J. Austral. Math. Soc. (Series A) 44 (1988), 259-264

THE HAUSDORFF DIMENSION OF A SET OF NORMAL NUMBERS II

A. D. POLLINGTON

(Received 14 October 1986)

Communicated by W. Moran

Abstract

Let R, S be a partition of $2, 3, \ldots$ so that rational powers fall in the same class. Let (λ_n) be any real sequence; we show that there exists a set N, of dimension 1, so that $(x + \lambda_n)$ $(n = 1, 2, \ldots)$ are normal to every base from R and to no base from S, for every $x \in N$.

1980 Mathematics subject classification (Amer. Math. Soc.): 11 K 16, 11 K 55. Keywords and phrases: normal numbers, Hausdorff dimension, sum sets.

Introduction

We call two natural numbers r, s equivalent, $r \sim s$, when each is a rational power of the other. Schmidt [4] showed that given any partition of the numbers $2, 3, \ldots$ into two disjoint classes **R**, **S**, so that equivalent numbers fall in the same class, then there is an uncountable set, N, of numbers which are normal to every base from **R** and to no base from **S**. In [3] we showed that the set of numbers with this property has Hausdorff dimension 1.

Pearce and Keane [2] gave a new proof of Schmidt's result. Given $r, s, r \neq s$, there are uncountably many numbers which are normal to base r but not even simply normal to base s. Brown, Moran and Pearce [1], have recently shown, using the theory of Riesz product measures, that every real number can be expressed as the sum of four numbers none of which is normal to base s but all of which are normal to every base $r \neq s$.

^{© 1988} Australian Mathematical Society 0263-6115/88 \$A2.00 + 0.00

A. D. Pollington

In this paper we return to the method used by Schmidt [4] and the author [3] and prove

THEOREM 1. Given any partition of the numbers 2,3,... into two disjoint classes **R**, **S** so that equivalent numbers fall into the same class, and any real sequence $(\lambda_i)_{i \in \mathbb{N}}$, then the set of numbers ξ for which $\lambda_i + \xi$ (i = 1, 2, ...) is normal to every base from **R** and to no base from **S** has Hausdorff dimension 1.

This extends the results of [3] to simultaneous translates. It follows immediately from Theorem 1 that every real number can be expressed as a sum of two numbers from N.

Preliminaries

The proof of this result proceeds along the same lines as that given in [3]. The only changes that need to be made are in that part of the argument concerned with the non-normality with respect to the bases from \mathbf{S} , the construction of the sets $J_1 \supset J_2 \supset \cdots$. As before we apply our construction to bases $\geq A$, which gives us a Hausdorff dimension of $\log(A-3)/\log A$, taking unions over A gives dimension 1. We assume that our sequences $\mathbf{R} = (r_1, r_2, \ldots), \mathbf{S} = \{s_1, s_2, \ldots\}$ satisfy the conditions of Section 3 of [3].

We write h(m) for the least number h, for which

(1) $m \not\equiv 0 \pmod{2^h}$, that is, $m = 2^h \cdot k + 2^{h-1}$,

and let

$$(2) g(m) = h(k)$$

 \mathbf{Put}

(3)
$$s(m) = s_{g(m)}, \qquad \lambda(m) = \lambda_{h(m)}.$$

Then as m runs through the natural numbers, with the non-negative integer powers of 2 deleted, each λ_j appears infinitely often in $\lambda(m)$, and as m runs through those numbers for which $\lambda(m) = \lambda_j$ each s_i appears infinitely often in the sequence s(m).

Construction of a set of nonnormal numbers

We construct sets $J_0 = [0,1] \supset J_1 \supset J_2 \supset \cdots$, each the union of closed intervals. Let $f(m) = e^{\sqrt{m}} + 2s_1m^3$. Put

$$\langle m \rangle = \lceil f(m) \rceil, \qquad \langle m; x \rangle \lceil \langle m \rangle / \log x \rceil$$

where $\lceil x \rceil = -[-x]$.

(4) $b_m = \langle m+1; s(m) \rangle$

and

(5)
$$a_{m+1} = \left[\frac{b_m \log s(m)}{\log s(m+1)}\right] + 2.$$

Then

(6)
$$\frac{\langle m+1\rangle}{\log s(m+1)} + 2 \le a_{m+1} \le \frac{\langle m+1\rangle}{\log s(m+1)} + \log \log m + 3$$

and

$$s(1)^{b_1} < s(2)^{a_2} < s(2)^{b_2} < s(3)^{a_3} < \cdots$$

Let J_1 be the union of the intervals, each of length $s(1)^{-b_1}$, whose left end points are of the form

(7)
$$\xi_1 = \frac{\varepsilon_1}{s(1)} + \dots + \frac{\varepsilon_{b_1}}{s(1)^{b_1}} - \lambda(1)$$

where the ε_i range over $0, 1, \ldots, s(1) - \delta(1)$ and

$$\delta(i) = \begin{cases} 2 & \text{if } s(i) \text{ is odd,} \\ 3 & \text{if } s(i) \text{ is even.} \end{cases}$$

There are $(s(1) - \delta(1))^{b_1}$ such intervals I of J_1 .

Suppose that J_k has been constructed and that I_k is an interval of J_k of length $s(k)^{-b_k}$. By (5)

$$s(k+1)^{-a_{k+1}+2} \leq s(k)^{-b_k}.$$

Thus in each interval I_k there are at least

$$\left[\frac{s(k+1)^{a_{k+1}}}{s(k)^{b_k}}\right]-2$$

intervals I'_k of length $s(k+1)^{-a_{k+1}}$ with left end point, ρ_k , for which $\rho_k + \lambda(k+1)$ is a finite decimal of length a_{k+1} in base s(k+1). We construct subintervals of I'_k of length $s(k+1)^{-b_{k+1}}$ whose left end points are of the form

(8)
$$\xi_{k+1} = \rho_k + \left(\frac{\varepsilon_1}{s(k+1)} + \dots + \frac{\varepsilon_{t_{k+1}}}{s(k+1)^{t_{k+1}}}\right) s(k+1)^{-a_{k+1}}$$

where $t_k = b_k - a_k$ and the ε_i can range over $0, 1, \ldots, s(k+1) - \delta(k+1)$.

In each interval I'_k there are $(s(k+1) - \delta(k+1) + 1)^{t_{k+1}}$ such intervals. Let J_{k+1} be the union of all such intervals taken over all I'_k . Then J_{k+1} is the union of at least

$$\left(\left[\frac{s(k+1)^{a_{k+1}}}{s(k)^{b_k}}\right] - 2\right) (s(k+1) - \delta(k+1) + 1)^{t_{k+1}}$$

intervals of length $s(k+1)^{-b_{k+1}}$. This completes the construction of the sequence of sets $J_0 \supset J_1 \supset \cdots$.

LEMMA 1. If $\xi \in \bigcap_{i=1}^{\infty} J_i$ then $\xi + \lambda_j$ is non-normal to each base s_1, s_2, \ldots , for every $j \in N$.

PROOF. Fix g, h and let $\lambda = \lambda_h, s = s_g$. Let q be so large that

(9)
$$\left(\frac{s-1}{s}\right)^q < 2^{-g-h}$$

For a number M with h(M) = h, g(M) = g there are at least,

(10)
$$\sum_{\substack{m \leq M \\ h(m) = h \\ g(m) = g}} (t_m - 1 - q),$$

q-blocks $\varepsilon_{i+1} \cdots \varepsilon_{i+q}$ consisting of the digits $0, 1, \ldots, s-2$ in the expansion of $\xi + \lambda$, for which $i + q \leq b_M$. Now h(m) = h if $m = 2^h \cdot k + 2^{h-1}$ and g(m) = g if $k = 2^g \cdot l + 2^{g-1}$ so $m = 2^{h+g}l + 2^{h+g-1} + 2^{h-1}$, that is,

$$m \equiv 2^{h+q-1} + 2^{h-1} \pmod{2^{g+h}}.$$

If g(m) = g, h(m) = h and $m > 2^{h+g-1} + 2^{h-1}$, then, by (6)

$$t_m - 1 - q \ge 2^{-g-h} \sum_{j=m-2^{g+h}+1}^m \left[\left(\langle j+1; \delta \rangle - \langle j; s \rangle \right) - \log \log m - 5 - q \right]$$

since $t_m = b_m - a_m$ and $\langle m + 1; s \rangle - \langle m; s \rangle$ is a non-decreasing function of m. Thus (10) is at least

$$\sum_{\substack{m \leq M \\ g(m)=g \\ h(m)=h}} \sum_{\substack{j=m-2^{g+h}+1 \\ \geq 2^{-g-h}(\langle M+1;s \rangle - \langle 1;s \rangle - M(\log \log M + 5 - q)) \\ = 2^{-g-h}b_M(1+O(1)).}$$

If $\xi + \lambda$ were normal to base s, the number of q-blocks with digits $0, 1, \ldots, s_q - 2$ and indices smaller than b_M would be asymptotic to $((s-1)/s)b_M$. By (9) this is clearly not the case and Lemma 1 is proved.

Construction of a set of normal numbers

We also have to ensure that the translate of the numbers we have constructed are also all normal to every base from **R**. We do this, as in [3], by discarding certain of the intervals J_i at each stage, to obtain a new sequence, $K_1 \supset K_2 \supset$ \cdots , with $K_i \supset J_i$. Consider the intervals I'_{m-1} . In each such interval there are

$$(s(m) - \delta(m) + 1)^{t_m}$$

intervals of J_m whose left end points we denote by ξ_m . Let

$$A_m(x) = \sum_{t=-m}^m \sum_{i=1}^m \left| \sum_{j=\langle m_j r_i \rangle+1}^{\langle m+1;r_i \rangle} e(r_i^j tx) \right|^2.$$

LEMMA 2. Let $j \in N$, then if $m \ge \delta_j$ there are at least $(s(m)-3)^{t_m}$ numbers $\xi_m \in I'_{m-1}$ for which

$$A_m(\xi_m + \lambda_i^2) \leq cm(\langle m+1 \rangle - \langle m \rangle)^{2-\beta_m/2},$$

for i = 1, ..., j. Here c is an absolute constant and δ_j is constant depending on j. Here β_m is as in [3], $\beta_m \ge \beta_1 m^{-1/4}$.

PROOF. Let s = s(m). As in the proof of Lemma 3 of [3] we have: The number of $\xi_m \in I'_{m-1}$ for which

$$A_m(\xi_m + \lambda_j) > cm^2(\langle m+1 \rangle - \langle m \rangle)^{2-\beta_m/2}$$

is at most

$$(\langle m+1\rangle-\langle m\rangle)^{-\beta_m/2}(s-\delta+1)^{t_m}$$

But $\beta_m \geq \beta_1 m^{-1/4}$ and $(\langle m+1 \rangle - \langle m \rangle) \geq e^{\sqrt{m}}/(2\sqrt{m}+1)$, and so

$$(\langle m+1\rangle - \langle m\rangle)^{-\beta_m/2} < \frac{1}{2^{j+1}} \quad \text{for } m > \delta_j.$$

Hence there are least $(s - \delta + 1)^{t_m}/2$ numbers $\xi_m \in I'_{m-1}$ for which

$$A_m(\xi_m + \lambda_i) \leq cm^2(\langle m+1 \rangle - \langle m \rangle)^{2-\beta_m/2}, \qquad i = 1, 2, \dots, j.$$

For $m \geq \delta_j$ $(s-3)^{t_m} < (s-\delta+1)^{t_m}/2$, this proves the lemma.

We construct the sequence of sets $K_1 \supset K_2 \supset \cdots$ in the same way as $J_1 \supset J_2 \supset \cdots$ was constructed. But at each stage in our construction of $\{K_m\}$ we use only the $(s(m) - 3)^{t_m}$ points ξ_m satisfying Lemma 2. The remainder of the proof of Theorem 1 now proceeds exactly as in [3].

By a straightforward application of Weyl's criterion we have

COROLLARY 1. Given (a_i) a sequence of non-zero rational numbers, (b_i) a sequence of real numbers and a partition **R**, **S** of the numbers 2,3,... so that equivalent numbers fall into the same class, then the set of numbers ξ for which $a_i\xi + b_i$ is normal to every base from **R** and to no base from **S** has Hausdorff dimension 1.

COROLLARY 2. Given any partition of $2, 3, \ldots$ into two classes **R**, **S**, so that equivalent numbers fall into the same class, then every real number can be

[6]

written as a sum of two numbers both normal to every base from \mathbf{R} and to no base from \mathbf{S} .

Bibliography

- G. Brown, W. Moran, and C. E. M. Pearce, 'Riesz products and normal numbers', J. London Math. Soc. (2) 32 (1985), 12-18.
- [2] C. E. M. Pearce and M. S. Keane, 'On normal numbers', J. Austral. Math. Soc. (1) 32 (1982), 79-87.
- [3] A. D. Pollington, 'The Hausdorff dimension of a set of normal numbers', Pacific J. Math. 95 (1980) 193-204.
- [4] W. M. Schmidt, 'Über die Normalität von Zahlen zu verschiedenen Basen', Acta Arith. 7 (1961-62), 299-309.

Department of Mathematics Brigham Young University Provo, Utah 84602 U.S.A.