THE HAUSDORFF DIMENSION OF A SET OF NORMAL NUMBERS II

A. D. POLLINGTON

(Received 14 October 1986)

Communicated by W. Moran

Abstract

Let R, S be a partition of $2,3, \ldots$ so that rational powers fall in the same class. Let $\left(\lambda_{n}\right)$ be any real sequence; we show that there exists a set N, of dimension 1 , so that $\left(x+\lambda_{n}\right)$ ($n=1,2, \ldots$) are normal to every base from R and to no base from S, for every $x \in N$.

1980 Mathematics subject classification (Amer. Math. Soc.): 11 K 16, 11 K 55. Keywords and phrases: normal numbers, Hausdorff dimension, sum sets.

Introduction

We call two natural numbers r, s equivalent, $r \sim s$, when each is a rational power of the other. Schmidt [4] showed that given any partition of the numbers $2,3, \ldots$ into two disjoint classes \mathbf{R}, \mathbf{S}, so that equivalent numbers fall in the same class, then there is an uncountable set, N, of numbers which are normal to every base from \mathbf{R} and to no base from S. In [3] we showed that the set of numbers with this property has Hausdorff dimension 1.

Pearce and Keane [2] gave a new proof of Schmidt's result. Given $r, s, r \nsim s$, there are uncountably many numbers which are normal to base r but not even simply normal to base s. Brown, Moran and Pearce [1], have recently shown, using the theory of Riesz product measures, that every real number can be expressed as the sum of four numbers none of which is normal to base s but all of which are normal to every base $r \nsim s$.

[^0]In this paper we return to the method used by Schmidt [4] and the author [3] and prove

THEOREM 1. Given any partition of the numbers $2,3, \ldots$ into two disjoint classes \mathbf{R}, \mathbf{S} so that equivalent numbers fall into the same class, and any real sequence $\left(\lambda_{i}\right)_{i \in N}$, then the set of numbers ξ for which $\lambda_{i}+\xi(i=1,2, \ldots)$ is normal to every base from \mathbf{R} and to no base from \mathbf{S} has Hausdorff dimension 1.

This extends the results of [3] to simultaneous translates. It follows immediately from Theorem 1 that every real number can be expressed as a sum of two numbers from N.

Preliminaries

The proof of this result proceeds along the same lines as that given in [3]. The only changes that need to be made are in that part of the argument concerned with the non-normality with respect to the bases from S, the construction of the sets $J_{1} \supset J_{2} \supset \cdots$. As before we apply our construction to bases $\geq A$, which gives us a Hausdorff dimension of $\log (A-3) / \log A$, taking unions over A gives dimension 1. We assume that our sequences $\mathbf{R}=\left(r_{1}, r_{2}, \ldots\right), \mathbf{S}=\left\{s_{1}, s_{2}, \ldots\right\}$ satisfy the conditions of Section 3 of [3].

We write $h(m)$ for the least number h, for which

$$
\begin{equation*}
m \not \equiv 0 \quad\left(\bmod 2^{h}\right), \quad \text { that is, } \quad m=2^{h} \cdot k+2^{h-1} \tag{1}
\end{equation*}
$$

and let

$$
\begin{equation*}
g(m)=h(k) \tag{2}
\end{equation*}
$$

Put

$$
\begin{equation*}
s(m)=s_{g(m)}, \quad \lambda(m)=\lambda_{h(m)} \tag{3}
\end{equation*}
$$

Then as m runs through the natural numbers, with the non-negative integer powers of 2 deleted, each λ_{j} appears infinitely often in $\lambda(m)$, and as m runs through those numbers for which $\lambda(m)=\lambda_{j}$ each s_{i} appears infinitely often in the sequence $s(m)$.

Construction of a set of nonnormal numbers

We construct sets $J_{0}=[0,1] \supset J_{1} \supset J_{2} \supset \cdots$, each the union of closed intervals. Let $f(m)=e^{\sqrt{ } m}+2 s_{1} m^{3}$. Put

$$
\langle m\rangle=\lceil f(m)\rceil, \quad\langle m ; x\rangle\lceil\langle m\rangle / \log x\rceil
$$

where $\lceil x\rceil=-[-x]$.

$$
\begin{equation*}
b_{m}=\langle m+1 ; s(m)\rangle \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{m+1}=\left[\frac{b_{m} \log s(m)}{\log s(m+1)}\right]+2 \tag{5}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{\langle m+1\rangle}{\log s(m+1)}+2 \leq a_{m+1} \leq \frac{\langle m+1\rangle}{\log s(m+1)}+\log \log m+3 \tag{6}
\end{equation*}
$$

and

$$
s(1)^{b_{1}}<s(2)^{a_{2}}<s(2)^{b_{2}}<s(3)^{a_{3}}<\cdots
$$

Let J_{1} be the union of the intervals, each of length $s(1)^{-b_{1}}$, whose left end points are of the form

$$
\begin{equation*}
\xi_{1}=\frac{\varepsilon_{1}}{s(1)}+\cdots+\frac{\varepsilon_{b_{1}}}{s(1)^{b_{1}}}-\lambda(1) \tag{7}
\end{equation*}
$$

where the ε_{i} range over $0,1, \ldots, s(1)-\delta(1)$ and

$$
\delta(i)= \begin{cases}2 & \text { if } s(i) \text { is odd } \\ 3 & \text { if } s(i) \text { is even }\end{cases}
$$

There are $(s(1)-\delta(1))^{b_{1}}$ such intervals I of J_{1}.
Suppose that J_{k} has been constructed and that I_{k} is an interval of J_{k} of length $s(k)^{-b_{k}}$. By (5)

$$
s(k+1)^{-a_{k+1}+2} \leq s(k)^{-b_{k}}
$$

Thus in each interval I_{k} there are at least

$$
\left[\frac{s(k+1)^{a_{k+1}}}{s(k)^{b_{k}}}\right]-2
$$

intervals I_{k}^{\prime} of length $s(k+1)^{-a_{k+1}}$ with left end point, ρ_{k}, for which $\rho_{k}+\lambda(k+1)$ is a finite decimal of length a_{k+1} in base $s(k+1)$. We construct subintervals of I_{k}^{\prime} of length $s(k+1)^{-b_{l k+1}}$ whose left end points are of the form

$$
\begin{equation*}
\xi_{k+1}=\rho_{k}+\left(\frac{\varepsilon_{1}}{s(k+1)}+\cdots+\frac{\varepsilon_{t_{k+1}}}{s(k+1)^{t_{k+1}}}\right) s(k+1)^{-a_{k+1}} \tag{8}
\end{equation*}
$$

where $t_{k}=b_{k}-a_{k}$ and the ε_{i} can range over $0,1, \ldots, s(k+1)-\delta(k+1)$.
In each interval I_{k}^{\prime} there are $(s(k+1)-\delta(k+1)+1)^{t_{k+1}}$ such intervals. Let J_{k+1} be the union of all such intervals taken over all I_{k}^{\prime}. Then J_{k+1} is the union of at least

$$
\left(\left[\frac{s(k+1)^{a_{k+1}}}{s(k)^{b_{k}}}\right]-2\right)(s(k+1)-\delta(k+1)+1)^{t_{k+1}}
$$

intervals of length $s(k+1)^{-b_{k+1}}$. This completes the construction of the sequence of sets $J_{0} \supset J_{1} \supset \cdots$.

Lemma 1. If $\xi \in \bigcap_{i=1}^{\infty} J_{i}$ then $\xi+\lambda_{j}$ is non-normal to each base s_{1}, s_{2}, \ldots, for every $j \in N$.

Proof. Fix g, h and let $\lambda=\lambda_{h}, s=s_{g}$. Let q be so large that

$$
\begin{equation*}
\left(\frac{s-1}{s}\right)^{q}<2^{-g-h} \tag{9}
\end{equation*}
$$

For a number M with $h(M)=h, g(M)=g$ there are at least,

$$
\begin{equation*}
\sum_{\substack{m \leq M \\ h(m)=h \\ g(m)=g}}\left(t_{m}-1-q\right) \tag{10}
\end{equation*}
$$

q-blocks $\varepsilon_{i+1} \cdots \varepsilon_{i+q}$ consisting of the digits $0,1, \ldots, s-2$ in the expansion of $\xi+\lambda$, for which $i+q \leq b_{M}$. Now $h(m)=h$ if $m=2^{h} \cdot k+2^{h-1}$ and $g(m)=g$ if $k=2^{g} \cdot l+2^{g-1}$ so $m=2^{h+g} l+2^{h+g-1}+2^{h-1}$, that is,

$$
m \equiv 2^{h+q-1}+2^{h-1} \quad\left(\bmod 2^{g+h}\right)
$$

If $g(m)=g, h(m)=h$ and $m>2^{h+g-1}+2^{h-1}$, then, by (6)

$$
t_{m}-1-q \geq 2^{-g-h} \sum_{j=m-2^{g+h}+1}^{m}[(\langle j+1 ; \delta\rangle-\langle j ; s\rangle)-\log \log m-5-q]
$$

since $t_{m}=b_{m}-a_{m}$ and $\langle m+1 ; s\rangle-\langle m ; s\rangle$ is a non-decreasing function of m. Thus (10) is at least

$$
\begin{aligned}
& \sum_{\substack{m \leq M \\
g(m)=g \\
h(m)=h}} \sum_{j=m-2^{g+h}+1}^{m}((\langle j+1 ; s\rangle-\langle j ; s\rangle)-\log \log m-5-q) \\
& \geq 2^{-g-h}(\langle M+1 ; s\rangle-\langle 1 ; s\rangle-M(\log \log M+5-q)) \\
& =2^{-g-h} b_{M}(1+O(1)) .
\end{aligned}
$$

If $\xi+\lambda$ were normal to base s, the number of q-blocks with digits $0,1, \ldots, s_{q}-2$ and indices smaller than b_{M} would be asymptotic to $((s-1) / s) b_{M}$. By (9) this is clearly not the case and Lemma 1 is proved.

Construction of a set of normal numbers

We also have to ensure that the translate of the numbers we have constructed are also all normal to every base from \mathbf{R}. We do this, as in [3], by discarding certain of the intervals J_{i} at each stage, to obtain a new sequence, $K_{1} \supset K_{2} \supset$ \cdots, with $K_{i} \supset J_{i}$.

Consider the intervals I_{m-1}^{\prime}. In each such interval there are

$$
(s(m)-\delta(m)+1)^{t_{m}}
$$

intervals of J_{m} whose left end points we denote by ξ_{m}. Let

$$
A_{m}(x)=\sum_{t=-m}^{m} \sum_{i=1}^{m}\left|\sum_{j=\left\langle m_{j} r_{i}\right\rangle+1}^{\left\langle m+1 ; r_{i}\right\rangle} e\left(r_{i}^{j} t x\right)\right|^{2}
$$

Lemma 2. Let $j \in N$, then if $m \geq \delta_{j}$ there are at least $(s(m)-3)^{t_{m}}$ numbers $\xi_{m} \in I_{m-1}^{\prime}$ for which

$$
A_{m}\left(\xi_{m}+\lambda_{i}^{2}\right) \leq c m(\langle m+1\rangle-\langle m\rangle)^{2-\beta_{m} / 2}
$$

for $i=1, \ldots, j$. Here c is an absolute constant and δ_{j} is constant depending on j. Here β_{m} is as in [3], $\beta_{m} \geq \beta_{1} m^{-1 / 4}$.

Proof. Let $s=s(m)$. As in the proof of Lemma 3 of [3] we have:
The number of $\xi_{m} \in I_{m-1}^{\prime}$ for which

$$
A_{m}\left(\xi_{m}+\lambda_{j}\right)>c m^{2}(\langle m+1\rangle-\langle m\rangle)^{2-\beta_{m} / 2}
$$

is at most

$$
(\langle m+1\rangle-\langle m\rangle)^{-\beta_{m} / 2}(s-\delta+1)^{t_{m}}
$$

But $\beta_{m} \geq \beta_{1} m^{-1 / 4}$ and $(\langle m+1\rangle-\langle m\rangle) \geq e^{\sqrt{ } m} /(2 \sqrt{ } m+1)$, and so

$$
(\langle m+1\rangle-\langle m\rangle)^{-\beta_{m} / 2}<\frac{1}{2^{j+1}} \quad \text { for } m>\delta_{j}
$$

Hence there are least $(s-\delta+1)^{t_{m}} / 2$ numbers $\xi_{m} \in I_{m-1}^{\prime}$ for which

$$
A_{m}\left(\xi_{m}+\lambda_{i}\right) \leq c m^{2}(\langle m+1\rangle-\langle m\rangle)^{2-\beta_{m} / 2}, \quad i=1,2, \ldots, j
$$

For $m \geq \delta_{j}(s-3)^{t_{m}}<(s-\delta+1)^{t_{m}} / 2$, this proves the lemma.
We construct the sequence of sets $K_{1} \supset K_{2} \supset \cdots$ in the same way as $J_{1} \supset J_{2} \supset \cdots$ was constructed. But at each stage in our construction of $\left\{K_{m}\right\}$ we use only the $(s(m)-3)^{t_{m}}$ points ξ_{m} satisfying Lemma 2. The remainder of the proof of Theorem 1 now proceeds exactly as in [3].

By a straightforward application of Weyl's criterion we have
COROLLARY 1. Given $\left(a_{i}\right)$ a sequence of non-zero rational numbers, $\left(b_{i}\right)$ a sequence of real numbers and a partition \mathbf{R}, \mathbf{S} of the numbers $2,3, \ldots$ so that equivalent numbers fall into the same class, then the set of numbers ξ for which $a_{i} \xi+b_{i}$ is normal to every base from \mathbf{R} and to no base from \mathbf{S} has Hausdorff dimension 1 .

Corollary 2. Given any partition of $2,3, \ldots$ into two classes \mathbf{R}, \mathbf{S}, so that equivalent numbers fall into the same class, then every real number can be
written as a sum of two numbers both normal to every base from \mathbf{R} and to no base from \mathbf{S}.

Bibliography

[1] G. Brown, W. Moran, and C. E. M. Pearce, 'Riesz products and normal numbers', J. London Math. Soc. (2) 32 (1985), 12-18.
[2] C. E. M. Pearce and M. S. Keane, 'On normal numbers', J. Austral. Math. Soc. (1) 32 (1982), 79-87.
[3] A. D. Pollington, 'The Hausdorff dimension of a set of normal numbers', Pacific J. Math. 95 (1980) 193-204.
[4] W. M. Schmidt, 'Über die Normalität von Zahlen zu verschiedenen Basen', Acta Arith. 7 (1961-62), 299-309.

Department of Mathematics
Brigham Young University
Provo, Utah 84602
U.S.A.

[^0]: (C) 1988 Australian Mathematical Society 0263-6115/88\$A2.00 +0.00

