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SMOOTHABILITY, STRONG SMOOTHABILITY AND 
DENTABILITY IN BANACH SPACES1 

BY 

R. A N A N T H A R A M A N , T. L E W I S A N D J. H . M. W H I T F I E L D 

ABSTRACT. It is shown that dentability of the unit ball of a 
conjugate Banach space X* does not imply smoothability of the unit 
ball of X, answering a question raised by Kemp. A property called 
strong smoothability is introduced and is shown to be dual to 
dentability. The results are used to provide new proofs of the facts 
that X is an Asplund space whenever it has an equivalent Fréchet 
differentiable norm, or whenever X* has the Radon-Nikodym Prop
erty. 

Introduction. In connection with the property of dentability, Edelstein, [7], 
has introduced a notion called smoothability. The notion has been reformu
lated by Kemp, [10], and it is to this version that we henceforth refer (see 
Definition 3.1 below). 

The definitions of dentability and smoothability suggest that the two proper
ties are dual to each other. As it turns out, they are indeed dually related, but 
the duality is not complete: dentability of JB(X) implies smoothability of B(X*) 
and weak* dentability of B(X*) implies smoothability of B(X), [10], but 
neither implication has a valid converse, [12]. (Here, X denotes a real Banach 
space, and B(X), its closed unit ball.) 

In section 2 we define a property called strong smoothability and show that 
there is complete duality with dentability in the sense indicated. 

Part of that duality relates strong smoothability of B(X) to weak* dentability 
of B(X*), and we may ask if one must conclude that JB(X) is strongly 
smoothable when B(X*) is merely dentable. Kemp, [10], has asked if one may 
even conclude that B(X) is smoothable. Section 3 answers both questions in 
the negative. 

In Section 4, we show that strong smoothability is separably determined 
(Theorem 4.1). This fact is then used to obtain new proofs of previously known 
results: a Banach space is an Asplund space if every separable subspace is an 
Asplund space (see Phelps, [16]), or if X* has the Radon-Nikodym Property 
(Stegall, [18]), or if the norm of X is Fréchet differentiable (Ekeland, Lebourg 
[8]). 
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We mention that Sullivan [20] has been able to use the methods of Theorem 
4.1 to obtain a very short proof of'the above-mentioned result of Stegall. In 
[20], and earlier in [19], Sullivan used a property called malleability and the 
final section of this paper briefly compares the notions of malleability, 
smoothability, and strong smoothability. 

2. Strong smoothability and dentability. If A is a convex subset of the real 
Banach space X, and xeX, the closed convex cone generated by A-x is 
denoted fc(x, A), that is, k(x9A) = c€U{t(A-x):t>0}9 where "c€" denotes 
closure in the norm topology. Further, if feX* and a > 0 , S(f,a,A) = 
{xe A : / (* )> s u p / ( A ) - a } is called a slice of A ; if X is a conjugate space, 
X = Y*, and feY the above subset is called a weak* slice of A [15]. 

2.1 A convex subset A of X is called strongly smoothable if for every e > 0 
there is some x e X\c€ A and some / e S(X*) = {g e X* : ||g|| = 1}, such that 

(2.1.1) { y 6 B ( X ) : / ( y ) > £ } c k ( x , A ) . 

When X = y * , A is weak* strongly smoothable if for every e > 0 there is 
xeX\w*-c€ A and feY satisfying (2.1.1). (Here, of course, "w*-c^" de
notes closure in the weak* topology.) 

2.2 A c= X is said to be dentable (resp., weak* dentable) if it has slices (resp., 
weak* slices) of arbitrarily small diameter, that is, if for each e > 0 there is a 
slice of A such that diam S(f,a,A)< e. 

The main result of this section is 

2.3. THEOREM. Let A be a closed and bounded convex subset of the real 
Banach space X, and suppose that the origin is interior to A. Then 

(i) A is dentable if and only if A0 is strongly smoothable. 
(ii) A is strongly smoothable if and only if A 0 is weak* dentable. 

We recall that the polar of A is the subset A 0 = {/ : sup /(A) < 1} of X* or, if 
X = y * , A° = { y e y : s u p y ( A ) : < l } . 

In order to prove the theorem, we will need three lemmas. The proof of the 
first lemma uses the easily verified fact that for x e X \A , the polar of k(x,A) is 
the subset {/: sup/(A) </(*)} of the dual or predual according to what polar 
we want. 

2.4. LEMMA. Let A be a closed convex subset of X with 0 G A. Then, for each 
x e X \ A , the convex cones k(x, A) and fc(0, S(x, supx(A0)-1, A0)) are polar to 
each other. If X is a conjugate space and A is weak* closed, the same 
conclusions holds with A 0 replaced by A0 . 

Proof. Let K=k(x, A) and L = fc(0, S) where S = S(x, sup x(A°) - 1, A0) = 
tfeA°:/(x)>l}. Now, itfeS then s u p / ( A ) < l < / ( x ) so Sc=K° and, hence, 
L^K°. Since {x} is compact and not in the closed convex set A, it follows that 
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K° is the closure of the set G = {geX*: sup g(A) < g(x)}. Since 0 e A, if g e G, 
then g(x)>0 and g(x) - 1 - g e S ; so K ° c L and the first part of the lemma is 
proved. The proof of the second part is similar and is omitted. 

For the special case where A is the closed unit ball, Lemma 2.4 can be stated 
as follows: 

2.5 COROLLARY. Let xeS(X) [resp., let xeS(X*)] , and let 0 < e < l . The 
closed convex cones generated by x + eB(X) and by S(-x, 1-e, B(X*)) [resp., 
by X + £JB(X*) and by S(-x, 1-e , B(X))] are polar to each other. 

The following lemma relates the diameter of a bounded slice to the size of a 
ball generating a cone that contains the slice. 

2.6. LEMMA. Suppose that K = k(—x, eB(X)) contains the slice S = S(f a, A) 
where | |x | |=l , 0 < e < l , a > 0 , l < s w p / ( A ) < l + a and sup{\\y\\:yeS}<M. 
Then, diam S < 8e||/||A^ + 2aM. 

Proof. Let yl9 y2GS. Then 

l ly i -y2Nllyi- / (y 2 ) • y ill+Il/(y2>yi - /(y±)y Jl+ll/Cyx) • y2-ydl 

< 2 a M + ||/(y2)y1-/(y1)y2 | | 

Now, setting ut = yx/||y»IU * = 1»2, we obtain ||ty - x | | < 2 e . Thus 

ll/(y2)yi-/(yi)y2ll = llyill-||y2|l01f(«2)«1-/("i)«2||)=sA*2(|l/("2-«i) - "ill 

+ ||/(Ml)(Ml - M ÎD < 2^11/11 • I k - u2|| < Sell/HM2 

which proves the lemma. 

For some applications, it is desirable to assume that the linear functional /, in 
the definition of strong smoothability, separates x and c£ A. The following 
lemma shows that we can, in fact, make a stronger assumption. 

2.7. LEMMA. For a convex subset A of X, the following statements are 
equivalent; (i) A is strongly smoothable; (ii) given any e, 0 < e < l , there is an 
xeX\c£(A) such that S(/, 1-e , B(X))<= k(x, A) whenever f is any norm one 
functional with inff(A)>f(x). 

Proof. We only need to prove that (i) implies (ii). 
Suppose that A is strongly smoothable and let 0 < e < 1. For 8 = e/3, there is 

xeX\ct(A) and geS(X*) such that {y <EjB(X):g(y)>S}c fc(x, A). Let fe 
S(X*) with inf/(A) =>/(*). 

It follows that / is non-negative on {y e B(X) : g(y) > 6}, or, in the terminol
ogy of [14] / > 0 on X(g, S). Then by Corollary 2.3 of [14] we have | | / - g| |<28. 
Letting D G D ^ g _ 1 ( 6 ) f l B ( X ) , we then have f(v)<38 so that sup / (D^ = d< 
e. To complete the lemma it suffices to show that k(x, A) contains the set 
D 2 ={zGB(X) : / (z ) = d}. Let yeB(X) with g(y)>36 and suppose that z e 
D2\k(x, A). Then, g(z)<8, and so the point w=\(y-z) is interior to fe(x, A) 
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(because w e B ( X ) and g(w)>8) . Then / ( w ) > 0 , that is, / ( y )> / ( z ) . Since 
g(z) < 8 < 38 < g(y) it follows that the straight line segment [z, y] intersects D l 9 

say at the point v. But then sup f(D1)>f(v)>f(z) = d, contradicting the 
definition of d. Thus, we cannot have zeD2 \fc(x, A), which completes the 
lemma. 

Proof of Theorem 2.3. The proofs of both statements closely parallel each 
other, so we shall prove only (i). By hypotheses on A both A and A 0 are closed 
bounded convex sets whose norm interior contains the origin. Assuming that A 
is dentable, then, since A has nonempty norm interior and contains slices of 
arbitrarily small diameter, for any e > 0 there is a slice S(f,a,A) of A and 
x e S(X) such that k(0, S(/, a, A)) <= fc(x, eB(X)). We assume, without loss of 
generality, that s u p / ( A ) > l . Taking polars and applying Lemma 2.4 and 
Corollary 2.5, we obtain fc(/, A°)=> S(x, 1-8 , B(X*)). Consequently, A 0 is 
(weak*) strongly smoothable. 

Since A 0 is weak* closed, given any / e X * \ A ° , there exists xeS(X) with 
inf x(A°)>x( / ) . Lemma 2.7 now shows that if A 0 is strongly smoothable, then 
it is also weak* strongly smoothable. We may assume then, that given 0 < e < 1 
we have x e S(X) and fe X*\A° such that k(f, A0) => S(x, 1 - e, B(X*)). Then, 
with a = s u p / ( A ) - l , fc(0,S(/,a,A))cfc(x,eB(X)). Noting that fc(A/,A°)3 
fc(/, A0) for all A with s u p / ( A ) > A - 1 > i , we may assume that 0 < a < e and 
also that | | / | |< l + sup{||g||: g e A°} = N<oo. Further, we have sup{||y||: y G A} = 
M<o°. Applying Lemma 2.6 it follows that diam S(f, a, A ) < 8 e N M 2 + 2eM. 
Thus, A is dentable, and the theorem is proved. 

The following theorem shows how the relationship between dentability and 
weak* dentability compares to that between strong smoothability and weak* 
strong smoothability. 

2.8. THEOREM. Let A be a non-empty convex subset of X, let B be a 
non-empty weak* closed convex subset o/X*, and let C be the weak* closure of 
the canonical image of A in X**. Then: (i) B is dentable whenever B is weak* 
dentable; (ii) B is strongly smoothable if and only if B is weak* strongly 
smoothable; (iii) C is weak* dentable if and only if A is dentable; (iv) C is 
weak* strongly smoothable whenever A is strongly smoothable. 

Proof. Statements (i) and (iii) are obvious. Statement (ii) was verified for the 
case B = A 0 in the proof of Theorem 2.3. The proof in the general case is the 
same. 

To prove (iv), let Q be the canonical embedding of X into X**. Suppose A 
is strongly smoothable, that is, given e > 0 there is some xeX\c€(A) and 
feS(X*) such that k(x,A)^S(f, l - e , £ ( X ) ) . Since Q(B(X)) is weak* dense 
in B(X**), we have w*-c€(k(Q(x), C))^S(f, l - e ,B(X**) ) . By Lemma 2.7, 
we may assume that / strictly separates x from A, so Q(x)^ C For y**6 C, it 
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follows that Q x - y * * £ C - y * * and by Lemma 2.4 fc(Qx-y**, C-y**) is the 
polar of some cone in X*. Thus, fc(Qx-y**, C-y**) , and hence k(Qx, C) is 
weak* closed, completing the proof. 

2.9. REMARKS, (i) In the next section we show that the converses of state
ments (i) and (iv) in the above theorem are not true in general. 

(ii) In Theorem 2.8 we do not assume that the sets A and B are bounded or 
have nonvoid interiors. There appear to be difficulties, however, if these 
assumptions are removed from the hypothesis of Theorem 2.3. 

3. An example. In this section we give an example which, as mentioned in 
the introduction, answers negatively a question of Kemp [10], viz., if B(X*) is 
dentable, must B(X) be smooth able? 

3.1. DEFINITIONS. If A is a bounded subset of X, following the definition of 
Edelstein [7] as reformulated by Kemp [10], we say that A is smoothable if for 
every e > 0 there exists an / eS(X*) and some closed ball B c X such that 
sup /(B) <sup /(A) and A\S(f, e, A) c B. 

A point x € A is a strongly exposed point of A (resp., weak* strongly exposed 
point of A) if there is an fe S(X*) such that for every e > 0 , there is an a > 0 
such that x e S(f, a, A) and diam S(/, a, A) < e. (resp., if X = Y* and / can be 
chosen in Y). 

It is easily seen that if A has a (weak*) strongly exposed point then A is 
(weak*) dentable. 

3.2. EXAMPLE. Let X= C(S), S a compact Hausdorff space and recall that 
X* is isometrically isomorphic to rca(S), the space of all regular signed 
measures on 2, the Borel subsets of S, with the variation norm (cf. [6, p. 265]). 

First we observe that B(X*) has a strongly exposed point and, hence, is 
dentable. For, let s0 e S, <t>0 be the characteristic function of {s0} and JLL0 be the 
Dirac measure at s0 (i.e., for every £se2 , ^0(JE) = 1, if s0eE, iio(E) = 0 
otherwise). Now in a straightforward manner it can be seen that </>0eB(X**) 
and jLt0 is strongly exposed by <f)0. Further, if s0 is an isolated point in S then 
evidently <f>0eB(X) and JLI0 is a weak*-strongly exposed point. Conversely, if 
B(X*) has a weak* strongly exposed point, then the norm of X has a point of 
Fréchet differentiability (cf. [2, p. 450]); and it has been shown by Cox and 
Nadler [3] (and more recently by Kemp [10]) that this can happen only if S has 
an isolated point. 

On the other hand, if S has no isolated points, we observe that B(X*) is not 
weak* dentable. For, let feS(X) and JULGS(X*) such that /(/x) = l, then for 
0 < / 3 < l we will exhibit a measure veS(f, |8, B(X*)) for which | | I / ~ J X | | > 1 . 

Since S is a perfect set and N = {seS: \f(s)\ > 1 — /3} is a nonempty open subset 
of S, c€(N) is uncountable [9, p. 88]. Now the variation U(JLL, S) is finite, so 
there exists sx G C€(N) such that u(jm, {sj) = 0. Define v e X* = rca(S) to be the 
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measure whose value at each E e X is given by v(E) = sgn f(st) whenever s1 e E, 
and by v(E) = 0 otherwise. Then v e S(f, ft B(X*)) and \\v - JLI|| > v(v, {sx}) = 1. 

This example yields the following 

3.3 THEOREM. There exists a real Banach space X such that (i) B(X*) is 
deniable and B(X) fails to be smoothable; and, (ii) B(X**) is (weafc*) strongly 
smoothable and B(X) fails to be strongly smoothable. 

Proof. Let X = C(S) where S is a compact Hausdorfl space with no isolated 
points, (i) B(X*) is dentable as shown above and Kemp [10, Prop. 3.2] has 
shown that B(X) is not smoothable. 

(ii) B(X*) is not weak* dentable but is dentable as seen above, so by 
Theorem 2.3 £(X**) is (weak*) strongly smoothable and B(X) is not strongly 
smoothable. 

3.4. REMARK. It may be interesting to observe that for X= C(S) the follow
ing are equivalent: 

(i) S has an isolated point; 
(ii) the sup norm on X is Fréchet dirïerentiable at some nonzero point; 

(iii) B(X) is smoothable; 
(iv) B(X) is strongly smoothable; 
(v) B(X*) is weak* dentable; 

(vi) B(X*) has a weak* denting point; 
(vii) JB(X*) has a weak* strongly exposed point. 

4. Strongly smoothable spaces. A Banach space X is called a strongly 
smoothable space whenever all of its convex bodies are strongly smoothable. 
(By a convex body we mean a bounded convex subset with nonempty interior.) 

First, we show that strongly smoothable spaces are separably determined: 

4.1. THEOREM. If X fails to be strongly smoothable, then every separable 
subspace of X is contained in a separable subspace that fails to be strongly 
smoothable. 

Proof. Let A c: X be a closed convex body with 0 e int A which fails to be 
strongly smoothable. By Lemma 2.7 this is equivalent to the statement: 

(4.1.1) 3s, 0 < e < 1, such that given x£ A, there is fe S(X*) 

with in f / [A]>/ (x) and S(f, l - e ,£ (X) )<£ k(x, A). 

Let Et be any separable subspace of X We inductively construct a sequence 
of separable spaces E± a E2 <= * * * <= Ek <= • • • as follows: set Ak= EkHA and 
choose {xf: i = 1,2,...} to be a dense sequence in the boundary of Ak. Set 
x ^ U + T 1 ) ^ / = 1,2, . . . . Clearly x±£A, so by (4.1.1) there exists / *<ES(X*) 

such that inf/S;-[A]>/£-(x5;-) and there exists y$£k(x$,A), y£eS(X*) and 
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/ij(y!i) —£• We now define Ek+1 to be the closed linear span of Ek U 
{y£: i,j = 1,2,...} and set Y= c€[Uk&NEkl 

Clearly Y is separable and we claim that the closed convex body A0 = ADY 
fails to be strongly smoothable in Y To show this, let y e Y\A0 and let K be 
the convex cone with vertex y generated by A0 (i.e. K= y + fc(y, A0)). Now 
dist(y, A0) = d > 0, so [7 = int K Pi {y 4- dB{Y)) is a nonempty open subset of Y 
and l / n A 0 = <Ê. 

Since U Ek is dense in Y there is some k such that Ek D U^ <f). By the 
density of the xf's in the boundary of Ak there is some x^ such that kxfeU 
for some À > 1. So, for some / > 1, JC£ G int K and [y, x£] H A = c/>. Note that this 
implies that x£e[y, 2 ] ^or s o m e ze in t A0. 

Now /Î5(x^)<inf/Sj[A]<inf/J5[A0] and since z e i n t A 0 , we have /!j(y)^ 
/g(x£). Setting g = /*• | Y, we have g(y) <inf g[A0], g(y£) > e, yge 
S(Y)\k(y, A0). Since | |g| |^ 1, all of these assertions remain valid if g is replaced 
by ||g||_1 * g, so by (4.1.1) A0 is not strongly smoothable in Y 

Following Namioka and Phelps [13], we call X an Asplund space if every 
continuous convex function defined on an open convex subset of X of Fréchet 
differentiate on a dense G8 subset of its domain. Such spaces were first 
introduced by Asplund [1] and were called "strong differentiability spaces". 
We next show that strongly smoothable spaces are precisely Asplund spaces. 

4.2. THEOREM. A real Banach space is strongly smoothable if and only if it is 
an Asplund space. 

Proof. Suppose X is an Asplund space, then Asplund has shown [1, Prop. 5] 
that every weak* compact convex subset of X* is weak* dentable. However, if 
C is a bounded subset of X* and D, the weak* closed convex hull of C, is 
weak* dentable then C is weak* dentable. Thus, it follows from Theorem 2.3 
that X is strongly smoothable. 

Conversely, suppose that X is a strongly smoothable space. Now C, a weak* 
compact convex subset of X*, is weak* dentable, if the weak* closed symmet
ric convex body D = J3(X*) + ( C - C ) is weak* dentable; which is so by 
Theorem 2.3. Thus by Lemma 3 and Theorem 6 of [13], X is an Asplund 
space. 

The following Corollary is an immediate consequence of Theorems 4.1 and 
4.2. 

4.3. COROLLARY. (Namioka, Phelps, [16]). Let X be a real Banach space 
and suppose that every separable subspace of X is an Asplund space, then X is 
an Asplund space. 

The converse of Corollary 4.3 holds as shown by Namioka and Phelps [13, 
Thm. 12]. 

A real Banach space X has the Radon-Nikodym Property (RNP) if every 
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bounded subset C of X is dentable. That the dual of an Asplund space has the 
RNP is essentially due to Asplund [1]; that the converse is also true is due to 
Stegall [18]: 

4.4. THEOREM. (Stegall, [18]). A real Banach space X is an Asplund space 
whenever X* has the RNP. 

Proof, By a deep theorem of Stegall [17], every separable subspace of X* 
has a separable dual. Asplund [1, Thm. 1] shows that, in this case, every 
separable subspace is an Asplund space, and, by Corollary 4.3, X is an 
Asplund space. 

4.5. THEOREM. (Ekeland, Lebourg [8]). If the norm on X is Fréchet differen-
tiable (except at the origin) then X is an Asplund space. 

Proof. (For then, X* has the RNP [4], [11]). Alternatively, the continuity of 
the differential map together with the Bishop-Phelps density theorem shows 
that every separable subspace has a separable dual and hence is an Asplund 
space [1]. 

5. Strong smoothability and malleability. The norm in X is said to be 
malleable (Sullivan [19]) if for each £ > 0 there exists xeS(X) and 6 > 0 such 
that for every A, 0 < A < 6 , and for all yeB(X) it follows that 
||x + Ay|| + | | x -Ay | | -2<eA. 

Sullivan showed that every bounded subset of X is smooth able whenever the 
norm is malleable. Here, we show that malleability of the norm is equivalent to 
strong smoothability of the unit ball. 

5.1. THEOREM. For a Banach space X the following are equivalent: 
(i) The norm in X is malleable; 

(ii) B(X*) is weak* dentable; 
(hi) B{X) is strongly smoothable. 

Proof. The equivalence of (ii) and (iii) follows from Theorem 2.3. 
To show that (i) =̂> (ii), assume that (ii) is false. Then there exists an s > 0 

such that for every a, 0 < a < 1, and x e S(X) we have diam S(x, a, B(X*)) > e. 
In particular, given A>0 , for a = min{§, £À/4(1 + A)} there exist f,ge 
S(x,a,B(X*)) such that | | / - g | | > £ - a . Choose y e B ( X ) so that ( / - g ) ( y ) > 
||f- g\\ - a > s - 2a. Then it may be verified that 

||x + Ay|| + | | jc-Ay||-2>:/(x + Ay) + g ( x - A y ) - 2 > y . 

Thus the norm in X fails to be malleable. 
For the converse, assume (i) is false. Then there is e > 0 such that for every 

x e S(X) and each a, 0 < a < 1, there exist A, 0 < A < a, and y = y (x, a) G B(X) 
such that ||x + Ay|| + | |x -Ay| | -2>£A. 
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By the Hahn-Banach theorem, there exist /, geS(X*) such that ||x + Ày|| = 
/(x + Ày) and ||x-Àg|| = g(x-Ay). Consequently, 

8À</(x + Ay) + g ( x - À g ) - 2 < À ( / - g ) ( y ) , 

so | | / - g | i>e . Further, 

/ (x )> / (x + A y ) - A > | | x | | - A | | y | | - A > l - 2 A > l - 2 a , 

so fe S(x, 2a, £(X*)). Similarly, g G S(X, 2a, B(X*)), so diam S(x, 2a, 
B(X*))>e. Thus J3(X*) fails to be weak* dentable, which completes the proof 
of the theorem. 

Using the result of Sullivan [19] referred to above, we obtain 

5.2. COROLLARY. If B(X) is strongly smoothable (equivalently, if E(X*) is 
weak* dentable), then every bounded subset of X is smoothable. 

We do not know if the converse of 5.2 is true. However, we mention that 
smoothability of B(X) by itself does not imply that it is strongly smoothable; 
this can be easily seen using the example in [12]. These comments suggest the 
following 

5.3. PROBLEM. Suppose that every equivalent unit ball for the Banach space 
X is smoothable. Is X an Asplund space? 

We remark that the question has an affirmative answer if every equivalent 
unit ball is strongly smoothable (or if every equivalent norm is malleable) for 
under these circumstances every symmetric weak* compact convex subset of 
X* would be dentable, i.e., X* would have the RNP, and so X would be an 
Asplund space by Theorem 4.4. 
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