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NONLINEAR OSCILLATIONS AND BUCKLING
OF ANISOTROPIC CYLINDRICAL SHELLS

UNDER LARGE INITIAL STRESSES
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Abstract

The large-amplitude oscillations and buckling of an anisotropic cylindrical shell
subjected to the initial inplane biaxial normal stresses have been analysed. The
concept of anisotropy used by Lekhnitsky has been introduced into the field equa-
tions for cylindrical shells of isotropic material deduced by Donnell. The method
of Galerkin and the method of successive approximation have been used to obtain
the desired approximate solution. The expression for the critical loads for the buck-
ling of anisotropic cylindrical shells has been obtained during intermediate stages
of analysis. Some relevant frequency response graphs of the obtained solution are
also presented. The minimum critical loads for various classes of anisotropy have
also been given at the end of the discussion, to exhibit the effects of large deflections
and imperfections on elastic buckling.

1. Introduction

In recent years, the parametric response of structures has been reexamined in
the new evolved theory of dynamic stability of elastic systems. Several non-
linear problems of the dynamic stability of isotropic plates were investigated
by Bolotin [2]. So far as the linear parametric response of isotropic plates
is concerned, Evan-Iwanouski [4] cites ten items, one of which, by Ambart-
sumian and Khachaturian [1], is devoted to small oscillations of anisotropic
plates. Nowinski [8] has given a detailed analysis of the nonlinear oscillation
of anisotropic plates.
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The present paper is concerned with the analysis of large-amplitude oscilla-
tions of an anisotropic cylindrical shell subjected to the initial inplane biaxial
normal stresses. Following the analysis of Donnell [3] for cylindrical shells
of isotropic material, the field equations of anisotropic cylindrical shells have
been derived. The concept of anisotropy is the same as that given by Lekhnit-
sky [6]. The deflection of the shell has been represented in a simple separable
form, satisfying the conditions on the boundaries, and a particular integral
has been obtained from the compatibility equation for the stress functions.
The Galerkin procedure then provides a nonlinear differential equation for
the time function, where the solution has been obtained by successive ap-
proximation method. Throughout the analysis it is assumed that, prior to
the oscillatory motion, the shell is subjected to a deformation provided by
large inplane uniformly distributed edge loads.

By rejecting the nonlinear term and specialising to the static case, the
standard value of the buckling load is obtained and the result is verified for
the isotropic case obtained by Nowacki [7] and Timoshenko [11]. Restitution
of the nonlinear terms gives the post-buckling deformation of the shell.

Free nonlinear oscillations are studied in more detail, and the dependence
of the frequency of oscillations on the magnitude of initial stress and the
amplitude is discussed, for three types of anisotropy and various values of
amplitude and initial stress.

Finally, the least critical loads have been calculated for different classes
of anisotropy to exhibit the effects of large deflections and imperfections on
elastic buckling.

2. Equations and discussions

Let the edges of the cylindrical shell be x = 0, x = a, y = 0, y = b. The
origin of coordinates (x, y) is located at a vertex of the middle plane of the
shell. Let x and y be measured in the axial and the circumferential direction
in the median surface of the undeformed cylindrical shell of thickness h
and made of rectilinearly orthotropic material whose axes of anisotropy are
parallel to the edges of the shell. Let u, v and w be the components of
displacement of a point on the median surface of the shell in the x-, y—
and radian directions respectively. Then at an arbitrary point in the median
surface the unit strains in the x- and y— directions, ex, ey and the unit shear
yxy, can be expressed in the following forms, including terms up to second

https://doi.org/10.1017/S0334270000006688 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006688


332 R. K. Bera [3]

order:
du 1 (dw\2

x dx 2 \dx J '
_ dv 1 (dw\2 w n 1)

_ du dv dw dw
7xy ~ dy~ + dx~ + ~dx~' ~dj'

where R is the radius of the undeformed median surface of the shell. The or-
thotropic stresses and strains in the median surface of the shell are, however,
related to each other by the following equations:

BXEX = Ox-ViOy, ZyEy = Oy - V2OX, }<Xy = 1Xy ,'G'. (2.2)

We assume that the shell is subjected to two sets of uniformly distributed
inplane normal tractions CT° and o® on the edges x = 0, a and y = 0, b re-
spectively. These tractions produce a pure homogeneous deformation char-
acterised by the unit extensions e° and e° which carry the shell into an initial
state of plane stress. The edges of the shell are then placed on supports, the
shell is loaded by a normal load q(x,y, t) on its upper surface and set in
flexural oscillatory motion. For definiteness, the edges of the shell are sup-
posed to be freely supported, and either freely movable or prevented against
displacements in the inplane directions.

It is further assumed that the transverse deflections of the shell are large;
that is, of the order of the magnitude of the thickness h. While the geomet-
rical nonlinearity creeps into the problem owing to the latter assumption, it
is postulated that Hooke's law is valid in its orthotropic form.

By virtue of the formulae derived elsewhere by Donnell [3], the field equa-
tions, extended to a dynamic and rectilinearly orthotropic shell with an initial
stress system, take the following form:

A , (W, 4>) = WXXXX + 2l2WXXyy + k2Wyyyy ~ V / DX + ^ " W//

h 1
- Tr[{<t>yy + OX)WXX + <t>xyWxy + {<j)xx + O^Wyy] - -^T<l>xx = 0,

Ox RDX ( 2 J )

A2(W, (f>) - (t>XXXX +p2</>XXyy + k2<f>yyyy

1 1 n (2-4)
~Ey h\ (Wxy)

2 - WxxWyy - ~WXX = 0,
L K 1

where w is the deflection of the shell and <f> is the stress function related
to the membrane stresses generated by the large deflection of the shell (and
marked by an asterisk) given by

ax = fiyy ay = 4>xx, °Xy = —4>xy (2.5)
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Furthermore

K ~ Dx~ Ex~ vx>
 l~Vx+2Xx'

 P ~hy\G Ex

where Dx and Dy are bending rigidities in the x and y directions, Dxy =
GA3/12 and Ex, Ey, G, v\ and v-i Young's moduli, shear modulus and Pois-
son's ratios respectively. It should be noted here that the use of the stress
function in (2.5) is equivalent to disregard of the inertia of inplane motion
of the particles of median surface of the shell. However, this assumption
is legitimate in this case, because the oscillations take place primarily in the
transverse direction. It may be mentioned in this connection that (2.4) ex-
presses the condition of compatibility between the stresses and strains. When
R —> oo, (2.3) and (2.4) reduce to the corresponding equations for a flat plate
derived elsewhere by Nowinski [8]. With a given distribution of the radial
component of displacement w, (2.4) gives the induced stresses in the median
surface of the shell.

The solution for the deflection may be sought in the form of a trigonomet-
ric series of sine terms satisfying the boundary conditions imposed on the
deflections,

w(x,y,t) = wxx(x,t,t) = O forx = 0,a and 0 < y < b,
w(x,y, t) = wyy(x,y,t) = 0 fory = 0, b and 0 < x < a,

at any time.
Without loss of generality, let us confine ourselves to one term of the series

only, and have an approximate solution of the form

w(x, t, t) = amn sin(^mx) sin(yny)r(t), (2.8)

where
pm = mn/a, yn = nn/b, (2.9)

amn is a constant coefficient and x{t) an unknown function of time to be
determined later. This form satisfactorily describes the fundamental mode
of oscillation which is of primary interest.

Introducing (2.8) into (2.4) we arrive at the following form of the stress
function,

f [f ) + j | cos(2/?mx)

The last two terms represent an integral of (2.4) obtained by posing w - 0,
and are adjoined to the solution in order to satisfy the boundary conditions
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for the membrane stresses (2.5). In view of (2.10), (2.5) yields

\,y2 sin(fimx) sin(yny) • r
R (M+pifilyl + kiyi) +Cl(l)'

^Eyormnyl cos{2pmx) • T2 (2.11)

Ey(XmnPm sin(ffmx) sin{yny) • x

.
iyn cos(pmx)cos(yny) • x

With the help of (2.1) and (2.2), we can write

du 1 r .

, (2-12)
dv 1 . . , . 1 (dw\2 w

Introducing (2.5), (2.8) and (2.10) into (2.12) and integrating the first
equation of (2.12) with respect to x from x = 0 to x = a, and the second
with respect to y from y = 0 to y = b, we can arrive at the following values
of the relative displacements Ax and Ay for each pair of parallel edges of the
shell produced by the membrane stresses (2.5).

Ax = - ja2
mnfi^at2 + -=-(ci - vxci)

o xiv

g mn n g^

• \cos{ynb) — 1] -jr — ^

m,n = 1,3,5

The mean stresses at the edges of the shell are

tma) - l][cos(ynb) - 1]
/?

and

2 " 2 ( ) ^
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Let us assume that the resistance of the supports against an inplane normal
displacement is in direct proportion to the mean membrane stresses by which
they are acted upon. In other words, let us pose

Ax = c r ( 0 W , Ay = c*2(t)h/fc, (2.15)
where /?* and /?£ are spring constants of the supports along the edges x = 0,
a and y = 0, b, respectively. Apparently, we have

P*=oo, i = l , 2 , (2.16)

for a support preventing any normal displacement, and

c r = 0 = c2*. (2.17)

for freely movable edges.
From (2.13), (2.14) and (2.15), we find the value of the parametric func-

tions Cj(t), i = 1,2, in the form

ct = fiiohtT2 - fi,amnT,

where

and

r _
mn~

d = [1 - Exh/afi;][l -

K = IT
F r i

p>1 = ~

[cos(fima) - l][cos(y,,6) -

- vxv2,

(2.18)

( 2 ' 1 9 )

(2.20)

Eyhy2
ny2

n _ 2 2 _ 2 1

Dmn =

m,n = 1,3,5,.... (2.21)

Let us note that the nonlinearity of the problem is associated with the
magnitude of the deflection and not with the pinning of the edges. This fact
is in contrast with what we find in oscillations of beams.

Let us now return to the remaining field equation (2.3), Ai(w,<f>) = 0 and
proceed in the following fashion for its evaluation. For the investigation of
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free vibrations of the shell solely, we disregard the load term q{x,y,t) in
(2.3). Then introducing (2.8) and (2.10) into (2.3), we apply the procedures
of Galerkin; that is, (2.3) is multiplied by the spatial part of the deflection
(2.8), and the result is integrated over the domain of the shell.

A lengthy but elementary calculation leads either to a trivial solution
otmn = 0 (which has to be rejected), or to the following well known non-
iinear differential equation of Duffing type for the unknown time function
T,

T+rtT-nT2+nT3 = o, (2.22)
where

r]}-
. _. 8 Dxymn \h I 4 , [cos3(/?ma) -
2 abph [Dx\

Pm7n£'y9pmt

T O

{cos{pma)- 1}

( 2 - 2 3 )

It may be noted in this connection that as R -* oo the expressions for
Ff and F^ reduces to those of the forms Fi and F3 obtained elsewhere by
Nowinski [8] in the case of an anisotropic plate and F | —> 0. The solution
of (2.22) can be obtained in the form of an incomplete elliptic integral [5,
10], but such a solution is complicated and not suitable for any practical
application and, therefore, a method of successive approximation [5] has
been used to obtain the required solution.

Let us substitute

£ = \ / fW (2-24)
in (2.22), which reduces to

' + /3t3 = 0, (2.25)
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where

Now, using the transformation

C = \/T+0-Z, (2.27)

(2.25) reduces to

^ 2 - / 3 T 3 . (2.28)

Let ti and -r2 be the maximum and minimum amplitudes respectively of T
then, P and T are expanded in power series of x2 in the following forms:

--. (2.29)

r = -m(C)T2 + ifetf)^ - UZ)4 + '••• (2-30)

Substituting (2.29) and (2.30) in (2.28) and equating coefficients of like pow-
ers of t2 on both sides of (2.28), we obtain a set of differential equations
in »/i,t]2, fa,... associated with P\,Pi,P^, Solving these equations by
the successive approximation method [9, 10] under the initial conditions
»?i(0) = 1, »fe(0) = i/3(0) = • • • = 0 andiji(O) = fc(0) = »b(0) = • • • = 0, we
can obtain the values of r\\, r\2, r\^,... and P\,Pi,Pi, Thus the solution
of (2.28) becomes

F l f 2 1 A 3 / 2 5 , 3 2 1 , , \ 4

+ -
/ 2 9 A 1 , \ 3 , /119 -3 35

6971 -4 1 4 7 5 . 2 . 23 . 2 \ . 1
^ / / 2 + 1024^ J T^ + • J

+ . . . . (2.31)

Then (2.31) is the solution of (2.28) when the amplitude of vibration is
expressed as the function of £ and T2. For the case of infinitesimal value
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of T2, the constant term and the higher harmonic terms in (2.31) can be
neglected except only the fundamental harmonic term which is the solution
of the linear theory. Then (2.31) is the periodic function with respect to £
with the period 2n.

The period of the motion is given by

Equations (2.31) and (2.32) give the amplitude and period of nonlinear
vibration of the above mentioned shell. The period is a function of ampli-
tude, which is the characteristic of the nonlinear vibration, and the relation
between the maximum and minimum values of the amplitudes i\ and -x2,
is given below.

Applying the so-called energy integral to (2.25), the following equation is
obtained:

) 2 + x l + \ h x l + \ h x * = 2 E T > ( 2-3 3 )

where £> is the total energy of the vibrating system. For extremum, ^ = 0
at x = Ti, -T2, and this condition reduces (2.33) to

A ( l + \fin + 5/3T?) = t ^ l - \hx2 + i / 2 t ^ = 2ET, (2.34)

where t\ and T2 can be determined independently whenever Ej is given in
accordance with the initial conditions.

3. Free liner oscillations

The circular frequency of the linear oscillations of the orthotropic shell is
obtained from (2.32) by putting r2 = 0, which yields

(3-1)
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If we are concerned with the fundamental mode (m — n = 1) and leave out
the initial stresses, then

1/2

hEyjb/a)4

1/2

• (3.2)

As R —* oo, (3.2) reduces to that of an anisotropic plate as obtained by
Nowinski [8].

4. Buckling load

Let us pose amn — 0 and T = 1 in (2.22), and ask for the critical compres-
sive load

-y. (4.1)

Evidently (2.22) now yields the condition F*{ = 0, or, more explicitly,

= Dx{fii, + 2l2fS2
my2

n + kYn)+
(4.2)

If we put k2 = I2 = 1, a = b, p2 = 2,Py = 0, (4.2) reduces to

m/a
D

XCTit
m l a

which was derived elsewhere in [7, 11] and the least critical load can be
obtained from (4.3) as

[(Px/h) crit] min = (4.4)
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considering the left hand side to be a continuous function of [{m2/a2 +
n2/b2)/(m/a)]2.

5. Post buckling stage

The post buckling criiicai behaviour of ihe orihoiropic shell can easily be
described by letting T = 1 in (2.22). We have then

(£) where amn = A (5.1)( l )
and T2 = Y*2l{amn/h).

When /? —> oo, Fn —• 0 and the result is the same as that obtained by
Nowinski [8] in the case of anisotropic plates. The relation (5.1) will help in
the determination of maximum deflection of the shell.

To proceed further let us pose k2 = I2 = 1 and assume for definiteness that
the edges x = 0, a of the shell are freely movable in the normal directions,
while the edges y = 0, b are rigidly pinned. Again, the active loading of the
shell consists of the uniformly distributed forces Px only. This yields /?* = 0,
P\ =oo,c\= 0. Hence we have fi\ -> 0 and p2 -* n2E/Sb2,

2 4, E (b\
l~ R \a) (l+b2/a2)2'

and we have then, from (5.1),

(5.2)

For the deflection to be real, we have (^ /F^) 2 > 4 (1^ /^ ) . The maximum
deflection can be easily obtained from (5.2).

6. Free nonlinear oscillations

Let us now turn to the investigation of free nonlinear oscillations of the
shell, to which we attribute different degrees of anisotropy. Before doing this,
let us find out the equation for the critical load of the shell by assuming that,
throughout the entire period of deformations, the normal forces acting on
the edges of the shell are related to each other, so that

o° = ao°, (6.1)
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where a is a preassigned constant parameter. From (4.2) we can write

Eyfa
01 + ayMfit, + IWlyl + Vy*)'

a n d t he r e fo r e fo r m = n = 1,

[{1 + 2 / 2 ( f ) 2 + k2d)4}2 + ( ^ ) 4 ( ^ ) 2 1 2 ( 1 vv)]

2ADxak2{\-vxV2)
2 ab phbh2R

If + fsQ + P2(j)2 + A:2(f)4} + 2{^(g)2 + A:2(f)4 - 1}]

Consequently fi and 3̂ can be written as (m = n = 1)

24( l -^ 2 ) fc 2 ( f ) 2

72 4f^[l + aO/(o5)«i.]

f

12(1 -

(6.7)
The frequency of nonlinear oscillations appears now as

where Tj = a\iT2/h.

For initial compressive stress, i.e., cr° < 0, the frequency may vanish. This
happens when

1 -
vojr/cnt

for the first approximation in the expansion.
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7. Numerical results and discussions

[13]

Apparently, the larger the amplitude of oscillations the larger inplane stress
which brings the motion to a pause. The relation is displayed on graphs in
Figure 1 for different types of anisotropy as illustrated in Table 1.

It is noted that in the entire range of variability of the ratio <x°/(<x°)Crit,
starting from the horizontai iine 0£/(a^)crit = i up to the correlated curve,
the nonlinear periodic motion subsists despite the fact that the load acting on

70 r

ORTHOTROPY-l

(Ofl)

FIGURE 1. Initial compression versus amplitude for a vanishing frequency of nonliner oscil-
lations.
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TABLE 1

343

Type

Orthotropy I

Orthotropy II

Isotropy III

.05

.20

.30

"2

.025

.010

.300

k2

.50

.05

1.00

I2

.2228

.1078

1.0000

P2

1.895

1.665

1.000

the shell exceeds the critical value. While both types of orthotropy listed in
the table differ considerably from each other their influence on the cessation
of the oscillations differs only slightly.

From (3.2) and (6.8), <o*/(Oo > 0 for the first approximation if <x°(> 0) is
a tensile stress and \h^> j^fz-

To illustrate the influence of the initial stress on the frequency of nonlinear
oscillations Figure 2 (i, ii) depicts the dependence of the relative frequency
CO*/WQ (WQ is the frequency of nonlinear oscillations of a shell free from
initial stress) on the ration <r?/(o^)crit. With an increasing tensile stress we
observe the well-known fact of increase of the frequency.

Figure 3 (i-iv) displays the relation between the relative frequency and the
relative amplitude for various values of compressive stresses k = o$/[o%)ctit-
An inspection of the curves reveals that with an increasing initial compres-
sion, and the values of the amplitude kept unchanged, the frequency of the
oscillations decreases.

7B. Minimum buckling loads due to various classes of anisotropy
Equation (4.2) has been simplified in the following form to obtain the

buckling loads due to various classes of anisotropy:

Dx b

+ IL±(±\2 !
+ DxR

2\nn) n2+p2 + *L]>

(7.1)

where X = 0m/yn = mb/{na). If <T° = 0 and n = 1, then (7.1) reduces to

where z = X2 + k2/X2. The least value of y/ will be obtained as

(7.2)

(7.3)

considering y/ to be a continuous function of z.
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25

20

15

10

(i) r = I
a: b = 1
Movable edge

III

-1

100

80

60

40

20

0

-

(ii) T = 2
a: b= 1
Movable edge

-

-

.£-- <S/
j ^ n i. —

o

J /l

i i

- 1

FIGURE 2. Nonlinear frequency versus initial stress for various amplitude and classes of
anisotropy.

If Ex = Ey, v\ = v2, p2 =2 and I2 = 1, we get back the result (4.4) from
(7.3), and this is true for all values of n. Moreover, we write.

- n2 {^j (ll2 -p2). (7.4)

Hence, for different cases of anisotropy, the values of £mjn can be obtained
from (7.4) and are presented in Table 2.
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TABLE 2

345

Type

Orthotropy I

Orthotropy II

Isotropy

"l

0.05

0.20

0.30

"2

0.025

0.010

0.300

k2

0.50

0.05

1.00

I2

0.2228

0.1078

1.000

P2

1.895

1.6665

1.000

h/b

0.1

0.1

0.1

h/R

0.1

0.1

0.1

jfmin

0.3454

0.0116

0.65

If CT° = 0, similar results can be obtained for (Py)Cni from (7.1).

(i)

32

a: b = 1, Movable edges

= -0.5

16

100

80

*3

u& -

(hi)

a: b = 1, Movable edges

= -1.5

III

r = 0, Linear case

1S0

120

•§. 90

60

30

(iv)
a: b = 1, Movable edges
*-">*°«n.

= -2 .0

III

r = 0, Linear case

3 0

FIGURE 3. Frequency versus amplitude for various ratios of initial compression.
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