii) are satisfied and let us check that ℓ̃c = ℓ̃.
For any root z of P(x) in k2, we have ℓ̃(z) = 0. If z ∈ k, we have directly ℓ̃c(z) = 0,
whereas for z ∈ k2 − k with galois conjugate z ′ we have ℓ̃c(z) = ℓc(z + z ′) = 0
by condition (i). In particular, if v = z + z ′, with z, z ′ roots of P(x) in k2, we have

ℓ̃(v) = 0 and ℓ̃c(v) = 0, too. Finally, ℓ̃(v) = 1 if v = ω + ω ′, with ω, ω ′ roots of P(x)
in k4 − k2. In this case necessarily P(x) = (1)(4) over k[x], z := Trk2/k(v) is the only

root of P(x) in k and ℓ̃c(v) = ℓc(z) = 1 by condition (ii).

We now address the computation of the sign of Q̃ when Ṽ = W̃ . The crucial

observation is that over k2 we have

〈k + W̃ , k + W̃ 〉R = 0, Q̃(k + W̃ ) = 0,

since k ⊆ AS(k2) and Q̃(W̃ ) = 0 by assumption. This will allow us to control the

behavior of Q̃ on the classes of elements of k2 modulo k + W̃ .

The simplectic form 〈 , 〉R is non-degenerate over k2/W̃ ; hence,

dim((k + W̃ )/W̃ )⊥ = dim k2/W̃ − dim(k + W̃ )/W̃

= (2m − w̃) − (m − w) = m + w − w̃.

Let k + W̃ ⊆ U ⊆ k2 be the subspace such that U/W̃ = ((k + W̃ )/W̃ )⊥. We know
that dim U = m + w. Clearly, 〈 , 〉R induces a non-degenerate simplectic form:

(12) U/(k + W̃ ) ×U/(k + W̃ ) → F2, (x, y) 7→ 〈x, y〉R ,

on the space U/(k + W̃ ), of dimension 2w − w̃. Let n := w − (w̃/2).

For arbitrary x ∈ k2, y ∈ k + W̃ we have

(13) Q̃(x + y) = Q̃(x) + Q̃(y) + 〈x, y〉R = Q̃(x) + 〈x, y〉R .

For fixed x, the linear mapping,

k + W̃ → F2, y 7→ 〈x, y〉R

https://doi.org/10.4153/CJM-2007-016-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-016-6


384 D. Maisner and E. Nart

vanishes only for x ∈ U . Thus, for x ∈ U , Q̃ is constant in the class x + (k +W̃ ) and it
determines a quadratic form Q̃ : U/(k + W̃ ) → F2 associated to the simplectic form

(12). The number of zeros of Q̃ will be 2n−1(2n ± 1) and altogether there are

2n−1(2n ± 1)2m+w̃−w
= 2m+w−1 ± 2m+(w̃/2)−1

zeros of Q̃ in U .

Moreover, for x 6∈ U , 〈x,−〉R does not vanish on k + W̃ and, by (13), Q̃ takes the
values 0, 1 the same number of times, 2m+w̃−w−1, in the class x + (k + W̃ ). There are
2dim k2/(k+W̃ ) − 2dim U/(k+W̃ )

= 2m+w−w̃ − 22w−w̃ such classes and we count

(2m+w−w̃ − 22w−w̃)2m+w̃−w−1
= 22m−1 − 2m+w−1

zeros of Q̃ in k2 −U .

Therefore, the number of points of C over k2 is

|C(Fq2 )| = 1 + 2
(

22m−1 ± 2m+(w̃/2)−1
)

= 1 + q2 ±
√

2w̃q2.

We have thus proved the following.

Proposition 3.3 If Ṽ = W̃ , the sign of Q̃ as a quadratic form over k2/W̃ coincides

with the sign of Q̃ as a quadratic form over U/(k + W̃ ).

In order to determine this latter sign, we find an explicit description of U and we

express the action of Q̃ on U in terms of the action of Q on W .

Proposition 3.4 We have U = Tr−1
k2/k(W ). Moreover, for any u ∈ U , with relative

trace z = Trk2/k(u) ∈ W , we have

Q̃(u) = Q(z) ⇐⇒ P(z) = 0 or z = 0.

Proof For any u ∈ k2 with Trk2/k(u) = z, we have u ∈ U if and only if:

(14) 0 = 〈u, λ〉R = Trk2
(λ(au4 + bu2) + u(aλ4 + bλ2)), ∀λ ∈ k.

By the same argument used to show that (9) was equivalent to (10), we see that (14)
is equivalent to

Trk2
(λ4Eab(u)) = 0, ∀λ ∈ k ⇐⇒ Trk(λ4Eab(z)) = 0, ∀λ ∈ k ⇐⇒

⇐⇒ Trk(λEab(z)) = 0, ∀λ ∈ k ⇐⇒ Eab(z) = 0,

the last equivalence by the non-degeneracy of the pairing Tr(xy). This proves the first
assertion.
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Now, let u ∈ U . The galois conjugate of u is uσ
= u + z. Hence,

Trk2/k(au5 + bu3 + cu) = au5 + bu3 + cu + a(u + z)5 + b(u + z3) + c(u + z)

= au4z + auz4 + az5 + bu2z + buz2 + bz3 + cz

= az5 + bz3 + cz + uR(z) + zR(u),

so that,

Q̃(u) = Trk2
(au5 + bu3 + cu) = Trk(az5 + bz3 + cz + uR(z) + zR(u))

= Q(z) + Trk(uR(z) + zR(u)).

We have to check when uR(z) + zR(u) ∈ AS(k). Let us express u = zv, with v ∈ k2 an
element of relative trace 1: v2 +v = r, r ∈ k−AS(k). Note that v4

= v2 +r2
= v+r+r2.

We have

uR(z) + zR(u) = zv(az4 + bz2) + z(az4v4 + bz2v2)

= v(az5 + bz3) + v4az5 + v2bz3
= (r + r2)az5 + rbz3

≡ (r + r2)az5 + r2b2z6
= raz5 + r2(a2z10 + z5P(z))

≡ r2z5P(z) (mod AS(k)).

Hence, if z5P(z) = 0, we have uR(z) + zR(u) ∈ AS(k) and if z5P(z) = 1, we have
uR(z) + zR(u) ≡ r2 6≡ 0 (mod AS(k)), since r 6∈ AS(k).

Theorem 3.5 The possible signs of Q̃ are given in the following table:

w w̃ P(x) dim U/(k + W̃ ) sgn(Q̃)

0 0 irreducible 0 +

1 2 (1)(4) or (2)(3) 0 0/+

2 2 (1)(1)(3) 2 +/−
2 4 (1)(2)(2) 0 0/+

3 4 (1)(1)(1)(2) 2 0/ + /−
4 4 (1)(1)(1)(1)(1) 4 +/−

Moreover, let Z ⊆ W be the subset of all roots of P(x) in k. For P(x) = (1)(1)(3) or

(1)(1)(1)(2), we have

sgn(Q̃) = “ − ” ⇐⇒ ℓc(z) 6= Tr(1), ∀z ∈ Z,

whereas for P(x) = (1)(1)(1)(1)(1), we have

sgn(Q̃) = “ + ” ⇐⇒ ℓc(z) = 0, for exactly 3 of the 5 roots z ∈ Z.
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Proof The content of the table is an immediate consequence of Propositions 2.3, 3.2
and 3.3. The other assertions on sgn Q̃ are a consequence of Propositions 3.3 and 3.4.

For instance, in the cases when dim U/(k + W̃ ) = 2, the quadratic form Q̃ has either
one or three zeros on this space; the minus sign corresponds to the case Q̃(u) = 1 for
all u ∈ U/(k + W̃ ), u 6= 0, and by Proposition 3.4, this is equivalent to Q(z) = 1 for
all z ∈ Z, which is equivalent to ℓc(z) = Tr(1) + 1 for all z ∈ Z by Proposition 2.8.

We leave the case w = w̃ = 4 to the reader.

We have obtained an explicit computation of the zeta function of any supersingu-
lar curve, except for the sign of Q when V = W . From the computational point of

view, once you know ±a1 and a2, the sign of a1 is easy to determine by computing it-
erates of a random divisor in the jacobian. We can consider a deterministic algorithm
too by evaluating Q on a simplectic basis of k/W with respect to 〈 , 〉R.

4 Zeta functions of supersingular curves of genus 2

In this section we compute all possible zeta functions arising from supersingular
curves of genus 2 and we find formulas for the number of k-isomorphism classes

of curves that have the same zeta function. We proceed in a constructive way, by
applying the results of the previous sections to all supersingular curves. Hence, our
results can be used to exhibit curves with prescribed zeta function.

For any pair of integers (a1, a2) we shall denote by C(a1,a2) the set of k-isomorphism

classes of smooth projective curves of genus 2 defined over k, whose zeta function is
given by (11), or equivalently, whose number of points N1, N2 over k and k2 satisfy

N1 = q + 1 + a1, N2 = q2 + 1 + 2a2 − a2
1.

The hyperelliptic twist sets a bijection between C(a1,a2) and C(−a1,a2), which is the iden-
tity if a1 = 0 by the remark at the end of Section 1.

We work with supersingular curves given by equation (1), depending on four pa-
rameters (a, b, c, d) with b = 0 or b = a. We keep the notations w, W , V , Q, ℓ, w̃, W̃ ,
Ṽ , Q̃ introduced in the last section. We remind the reader that

ℓc = Lc |W , if b = 0, ℓc = Lc+a |W , if b = a.

We deal first with the case m odd.

4.1 Pab(x) = (1)(4)

By Proposition 2.3 we have w = 1, w̃ = 2 in this case. If z ∈ k is the only root of

Pab(x) in k, we have W = {0, z}.
Let us study first the case b = 0. Since (k∗)5

= k∗, we can assume a = 1 by (4),
so that z = 1. By Proposition 2.5, P10(x) = (1)(4). By Propositions 2.8, 3.2 and
Theorem 3.5, for any c ∈ k we have

ℓc(z) = 0 =⇒ sgn(Q) = sgn(Q̃) = 0,

ℓc(z) 6= 0 =⇒ sgn(Q) = ±, sgn(Q̃) = +.

(15)
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By Lemma 2.9, the different values of (c, d) lead to three k-isomorphism classes rep-
resented by (1, 0, 0, 0) and a couple of twisted curves, (1, 0, 1, 0), (1, 0, 1, 1). The first

one has (N1, N2) = (q + 1, q2 + 1) and the other two (N1, N2) = (q + 1 ±√
2q, q2 +

1 + 2q). Thus, we get one curve in each of the sets C(0,0), C(
√

2q,2q), C(−√
2q,2q).

Let us study now the case a = b 6= 0. By Corollary 2.7, there are (q/2)−1 values of
a leading to Paa(x) = (1)(4) and by (4) they correspond to different k-isomorphism
classes. Let us fix one of these values of a. As before, (15) holds and the differ-
ent values of (c, d) provide three k-isomorphism classes, represented by (a, a, 0, 0),

(a, a, c, 0), (a, a, c, 1), where ℓc(z) 6= 0, and they are distributed into the same three
zeta functions.

We have altogether a contribution of q/2 k-isomorphism classes in each of the sets
C(0,0), C(

√
2q,2q), C(−√

2q,2q).

4.2 Pab(x) = (2)(3)

By Proposition 2.3 we have w = 1, w̃ = 2 in this case. If x2 + vx + t is the quadratic
irreducible factor of Pab(x) we have W = {0, v}.

By Proposition 2.5, we have necessarily b 6= 0 and we can assume a = b. By

Corollary 2.7, we have (q + 1)/3 values of a leading to this factorization of Paa(x). We
fix one of these values of a. By Propositions 2.8, 3.2 and Theorem 3.5, for any c ∈ k

we have

ℓc(v) = 0 =⇒ sgn(Q) = 0, sgn(Q̃) = +,

ℓc(v) 6= 0 =⇒ sgn(Q) = ±, sgn(Q̃) = 0

By Lemma 2.9, the different values of (c, d) lead to three k-isomorphism classes rep-

resented by (a, a, a, 0), (a, a, c, 0), (a, a, c, 1), where ℓc(v) 6= 0. The first one has
(N1, N2) = (q + 1, q2 + 1 + 2q) and the other two (N1, N2) = (q + 1 ±√

2q, q2 + 1).
Thus, we get (q + 1)/3 curves in each of the sets C(0,q), C(

√
2q,q), C(−√

2q,q).

4.3 Pab(x) = (1)(1)(1)(2)

By Proposition 2.3 we have w = 3, w̃ = 4 in this case. We have W = 〈z1, z2, z3〉,
where z1, z2, z3 are the roots of Pab(x) in k. The quadratic irreducible factor of Pab(x)
is x2 + vx + t , with v = z1 + z2 + z3.

By Proposition 2.5, we have necessarily b 6= 0 and we assume a = b. By Corol-
lary 2.7 we have (q − 2)/6 values of a leading to this factorization of Paa(x). For any
such fixed value of a, the linear form ℓ : W → F2 introduced in Proposition 2.8 is
determined by ℓ(z1) = ℓ(z2) = ℓ(z3) = 1.

For any c ∈ k, let N be the number of zi such that ℓc(zi) = 0. Note that N = 0 if
and only if ℓc = ℓ and N is even if and only if ℓc(v) = 1. By Propositions 2.8, 3.2 and
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Theorem 3.5, we have

N = 0 =⇒ sgn(Q) = ±, sgn(Q̃) = 0,

N = 1 =⇒ sgn(Q) = 0, sgn(Q̃) = +,

N = 2 =⇒ sgn(Q) = 0, sgn(Q̃) = 0,

N = 3 =⇒ sgn(Q) = 0, sgn(Q̃) = −.

There are eight possibilities for ℓc, one with N = 0 or N = 3 and three with N = 1 or
N = 2. By Lemma 2.9, the different values of (c, d) lead to 2, 3, 3, 1 k-isomorphism
classes corresponding respectively to N = 0, 1, 2, 3. The number of points of these

curves is respectively (N1, N2) = (q + 1 ± 2
√

2q, q2 + 1), (q + 1, q2 + 1 + 4q),
(q + 1, q2 + 1), (q + 1, q2 + 1 − 4q). Thus, we get a contribution of respectively
(q − 2)/6, (q − 2)/6, (q − 2)/2, (q − 2)/2, (q − 2)/6 curves in each of the sets
C(2

√
2q,4q), C(−2

√
2q,4q), C(0,2q), C(0,0), C(0,−2q).

From now on we deal with the case m even.

4.4 Pab(x) Irreducible

By Proposition 2.3, we have w = w̃ = 0 and W = W̃ = {0}. We have thus sgn(Q) =

±, and sgn(Q̃) = +, by Theorem 3.5. On the other hand, since Eab : k → k has a
trivial kernel, we have Eab(k) = k and we can always assume that c = 0 by (4).

Let us study first the case b = 0. By Proposition 2.5, Pa0(x) is irreducible if and

only if m ≡ 0 (mod 4) and a 6∈ (k∗)5. In this case, we have eight k-isomorphism
classes represented by (a, 0, 0, 0), (a, 0, 0, d0), where a runs on the four non-trivial
classes of k∗/(k∗)5. They have (N1, N2) = (q + 1±√

q, q2 + 1 + q) and they contribute

with four curves in each of the sets C(−√
q,q), C(

√
q,q).

In the case a = b 6= 0 there are 2
5
(q + 1 − [2]4|m) values of a leading to Paa(x)

irreducible, by Corollary 2.7. As before, for each fixed value of a we obtain one curve
in each of the sets C(−√

q,q), C(
√

q,q).

We have altogether a contribution of 2
5
(q + 1 + [8]4|m) k-isomorphism classes in

each of the sets C(−√
q,q), C(

√
q,q).

4.5 Pab(x) = (1)(1)(3)

By Proposition 2.3, we have w = w̃ = 2 and W = 〈z1, z2〉, where z1, z2 are the roots
of Pab(x) in k. By Proposition 2.5, we have necessarily b 6= 0 and we assume a = b.

By Corollary 2.7, we have (q− 1)/3 values of a leading to this factorization of Paa(x).
For any such fixed value of a, the linear form ℓ on W vanishes.

For any c ∈ k, let N be the number of zi such that ℓc(zi) = 0. Note that N = 2 if
and only if ℓc = ℓ. By Propositions 2.8, 3.2 and Theorem 3.5, we have

N = 0 =⇒ sgn(Q) = 0, sgn(Q̃) = −,

N = 1 =⇒ sgn(Q) = 0, sgn(Q̃) = +,

N = 2 =⇒ sgn(Q) = ±, sgn(Q̃) = +.
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There are four possibilities for ℓc, one with N = 0 or N = 2 and two with N = 1.
By Lemma 2.9, the different values of (c, d) lead to 1, 2, 2 k-isomorphism classes

corresponding respectively to N = 0, 1, 2. The number of points of these curves is
respectively (N1, N2) = (q+1, q2 +1−2q), (q+1, q2 +1+2q), (q+1±2

√
q, q2 +1+2q).

Thus, we get a contribution of respectively (q−1)/3, 2(q−1)/3, (q−1)/3, (q−1)/3
curves in each of the sets C(0,−q), C(0,q), C(−2

√
q,3q), C(2

√
q,3q).

4.6 Pab(x) = (1)(2)(2)

By Proposition 2.3, we have w = 2, w̃ = 4 in this case. If Pab(x) = (x + z)(x2 + v1x +

t1)(x2 + v2x + t2), we have v1 + v2 = z and W = {0, z, v1, v2}.
Let us study first the case b = 0. By Proposition 2.5, Pa0(x) = (1)(2)(2) if and

only if 4 ∤ m. In this case, (k∗)5
= k∗ and we can assume a = 1 by (4). The linear

form ℓ on W is determined by ℓ(v1) = ℓ(v2) = 1.

For any c ∈ k, let N be the number of vi such that ℓc(vi) = 0. Note that N = 0 if
and only if ℓc = ℓ. By Propositions 2.8, 3.2 and Theorem 3.5, we have

N = 0 =⇒ sgn(Q) = ±, sgn(Q̃) = 0,

N = 1 =⇒ sgn(Q) = 0, sgn(Q̃) = 0,

N = 2 =⇒ sgn(Q) = 0, sgn(Q̃) = +.

There are four possibilities for ℓc, one with N = 0 or N = 2 and two with N = 1.

By Lemma 2.9, the different values of (c, d) lead to 2, 2, 1 k-isomorphism classes
according to N = 0, 1, 2. The number of points of these curves is respectively
(N1, N2) = (q + 1 ± 2

√
q, q2 + 1), (q + 1, q2 + 1), (q + 1, q2 + 1 + 4q). Thus, we

get respectively 1, 1, 2, 1 curves in each of the sets C(−2
√

q,2q), C(2
√

q,2q), C(0,0), C(0,2q).

In the case a = b 6= 0, there are (q/4) − [1]4∤m values of a leading to Paa(x) =

(1)(2)(2), by Corollary 2.7. As before, for any such fixed value of a we get respectively
1, 1, 2, 1 curves with the same zeta functions as above.

We have altogether a contribution of q/4, q/4, q/2, q/4 k-isomorphism classes in

each of the sets C(−2
√

q,2q), C(2
√

q,2q), C(0,0), C(0,2q).

4.7 Pab(x) = (1)(1)(1)(1)(1)

By Proposition 2.3 we have w = w̃ = 4 in this case and W = 〈z1, z2, z3, z4〉, where
z1, z2, z3, z4, z1 + z2 + z3 + z4 are the roots of Pab(x) in k.

Let us study first the case b = 0. By Proposition 2.5, Pa0(x) splits completely in

k[x] if and only if 4 | m and a ∈ (k∗)5. In this case we can assume a = 1 by (4), so
that W = F16. The linear form ℓ vanishes.

For any c ∈ k, let N be the number of zi such that ℓc(zi) = 0. Note that N = 5 if
and only if ℓc = ℓ. By Propositions 2.8, 3.2 and Theorem 3.5, we have

N = 1 =⇒ sgn(Q) = 0, sgn(Q̃) = −,

N = 3 =⇒ sgn(Q) = 0, sgn(Q̃) = +,

N = 5 =⇒ sgn(Q) = ±, sgn(Q̃) = −.

(16)
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We cannot now apply Lemma 2.9, but it is easy to check that the different values of
(c, d) lead to 1, 2, 2 k-isomorphism classes according to N = 1, 3, 5. The number of

points of these curves is respectively (N1, N2) = (q + 1, q2 + 1 − 4q), (q + 1, q2 + 1 +
4q), (q + 1 ± 4

√
q, q2 + 1 − 4q). Thus, we get respectively 1, 2, 1, 1 curves in each of

the sets C(0,−2q), C(0,2q), C(−4
√

q,6q), C(4
√

q,6q).

In the case a = b 6= 0 there are q−4

60
− [ 1

5
]4|m values of a leading to Paa(x) =

(1)(1)(1)(1)(1), by Corollary 2.7. For any such fixed value of a, (16) holds. There
are 16 possibilities for ℓc, five with N = 1, ten with N = 3 and one with N = 5.

By Lemma 2.9, we get respectively 5, 10, 1, 1 curves with the same zeta functions as
above.

We have altogether a contribution of
q−4

12
,

q−4

6
,

q−4

60
+ [ 4

5
]4|m,

q−4

60
+ [ 4

5
]4|m k-iso-

morphism classes in each of the sets C(0,−2q), C(0,2q), C(−4
√

q,6q), C(4
√

q,6q).

5 Jacobians in Isogeny Classes of Supersingular Abelian Surfaces

Let A be a supersingular abelian surface defined over k. Let fA(t) = t4 + a1t3 +
a2t2 +qa1t +q2 be the characteristic polynomial of its Frobenius endomorphism. The
k-isogeny class of A is determined by this polynomial, that is, by the pair of integers

(a1, a2).

It is easy to list all pairs (a1, a2) that correspond to supersingular abelian sur-

faces. The k-simple supersingular isogeny classes can be found in [MN, Table 1].
If A is k-isogenous to a product of two supersingular elliptic curves, we have fA(t) =

fE1
(t) fE2

(t), with fEi
(t) = t2 + bit + q. This gives,

a1 = b1 + b2, a2 = 2q + b1b2.

On the other hand, the possibilities for the integers bi were determined by Water-
house in his thesis [Wat, Theorem 4.1]:

bi ∈ {0, ±
√

2q}, if m is odd; bi ∈ {0, ±√
q, ±2

√
q}, if m is even.

This gives respectively 6, 15 k-split supersingular isogeny classes according to m being

odd or even.

Gathering the computations of the previous section, we give in the tables below

the number of k-isomorphism classes of supersingular curves of genus 2 whose jaco-
bian lies in each k-isogeny class. When in a column indexed as (±a1, a2) we say that
|C(a1,a2)| = N , we mean that |C(a1,a2)| = |C(−a1,a2)| = N .

We see that some isogeny classes contain no jacobians. In most of the cases there
is a trivial explanation for this fact, but the assertion that

(17) C(0,−q) = ∅, when m is odd,

is far from trivial and the achievement of this result was the initial motivation for the
paper.
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Table 1: Split isogeny classes, m odd

(a1, a2) (0, 0) (0, 2q) (±√
2q, 2q) (±2

√
2q, 4q)

|C(a1,a2)| q − 1 (q − 2)/2 q/2 (q − 2)/6

b1, b2

√
2q, −√

2q 0, 0 0, ±√
2q b1 = b2 = ±√

2q

Table 2: Simple isogeny classes, m odd

(a1, a2) (0,−2q) (0,−q) (0, q) (±√
2q, q)

|C(a1,a2)| (q − 2)/6 0 (q + 1)/3 (q + 1)/3

Table 3: Split isogeny classes, m even

(a1, a2) (0,−2q) (±√
q, 0) (0, q) (0, 2q) (±√

q, 2q)

|C(a1,a2)| (q − 4)/12 0 2(q − 1)/3 (5q − 8)/12 0

b1, b2 2
√

q, −2
√

q ±(
√

q, −2
√

q)
√

q, −√
q 0, 0 0, ±√

q

(a1, a2) (±2
√

q, 2q) (±2
√

q, 3q) (±3
√

q, 4q) (±4
√

q, 6q)

|C(a1,a2)| q/4 (q − 1)/3 0 q−4

60
+ [ 4

5
]4|m

b1, b2 0,±2
√

q b1 = b2 = ±√
q ±(

√
q, 2

√
q) b1 = b2 = ±2

√
q

Table 4: Simple isogeny classes, m even

(a1, a2) (0,−q) (0, 0) (±√
q, q)

|C(a1,a2)| (q − 1)/3 q/2 2
5
(q + 1 + [8]4|m)

References
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