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Abstract

Customers arriving at a queue do not usually see its time-average behavior unless arrivals
occur according to a Poisson process. In this article we study how nearly customers see
time-average behavior. We give total variation error bounds for comparing the distance
between the time- and customer-average distributions of a queueing system in terms of
properties of the interarrival distribution. Some refinements are given for special cases
and numerical computations are used to demonstrate the performance of the inequalities.
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1. Introduction

Customers arriving at a queue do not necessarily see its time-average behavior. If arrivals
occur in infrequent heavy bursts, for example, most customers can see a long queue even
though the system is usually empty. The ‘Poisson arrivals see time averages’ (PASTA) property
of queueing theory, attributed to Wolff (1982), says that the fraction of Poisson arrivals finding
a queue in some state equals the fraction of time the queue is in that state.

There is a very large literature on the PASTA property; for some entry points to this literature,
see, for example, Melamed and Whitt (1990a), Melamed and Whitt (1990b), Melamed and
Yao (1995), Brèmaud et al. (1992), Heyman and Stidham (1980), and the references therein.
There has also been development of inequalities relating the time-average distribution and the
customer-average distribution; see Köning and Schmidt (1980), Niu (1984), Shanthikumar and
Zazanis (1999), Peköz and Ross (2008), and the references therein. The abovementioned works
have detailed conditions under which customers see either stochastically more or less than the
time average. For example, Melamed and Whitt (1990a) showed that the two are related by the
so-called ‘covariance’ formula (see Equation (8) on page 159). This formula does not appear
easy to solve and does not lend itself to calculation of the total variation distance. The bounds
from our main result, in contrast, are easily calculated using only properties of the interarrival
distribution. In other words, we obtain the same upper bound for all queueing systems having
the same arrival process.
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964 E. A. PEKÖZ ET AL.

In this article we give some results relating the total variation distance between the time-
and customer-average distributions. Our purpose is to illustrate how nearly arriving customers
see the time-average distribution. The organization of this article is as follows. In Section 2
we give our main result, which is to show that the total variation distance between the time-
and customer-average distributions of a queueing system is less than the total variation distance
between the interarrival distribution and the corresponding equilibrium distribution. In Section 3
we look at specific queueing models and incorporate further properties of the models to refine
the bounds. We also give results for the superposition of renewal processes. In Section 4 we
give some numerical results, where we compute the exact total variation distance and compare
it with the upper bound.

2. Main result

We consider a function Q(t), −∞ < t < ∞, of a given queueing system such that Q(t) is a
real-valued, left-continuous stochastic process with right-hand limits under the usual topology.
We refer to this as the ‘state’of our system and it could, for example, represent a quantity such as
the number of customers or the total workload in the system (our results could straightforwardly
be extended to more general state spaces by defining an appropriate topology). Left continuity is
used so that the stochastic process at any given time tells us what will happen immediately after
that time, and so it tells us what an arrival at that time would see. We suppose that customers
arrive to the queueing system according to a point process (called the arrival events), where Tn

denotes the time of the nth customer arrival, −∞ < n < ∞. We label customers according
to the common convention where · · · T−2 < T−1 < 0 < T1 < T2 · · · . The state and arrival
processes are assumed to be jointly stationary and ergodic under the probability measure P. In
this article we will refer to P0 as the Palm transformation of P with respect to the sequence {Tn}.
Thus, we use the subscripts P0 and E0 to respectively denote the probabilities and expectations
computed with respect to the Palm transformation of the process, as described in Baccelli
and Brèmaud (1987). Intuitively, P0(A) can be thought of as the conditional probability of A

given that a typical customer’s arrival occurs at time 0, or, in other words, according to the
customer-average distribution. The interarrival time distribution is denoted generically as X

with cumulative distribution function P0(T1 ≤ x) = F(x) and has finite mean 1/λ.
Let Xe be a random variable having the equilibrium distribution of the interarrival time.

Then

Fe(x) = λ

∫ x

0
F̄ (y) dy,

where F̄ (x) = 1 − F(x). Note that the density function for Xe is

fe(x) = λF̄ (x).

We say that the random variable Z has the time-average steady-state distribution if

P(Z ∈ A) = lim
t→∞

1

t

∫ t

0
1{Q(s) ∈ A} ds

for any (measurable) set A. We say that the random variable W has the customer-average
steady-state distribution if

P(W ∈ A) = lim
n→∞

1

n

n∑
i=1

1{Q(Ti) ∈ A}.
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Next we similarly define a new process Q0(t) to be the state of the above queueing system at
time t given that it is started at time 0 with a typical arrival and according to the Palm measure,
so that P(Q0(0) ∈ A) = P0(Q(0) ∈ A), but it continues without allowing any further arrivals
to enter the system.

We also need the following lack of anticipation assumption similar to the one given in
Shanthikumar and Zazanis (1999); ours is tailored to our particular application. This assumption
ensures that the queue cannot anticipate future arrivals and rules out, for example, queues where
the servers speed up shortly before new arrivals occur.

Assumption 1. For any t > 0, we have

P0(Q(t) ∈ A | T1 ≥ t) = P0(Q(t) ∈ A | T1 = t) = P(Q0(t) ∈ A).

Remark 1. Intuitively, Assumption 1 states that starting when a typical customer arrives, say
at time 0, T1, the time until the next arrival, and the state of the system at time s are conditionally
independent given that T1 > s. This assumption holds, for example, for a queue with a renewal
arrival process where future interarrivals are independent of the system state as seen by the
current arrival. Also, it holds for any arrival process in which all customers presently in the
system have to depart when a new arrival occurs. It does not generally hold, however, for
systems with Markov modulated Poisson arrivals.

Remark 2. In contrast to much of the PASTA literature, we assume stationarity and ergod-
icity. Assuming Poisson arrivals and a lack of anticipation assumption or, more generally,
the assumption of lack of bias (Melamed and Whitt (1990a), (1990b)), in most of the PASTA
literature it is shown that if the time average over a finite horizon converges to either a limit or
a random variable as the time horizon increases to ∞ then the customer average also converges
to the same average or random variable. An additional problem arises when analyzing non-
Poisson arrivals because there is statistical dependence between the past and future of the point
process. To circumvent this problem, Niu (1984) defined the strict lack of anticipation (SLA)
assumption. Assumption 1 is a weaker version of the SLA assumption. Its main purpose is to
allow us to work with Palm expectations of the functions of the state of the system and, thus,
allows us to work with general renewal arrival processes. It is also different from the lack of
anticipation assumption, as formulated by Wolff (1982), where the entire future of the arrival
process starting from time t is independent of the history of the system until time t .

We define the total variation distance between two random variables U and V as

dTV(U, V ) ≡ sup
A

| P(U ∈ A) − P(V ∈ A)|.

We also need the following lemma for maximal couplings given in Ross and Peköz (2007).

Lemma 1. (Ross and Peköz (2007, Proposition 2.5).) Given the random variables (U, V )

having respective piecewise-continuous density functions u(x) and v(x), there exists a coupling
(Û , V̂ ) of (U, V ), called the maximal coupling, such that

dTV(U, V ) = P(Û �= V̂ ) = 1 −
∫ ∞

−∞
min(u(x), v(x)) dx.

To present our main result, recall that Q0(0) and Q(0) respectively denote the customer-
average distribution and the time-average distribution.
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Theorem 1. With the above definitions,

dTV(Q0(0), Q(0)) ≤ dTV(X, Xe) = 1 −
∫ ∞

0
min(f (x), λF̄ (x)) dx.

Proof. Let X and Xe be a maximal coupling of random variables having respective distribu-
tions F and Fe, independent of the queueing system. Given a set A, the Palm inversion formula
(see Brèmaud (1993)) gives

P(Q(0) ∈ A) = λ E0

[∫ T1

0
1{Q(s) ∈ A} ds

]
.

Using this, we have

P(Q(0) ∈ A) = λ

∫ ∞

0
E0[1{Q(s) ∈ A} 1{T1 ≥ s}] ds

= λ

∫ ∞

0
P0(Q(s) ∈ A | T1 ≥ s)F̄ (s) ds

=
∫ ∞

0
P(Q0(s) ∈ A)fe(s) ds

= P(Q0(Xe) ∈ A),

where the first line uses Fubini’s theorem and the third line uses the lack of anticipation
assumption.

By stationarity of the process seen by the arrivals we have

P0(Q(0) ∈ A) = P0(Q(T1) ∈ A)

=
∫ ∞

0
P0(Q(s) ∈ A | T1 = s)f (s) ds

=
∫ ∞

0
P(Q0(s) ∈ A)f (s) ds

= P(Q0(X) ∈ A),

where we have used the lack of anticipation assumption in the third line. We then have

| P(Q(0) ∈ A) − P(Q0(0) ∈ A)| = | P(Q0(Xe) ∈ A) − P(Q0(X) ∈ A)|
= | E[1{Q0(Xe) ∈ A} − 1{Q0(X) ∈ A}]|
≤ P(X �= Xe)

= 1 −
∫ ∞

0
min(f (x), λF̄ (x)) dx,

where we have used Lemma 1 in the last line.

3. Some special cases and refinements

In this section we give some improved bounds for special queueing systems. We restrict
ourselves to renewal processes for customer arrivals.
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Definition 1. A random variable X ≥ 0 is said to be new worse than used (NWU) or new better
than used (NBU) if

P(X > t + s | X > t) ≥ P(X > s)

or, respectively,
P(X > t + s | X > t) ≤ P(X > s)

for all t > 0 and s > 0. A random variable X ≥ 0 is said to be new worse than used in
expectation (NWUE) or new better than used in expectation (NBUE) if

E[X − s | X > s] ≥ E[X]
or, respectively,

E[X − s | X > s] ≤ E[X]
for all s > 0.

Let f (x) = F ′(x) be the density function of the interarrival distribution F, which we denote
generically as the random variable X, and let Xe be the random variable with the corresponding
equilibrium distribution. Let

p =
∫ ∞

0
min(f (x), λF̄ (x)) dx.

Also, let C and D be independent random variables with respective densities

c(x) = f (x) − min(f (x), λF̄ (x))

1 − p

and

d(x) = λF̄ (x) − min(f (x), λF̄ (x))

1 − p
.

The following lemma follows from the proof of Proposition 2.5 of Ross and Peköz (2007).

Lemma 2. There is a maximal coupling (X̂, X̂e) of (X, Xe) such that

p = P(X̂ = X̂e)

and
P(X̂ ≤ x, X̂e ≤ y | X̂ �= X̂e) = P(C ≤ x) P(D ≤ y).

In the following propositions, suppose that the state of the queueing system Q(t) measures
some quantity that can only change at the times when there is an arrival or service completion,
such as the number of customers in the system or the number of busy servers. We also suppose
that Assumption 1 holds. Let Q(t) and Q0(t) be as defined in Section 2 for the corresponding
queueing systems.

Proposition 1. Consider a k-server queueing system where service times at server i have
distribution Gi and are mutually independent. Let the internal movements of customers in the
system occur according to some arbitrary rule. Suppose that customers arrive according to a
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renewal process having interarrival cumulative distribution function F . If all the Gi are all
NWU then, with C being the class of all couplings of X and Xe and Ḡi(x) = 1 − Gi(x),

dTV(Q0(0), Q(0)) ≤ inf
(X̂,X̂e)∈C

(
1 − E

[ k∏
i=1

Ḡi(|X̂e − X̂|)
])

≤ (1 − p)

(
1 − E

[ k∏
i=1

Ḡi(|C − D|)
])

.

Proof. With Yi, i = 1, 2, . . . , k, denoting independent generic service times and (X̂e, X̂)

denoting any coupling of (Xe, X), we have

| P(Q(0) ∈ A) − P(Q0(0) ∈ A)| = | P(Q0(Xe) ∈ A) − P(Q0(X) ∈ A)|
≤ P(service completion between X and Xe)

≤ P
(
|X̂ − X̂e| ≥ min

1≤i≤k
Yi

)
= 1 − E[(Ḡ(|X̂e − X̂|))k],

where the last line follows by conditioning on |X̂e − X̂| and using P(min1≤i≤k Yi ≤ x) =
1 − ∏k

i=1 Ḡi(x). The final inequality follows by using the maximal coupling of Lemma 2.

Remark. The quantity (1 − p)(1 − E[∏k
i=1 Ḡi(|C − D|)]) can be numerically evaluated in

specific applications.

Next, for a cumulative distribution function F , define F−1(x) ≡ inf{t : F(t) ≥ x}, and let
U denote a uniform (0,1) random variable.

Proposition 2. Assume that the conditions of Proposition 1 hold, and suppose that Ḡi(x) =
exp[−µix]. Let µ = ∑

i µi . If customers arrive according to a renewal process whose inter-
arrival distribution X is either NWUE or NBUE then

dTV(Q0(0), Q(0)) ≤ 1 − exp

[
−µ

(∣∣∣∣ E[X2]
2 E[X] − E[X]

∣∣∣∣
)]

.

Proof. First suppose that X is NWUE, and define the coupling

(X, Xe) = (F−1(U), F−1
e (U)).

It can be shown that Xe ≥ X (if X is NBUE, we have Xe ≤ X). Then

| P(Q0(X) ∈ A) − P(Q0(Xe) ∈ A)| = | E[1{Q0(X) ∈ A} − 1{Q0(Xe) ∈ A}]|
≤ E[| 1{Q0(X) ∈ A} − 1{Q0(Xe) ∈ A}|]
≤ P(at least one service completion in (X, Xe))

≤ 1 − E[exp[−µ(Xe − X)]]
≤ 1 − exp[−µ E[Xe − X]] (by Jensen’s inequality)

= 1 − exp

[
−µ

(∣∣∣∣ E[X2]
2 E[X] − E[X]

∣∣∣∣
)]

.

When X is NBUE, the result follows similarly.
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Proposition 3. Consider the GI/GI/k queue, where service times are NWU. Let F denote the
interarrival time cumulative distribution function, and let G denote the service time cumulative
distribution function. Suppose that the state measures some quantity, such as the number of
customers in the system or the number of busy servers, which can only change at the times when
there is an arrival or service completion. Then, using the above definitions,

(a) dTV(Q0(0), Q(0)) ≤ 1 − Ḡ(b)k, where b = supx |F−1(x) − F−1
e (x)|;

(b) for any d > 0, we have

dTV(Q0(0), Q(0)) ≤ 1 − Ḡ(d)k
∞∑
i=0

min(F (di + d) − F(di), Fe(di + d) − Fe(di)).

Proof. For a uniform (0,1) random variable U , part (a) follows using Proposition 2 along
with the coupling (X̂, X̂e) = (F−1(U), F−1

e (U)) of (X, Xe).
To prove part (b), first let R(x) = d
x/d� be the value of x rounded down to the nearest

multiple of d . Then first create a maximal coupling (U, V ) of (R(Xe), R(X)), and then
let (X̂e, X̂) be conditionally independent of all else and distributed according to (Xe, X),
conditional on R(Xe) = U and R(X) = V. Then we have

1 − E[(Ḡ(|X̂e − X̂|))k] ≤ 1 − Ḡ(d)k P(|X̂e − X̂| ≤ d)

≤ 1 − Ḡ(d)k P(U = V )

= 1 − Ḡ(d)k
∞∑
i=0

min(P(U = di), P(V = di))

= 1 − Ḡ(d)k
∞∑
i=0

min(F (di + d) − F(di), Fe(di + d) − Fe(di)),

where we have used Proposition 2.6 of Ross and Peköz (2007) for maximally coupled discrete
random variables in the second to last line. The result then follows using Proposition 2.

We now consider an application to the setting where the arrival process consists of the
superposition of a number of different but independent renewal processes. Assume that there
are n independent renewal arrival processes to a queueing network with interarrival times
denoted generically by the random variables Xi, i = 1, 2, . . . , n, having cumulative distri-
bution functions F i(x) and density functions f i(x). Let Xi

e, i = 1, 2, . . . , n, denote the
corresponding equilibrium distributions. Letting λi = 1/ E[Xi], we have the following result.

Proposition 4. With the above definitions,

dTV(Q0(0), Q(0)) ≤
n∑

i=1

λi

λ
dTV(Xi, Xi

e)

=
n∑

i=1

λi

λ

(
1 −

∫ ∞

0
min(f i(x), λF̄ i(x)) dx

)
.

Proof. Let Qi(0), i > 0, be the customer-average distribution from the point of view of a
typical customer in the ith arrival stream—or, in other words, it is distributed according to the
Palm distribution with respect to the ith arrival stream. Imagine that the ith renewal process
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is the ‘real’ arrival process and that all the others are considered as part of the ‘system’. Then
Theorem 1 gives

dTV(Qi(0), Q(0)) ≤ dTV(Xi, Xi
e) = 1 −

∫ ∞

0
min(f i(x), λF̄ i(x)) dx.

The proposition follows by conditioning on the type of arrival that occurs at time 0.

The next proposition shows how close the customer-average distribution is for customers in
one arrival stream compared with customers in another arrival stream.

Proposition 5. In the setting of Proposition 4 we have

dTV(Qi(0), Qj (0)) ≤ dTV(Xi, Xi
e) + dTV(Xj , Xj

e ).

Proof. The result follows immediately upon using the triangle inequality and Proposition 4
twice.

4. Some numerical examples

Consider a GI/M/1 queue, where service times are exponential(µ) and the interarrival
distribution has moment generating function M(t) = E[etX]. It can be shown (see Gross
and Harris (1998, Section 5.3.1)) that the customer-average steady-state distribution for the
number of customers in the system is

πj = (1 − α)αj , j ≥ 0,

where α is the smallest positive root of

α = M(µ(α − 1)).

It can also be shown that the time-average steady-state distribution for the number of customers
in the system is

Pj =
{

ρ(1 − α)αj−1, j ≥ 1,

1 − ρ, j = 0,

where ρ = (µ E[X])−1 is the traffic intensity. This means that

dTV(Q(0), Q0(0)) = 1 −
∑
j

min(Pj , πj ) = |ρ − α|,

and recall also from above that

dTV(X, Xe) = 1 −
∫ ∞

0
min(f (x), fe(x)) dx,

where f (x) and fe(x) respectively denote the density function for the interarrival distribution
and equilibrium distribution.

We now look at a number of numerical examples, where the interarrival distribution is
gamma(n, λ). The results are shown in Table 1, where it can be seen that the upper bound we
give above is usually less than twice the actual total variation distance.
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Table 1: Some numerical results comparing the actual distance in the upper bound between the customer-
and time-average distributions for the GI/M/1 queue with gamma(n, λ) interarrivals.

Actual distance Upper bound
n λ ρ α dTV(Q(0), Q0(0)) dTV(X, Xe)

2 1.00 0.50 0.38 0.12 0.18
3 1.50 0.50 0.33 0.17 0.28
4 2.00 0.50 0.30 0.20 0.34
2 0.50 0.25 0.13 0.12 0.18
3 0.75 0.25 0.09 0.16 0.28
4 1.00 0.25 0.07 0.18 0.34
2 1.50 0.75 0.68 0.07 0.18
3 2.25 0.75 0.64 0.11 0.28
4 3.00 0.75 0.62 0.13 0.34
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