
COMPARISON OF LUNAR EPHEMERIDES (SALE AND ELP) WITH 
NUMERICAL INTEGRATION 

Hiroshi Kinoshita 
Tokyo Astronomical Observation 
2-21-1 Osawa,Mitaka, Tokyo, Japan 

SALE and ELP, analytical theories of the main problem of the Moon, 
are developed by Henrard (1979) and Chapront-Touze (1980), respectively. 
Both theories are compared with numerical integration over one year, 
which covers about 13 revolutions of the Moon's orbit. The root-mean-
square residuals in the distance of SALE truncated at 10 arcsecond is 
about 10 cm for series truncated at 10 arcsecond and 1.2 cm for series 
truncated at 10~ arcsecond. ELP is also compared with 20 years of 
numerical integration and the root-mean-square residuals in the 
distance is about 1.5 cm. 

1. INTRODUCTION 

Recently analytical solutions-SALE and ELP-of the main problem of 
the Moon have been constructed by Henrard (1979) and Chapront-Touze 
(1980) respectively. Their theories are reviewed by Henrard in these 
proceedings. Chapront-Touze and Henrard (1980) compared in detail 
amplitudes of periodic terms and secular motions of angular variables 
in their theories. The quadratic mean values of the differences 
between their theories are 200 cm in longitude, 45 cm in latitude, 
and 120 cm in distance. Comparison of an analytical solution with 
another solution obtained by a different method is a good check of a 
theory. However, it cannot tell which theory is accurate. A theory 
should be judged only by its agreement with observations. Recent new 
techniques, such as lunar laser ranging, have enough accuracy to detect 
the difference between SALE and ELP. However, it is quite difficult to 
remove from observations planetary perturbations, perturbations due to 
the figures of the Moon and the Earth, the physical librations of the 
Moon, and so on. Another way to test a theory is comparison with 
numerical integration. We discuss comparison of these theories with 
numerical integration. 
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2. REPRESENTATION OF SALE AND ELP 

Both SALE and ELP are expressed in a trignometric series : 

A=longitude = J A, sinH. 

$=latitude=£ B.sinH. 
1 1 l 

p=sin parallax=p +£ C.cosH. 
r r o I I I 

Hi=i1D+i2l'+i3l+i4F 

where D=L=L', L=mean longitude of the Moon, L'=mean longitude of the 
Sun, l=mean anomaly of the Moon, l'=mean anomaly of the Sun and. 
F=argument of perigee of the Moon. SALE2000 is truncated at 10 
arcsecond. ELP2000 has two versions! one of them is truncated at 
10 arcsecond and the other at 10 arcsecond. Numbers of terms of each 
component are listed in Table 1. Both theories give partial derivatives 

Table 1. 

longitude 
latitude 
sine parallax 

Numbers 

SALE 
1187 
1026 
669 

of terms in SALE 

ELP(10"5) 
1023 
918 
921 

and ELP 

ELP(10"6) 
1537 
1401 
1393 

total 2882 2862 4331 

with respect to parameters included in their theories, by which we can 
make orbital improvements. They also give trigonometric series of the 
normalized distance Earth-Moon and the components of the unit vector 
pointing from the Earth to the Moon. 

3. NUMERICAL INTEGRATION 

Equation of motion we integrate are given by the following 
equation : 

d r -k (Me+Mm) ,, 2,A — = — r+k Ms 

dt r 

r' + 
M +M 
m e 

r' + M +M 
m e 

M 

M +M 
m e 

M +M 
m e 

The coordinates r of the Moon are geocentric and the coordinates r 
the Sun are referred to the barycenter of the Earth and the Moon, 
the main problem of the Moon, the motion of the Sun is assumed 
Keplerian. Initial position is calculated from the theory itself. 
Initial velocity is determined by numerical differentiation of the 
theory. 

of 
In 
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We use a Adams-Moulton-Cowell multistep integrator, which is predictor-
corrector type integrator and extensively used by Oesterwinter and 
Cohen (1972) in the orbital improvement of planets. The program of 
this integrator was written by Nicole Borderies (1975) of GRGS for 
CDC6400 and converted to the computer at TAO, UNIVAC 1100/80B. All 
numerical calculations are performed in double precision, which is 
about 18 digits in floating point calculation. In order to evaluate 
the precision of the integrator, we made the two following tests : 
1) change of stepsize and 2) forward and backward integration. Figure 1 
shows the difference between two integrations; integration with one-16th 
day stepsize and integration with one-8th day stepsize. The difference 
in radius vector and latitude are less than one millimeter, and the 
difference in longitude is about one millimeter. We integrated the 
motion in backward direction with use of the position and velocity at 
the last date and examined how the position at the initial epoch is 
close to the initial position. Figure 2 shows the difference between 
two orbits, forward and backward orbit. The differences in three 
components are also less than one centimeter. Therefore, we think the 
integrator we adopted is accurate enough to test an analytical theory 
of the Moon over one year in centimeter accuracy. 

4. COMPARISON OF SALE AND ELP WITH NUMERICAL INTEGRATION 

The equations of condition we adopted for differential orbital 
improvement are 

cos|3AX =cosB . E ^— Ae 
1=1 3ei 

6 

Ag= .E 86 Ae,-

I 

The parameters £. in the differential orbital improvement for SALE are 
£]=n=sidereal mean motion of the Moon, £ =E=coefficient of sin 1 in the 
longitude, £=r=coefficient of sin F in the latitude, £ =longitude, 
£ =longitude of perigee, £ =longitude of node of the Moon at the epoch. 
The Keplerian elements of the Sun and the mass ratio of the Moon and the 
Earth are fixed. The parameters for ELP are E/2, T/2, and the other 4 
parameters are the same as for SALE. In these parameters, £ , £ and 
£, can be chosen freely from a theory. Initial numerical values of 
£., £_, £. are taken from the currently-used ephemerides of the Moon. 

The weight for A is cosg 
In order to improve the six parameters, we use only residuals in 
longitude and latitude. One reason is that AX and A3 have enough 
information for orbital improvement. Another reason is that if orbital 
improvement with use of AX and Ag works well, the residuals in radius 
vector will also diminish as well as in longitude and latitude, which 
is an independant check of a theory and differential orbital improvement 
by least squares. 
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Figure 3. (Numerical Integration)-(SALE) 
coarse residuals 
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Figure 4. (Numerical Integration)-(SALE) 1 
residuals after 1st orbital improvement 
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Figure 3 shows raw residuals. The secular trend in longitude 
indicates that the mean motion of the longitude obtained by numerical 
integration does not agree with that of the theory. Figure 4 shows 
the residuals after the first orbital improvement. The improvement 
in residuals is quite remarkable. In calculation of SALE, we re­
evaluated the amplitudes of periodic terms and mean motions of angular 
variables with use of improved n,E, r. We did at least three iterative 
differential orbital improvements. 

The amplitude of residuals in longitude is about one meter, and its 
approximate period is one month. This systematic residual cannot be 
removed by adjustment of the eccentricity, because the parameter 
corresponding to the eccentricity is already one of the six parameters 
in the differential orbital improvement. The amplitude of residuals 
in latitude and radius vector are about 50 cm and 200 cm, respectively. 
It is clear that residuals in radius vector have a constant bias, which 
is about 7 m. It cannot be corrected by the adjustment of the mean 
motion of longitude, because 7 m displacement of the semi-major axis 
causes too large secular residuals in longitude. The root-mean-
square residuals in longitude, latitude and distance are about 70 cm, 
23 cm and 104 cm respectively. 

We did another type of differential orbital improvement. The orbit 
calculated from a theory is considered observation and the orbit 
obtained from numerical integration is considered calculation. Six 
quantities we should improve are the initial position and the velocity. 
The equations of condition are : 

3A . 
970

 A Eo + 
3A • 

" T~ Arn 3r 0 0 

3(3 . 
3F0

 A r ° 

cosgAA=cos6 

Partial derivatives with respect to the initial position and velocity 
are calculated by solving the variational equations of the original 
equations of motions. Figure 5 shows residuals after orbital improve­
ments by adjustment of initial position and velocity. The residuals in 
Figure 4 and 5 are in good agreement except sign, because residuals in 
Figure 4 are (numerical integration) - (theory) and those in Figure 5 
are (theory) - (numerical integration). This good agreement indicates 
that SALE gives precise partial derivatives with respect to the parameters 
included in the theory. 

We_now proceed to show the result of comparison of ELP truncated 
at 10 arcsecond (see Figure 6). Maximum residuals in three components 
are about 40 cm. There is no systematic trend in all three components 
and the residuals in the radius vector do not have a constant bias. The 
root-mean-square residuals in three components are 17 cm in longitude, 
15 cm in latitude and 10 cm in radius vector. Figure 7 shows the 
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residuals of ELP truncated at 10 arcsecond. The improvement of ELP 
(10 ) over ELP (10 ) is quite remarkable. The maximum residual in 
the radius vector is about 4 cm and its root-mean-square residual is 
about 1.2 cm. 

J.E.D-2451545 365days 

Figure 5. (SALE)-(Numerical Integration^ 
residuals after second orbital improvement. 

We did make a differential orbital improvement for 20 years time 
span, which covers one revolution of the ascending node of the Moon. 
Figure 8 shows residuals over 20 years. The latitude and the distance 
have no appreciable long-periodic residuals. However, the longitude 
clearly has long-periodic residuals. Long-periodic terms of which 
period is longer than 1000 days in ELP are listed in Table 2. 

Table 2. Long periodic terms in longitude of ELP(10 ) 

argument 
D 1* 1 F 

0 0 2-2 
1 1 - 1 0 
1 1 1-2 
2 2 - 2 0 
2 2 0-2 
3 3 - 3 0 
4 4 - 2 2 

period (day) 

-1095 
3233 
-1656 
1616 

-3397 
1078 
3084 

amplitude 

-1V372590 
1.077729 

-0.001566 
-0.249895 
-0.023489 
0.000009 
0.000002 

correction 

1V9X10"6 

8.4 
4.1 

-10.8 
12.6 
0.1 
-3.7 
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Figure 6. (Numerical Integration)-(ELP(10 )) 
residuals after second orbital improvement 
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Figure 7. (Numerical Integration)-(ELP(10~6)) 
residuals after second orbital improvement 
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+ '.'00002 

J.E.D.-2451545 7300days 

Figure 8. (Numerical Integration)-(ELP(10~6)) 
residuals after second orbital improvement 
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Figure 9.(N.I.)-(ELP(10~6)+long-periodic correction) 
N.I.=numerical integration 
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We determined corrections to the amplitude of these terms, which are 
listed in the last column of Table 2. Figure 9 shows the residuals 
after applying the corrections. The residuals still have long-
periodic component slightly. We think this is due to long-periodic 
terms which are not picked up by ELP. 

Table 3 is a summary of our test of SALE and ELP. Now we have an 
analytical solution of the main problem of the Moon, of which accuracy 
is comparable to the accuracy of lunar laser ranging observations. 

Table 3. Root-mean-square residuals (one year comparison) 

Longitude latitude distance 

SALE(10 ) 0V00037 70cm 0V00012 23cm 104 cm 
ELP (10~£) 0.00009 17 0.00008 15 10 
ELP (10 ) 0.00001 2.2 0.00001 2 1.2 

From now on we have to construct an analytical theory of planetary 
perturbations (direct and indirect) of which accuracy is compatible 
to the accuracy of main problem solution. 
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