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Connections on a Parabolic Principal
Bundle Over a Curve

Indranil Biswas

Abstract. The aim here is to define connections on a parabolic principal bundle. Some applications

are given.

1 Introduction

The notion of a parabolic vector bundle was introduced in [MS]. Let X be a con-
nected Riemann surface and D ⊂ X a finite subset. A parabolic vector bundle over
X with parabolic structure over D is a usual vector bundle E over X together with an

extra structure over D. For each point p ∈ D, the extra structure over p is a strictly
decreasing filtration of linear subspaces of the fiber Ep together with a nonnegative
rational number associated with each term of the filtration. The sequence of num-
bers is strictly increasing and is strictly bounded by 1. See Section 2 or [MS, MY] for

the details.

In [BBN1, BBN2], the notion of a parabolic vector bundle was extended to the
more general context of where the structure group is a general connected linear alge-
braic group defined over the field of complex numbers (as opposed to GL(r,C) which
corresponds to parabolic vector bundles of rank r).

Let G be a complex connected linear algebraic group. A parabolic G-bundle over
X is given by the following data: a connected complex manifold EG with a projection
ψ : EG → X and an action of G on the right of EG such that

(1) X = EG/G;
(2) the projection ψ and the action of G make ψ−1(X \D) a principal G-bundle over

the complement X \ D;
(3) for any point z ∈ ψ−1(D) the isotropy subgroup, for the action of G on EG, is a

finite cyclic group.

(See Section 2 for the details.)

The aim here is to extend the notion of a connection on a principal bundle to the
context of parabolic G-bundles. It turns out that one of the descriptions of usual

connections, namely as a g-valued one-form on the total space, where g is the Lie
algebra of G, is well suited for parabolic G-bundles. It may be pointed out that the
more standard description (see [At]) of a connection on a usual principal bundle as
a splitting of the Atiyah exact sequence is not suited for parabolic G-bundles.
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Connection on Parabolic Principal Bundle 263

A theorem due to Atiyah and Weil says that a holomorphic vector bundle E over
a compact Riemann surface admits a holomorphic connection if and only if each

indecomposable component of E is of degree zero (see [At, We]). In [AB] this was
generalized to give a criterion for a holomorphic principal G-bundle over a compact
Riemann surface to admit a holomorphic connection, where G is a complex reductive
group.

In Theorem 4.1 we give a criterion for a parabolic G-bundle to admit a holomor-
phic connection, where G as before is a complex reductive group.

Let G be a complex semisimple group. In Theorem 5.2 we prove that a parabolic
G-bundle EG admits a flat unitary connection if and only if EG is polystable.

2 Preliminaries

Let X be a connected smooth projective curve defined over the field of complex num-

bers, or equivalently, a connected compact Riemann surface. Let

D = {p1, . . . , pl} ⊂ X

be a reduced effective divisor on X; so {pi}l
i=1 are distinct points.

Let E be an algebraic vector bundle over X. A quasiparabolic structure on E over
D is a filtration of subspaces

(2.1) E|pi
= Fi

1 ⊃ Fi
2 ⊃ Fi

3 ⊃ · · · ⊃ Fi
mi

⊃ Fi
mi +1 = 0

of the fiber of E over pi , where i ∈ [1, l]. For a quasiparabolic structure as above,
parabolic weights are a collection of rational numbers

(2.2) 0 ≤ λ(i)
1 < λ(i)

2 < λ(i)
3 < · · · < λ(i)

mi
< 1

where i ∈ [1, l]. The parabolic weight λ(i)
j corresponds to Fi

j in (2.1). A parabolic

structure on E is a quasiparabolic structure with parabolic weights. A vector bundle

equipped with a parabolic structure on it is also called a parabolic vector bundle. See
[MS, MY] for the details.

For notational convenience, a parabolic vector bundle defined as above will be
denoted by E∗. The divisor D is called the parabolic divisor for E∗. We recall that

(2.3) par-deg(E∗) := degree(E) +

l∑

i=1

mi∑

j=1

λ(i)
j dim(Fi

j/Fi
j+1)

is called the parabolic degree of the above defined parabolic vector bundle E∗ (see

[MS, Definition 1.11] and [MY]).
Let G be a connected complex linear algebraic group. We will recall the definition

of a parabolic G-bundle over X (see [BBN2] for the details).
A parabolic G-bundle over X with parabolic structure over D is a connected smooth

complex variety EG on which G acts algebraically on the right, that is, the map

f : EG × G → EG
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264 I. Biswas

defining the action of G on EG is an algebraic morphism, together with a surjective
algebraic map

(2.4) ψ : EG → X

satisfying the following conditions:

(1) ψ ◦ f = ψ ◦ p1, where p1 is the natural projection of EG × G to EG, that is, the
map ψ is equivariant for the actions of G with G acting trivially on X;

(2) for each point x ∈ X, the action of G on the reduced fiber ψ−1(x)red is transitive;
(3) the restriction of ψ to ψ−1(X \ D) makes ψ−1(X \ D) a principal G-bundle over

X \ D, that is, the map ψ is smooth over ψ−1(X \ D) and the map to the fiber
product

ψ−1(X \ D) × G → ψ−1(X \ D) ×X\D ψ
−1(X \ D)

defined by (z, g) 7→ (z, f (z, g)) is an isomorphism.
(4) for any closed point z ∈ ψ−1(D), the isotropy group Gz ⊂ G, for the action of G

on EG, is a finite cyclic group that acts faithfully on the line TzEG/Tzψ
−1(D)red .

Note that since ψ is equivariant for the action of G, the isotropy subgroup Gz

preserves the subspace Tzψ
−1(D)red ⊂ TzEG. Therefore, there is an induced action

of Gz on the fiber TzEG/Tzψ
−1(D)red of the normal bundle. For any pi ∈ D the

subvariety ψ−1(pi)red ⊂ EG is clearly a smooth divisor.
Consider the special case of G = GL(n,C). There is a bijective correspondence

between the parabolic GL(n,C)-bundles and the parabolic vector bundles of rank n

defined earlier (see [BBN1, BBN2]). Let EGL be a parabolic GL(n,C)-bundle over X.
So EGL restricts to a usual GL(n,C)-bundle over X \D. Therefore, using the standard
action of GL(n,C) on C

n, the GL(n,C)-bundle EGL |X\D gives a vector bundle of rank

n over X \D. This vector bundle has a natural extension to X, constructed using EGL ,
that carries the parabolic structure of the parabolic vector bundle corresponding to
EGL . Take a point x ∈ D. Take a point z ∈ EGL over x (that is, ψ(z) = x), and

let Gz ⊂ GL(n,C) be the isotropy subgroup for z for the action of GL(n,C) on EGL .
Since the finite cyclic group Gz acts faithfully on the line TzEGL/Tzψ

−1(D), the group
Gz has a natural (unique) generator γz ∈ Gz defined by the following condition: the
action of γz on TzEGL/Tzψ

−1(D) is multiplication by exp(2π
√
−1/(#Gz)), where #Gz

is the order of Gz. The parabolic structure, of the parabolic vector bundle associated
to EGL , over the parabolic point x is constructed as follows:

Consider the standard action of γz ∈ GL(n,C) on C
n. Note that all the eigenvalues

of it are of the form exp(2π
√
−1k/(#Gz)), where k ∈ [0, #Gz − 1]. If exp(2π

√
−1k/

(#Gz)) is an eigenvalue, where k ∈ [0, #Gz − 1], then k/#Gz is a parabolic weight at x

for the parabolic vector bundle associated to EGL , and the multiplicity of a parabolic
weight k/#Gz coincides with the multiplicity of the eigenvalue exp(2π

√
−1k/(#Gz))

for the action of γz on C
n. The details are given in [BBN2].

We now return to the case of general G. Let V be a finite dimensional complex
left G-module, where G is a connected complex linear algebraic group. Let EG be a
parabolic G-bundle over X. Consider the quotient space

(2.5) EGL :=
EG × GL(V )

G
,
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where the quotient is for the “twisted” diagonal action of G; the action of any g ∈ G

sends any (z,T) ∈ EG × GL(V ) to (zg, g−1T). It is easy to see that EGL is a parabolic

GL(V )-bundle. Hence EGL gives a parabolic vector bundle EV
∗ .

Let Rep(G) denote the category of finite dimensional complex left G-modules,
and let PVect(X) be the category of parabolic vector bundles over X with parabolic
structure over D. Both these categories are equipped with the direct sum, tensor

product and dualization operations.
The parabolic G-bundle EG defines a functor from Rep(G) to PVect(X) by send-

ing any G-module V to the parabolic vector bundle EV
∗ constructed as above from

V . This way, EG defines a parabolic G-bundle in the sense of [BBN1]; in [BBN1],

following [No1, No2], parabolic G-bundles were defined as a functor from Rep(G)
to PVect(X) satisfying certain conditions. Such a functor is in particular compatible
with the three operations of taking dual, direct sum and tensor product.

Let G1 be a connected complex linear algebraic group and

(2.6) ρ : G → G1

a homomorphism of algebraic groups. Let EG be a parabolic G-bundle over X. Con-
sider the quotient

(2.7) EG(G1) =
EG × G1

G

for the twisted diagonal action of G on EG × G1. The action of any g ∈ G sends

any (z, g1) ∈ EG × G1 to (zg, ρ(g−1)g1). It is easy to see that EG(G1) is a parabolic
G1-bundle over X.

We will call EG(G1) as the parabolic G1-bundle obtained by extending the structure

group of EG to G1 using the homomorphism ρ.

Therefore, EGL in (2.5) is the extension of structure of EG to GL(V ) using the
homomorphism G → GL(V ) defined by the G-module V .

Let EG be a parabolic G-bundle over X. Let H ⊂ G be a connected closed algebraic
subgroup. Consider the quotient

(2.8) qH : EG → EG/H

for the action of G on EG. Let

(2.9) fH : EG/H → X

be the natural projection. Take any (closed) point z ∈ EG/H. Take any (closed) point
ẑ ∈ EG such that qH(ẑ) = z, where qH is defined in (2.8). It is easy to see that the
following two conditions are equivalent:

(1) the projection fH in (2.9) is smooth at z, that is, the differential

d fH(z) : TzEG/H → T fH (z)X

is surjective.
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(2) The isotropy subgroup Gẑ ⊂ G is contained in H.

Since H acts transitively on q−1
H (z), if the condition Gz ′ ⊂ G holds for one point

z ′ ∈ q−1
H (z), then we have Gz ′′ ⊂ G for every point z ′ ′ ∈ q−1

H (z).

By a section of fH we will mean a morphism σ : X → EG/H such that fH ◦σ is the
identity map of X.

Definition 2.1 A reduction of structure group of EG to H is a section

σ : X → EG/H

of fH (defined in (2.9)) such that fH is smooth on the image of σ (in other words, for

each point x ∈ X the differential

d fH(σ(x)) : Tσ(x)EG/H → TxX

is surjective).

A section σ : X → EG/H of the projection fH defines a reduction of structure
group of EG to H if and only if

q−1
H (σ(X)) ⊂ EG

(where qH is the projection in (2.8)) is a parabolic H-bundle over X (the action of
H on q−1

H (σ(X)) is induced by the action of G on EG) satisfying the condition that
Gz ⊂ H for each point z ∈ q−1

H (σ(X)) (recall that Gz ⊂ G is the isotropy subgroup
at z for the action of G on EG).

We noted earlier that for any pi ∈ D, if Gz ⊂ H for one point z ∈ q−1
H (σ(pi)),

then Gz ′ ⊂ H for each point z ′ ∈ q−1
H (σ(pi)).

Let EH ⊂ EG be a reduction of structure group of a parabolic G-bundle EG to a
subgroup H ⊂ G, defined by a section σ as in Definition 2.1. Let E1

G be the parabolic
G-bundle obtained by extending the structure group of the parabolic H-bundle EH

using the inclusion homomorphism H →֒ G. It is easy to see that the two parabolic
G-bundles EG and E1

G are canonically identified. Indeed, consider the morphism EH×
G → EG defined by the action of G on EG (recall that EH ⊂ EG). This morphism
factors through the quotient (EH ×G)/H and defines an isomorphism of E1

G with EG.

Consider EG(G1) constructed in (2.7). Note that there is a natural morphism

(2.10) r : EG → EG(G1)

that sends any z ∈ EG to the equivalence class for (z, e) ∈ EG × G1, where e ∈ G1

is the identity element. It is easy to see that r is G-equivariant; the action of G on
EG(G1) is through ρ(G), where ρ is the homomorphism on (2.6).

If G is a closed subgroup of G1 and ρ (in (2.6)) the inclusion map, then the image
of the map r, constructed in (2.10), defines a reduction of structure group to G of the
parabolic G1-bundle EG(G1). Indeed, this is an immediate consequence of the above
definition of a reduction of structure group.
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3 Holomorphic Connections

Let ψ : EG → X be a parabolic G-bundle over X. So for any closed point x ∈ X, the
reduced fiber

(EG)x := ψ−1(x)

is an orbit for the action of G on EG.

Let g be the Lie algebra of G. The action of G on (EG)x gives a homomorphism of

vector bundles

ω ′
x : g → T(EG)x

over (EG)x, where g denotes the trivial vector bundle over (EG)x with fiber g and
T(EG)x is the tangent bundle. The given condition that the isotropy Gz of any point
z ∈ (EG)x is a finite subgroup of G immediately implies that the above defined ho-
momorphism ω ′

x is in fact an isomorphism. Consequently, the inverse (ω ′
x)−1 exists

and it defines an algebraic one-form

(3.1) ωx ∈ H0((EG)x,Ω
1
(EG)x

⊗C g)

with values in g. This form ωx is also known as the Maurer–Cartan form.

Definition 3.1 A holomorphic connection on the parabolic G-bundle EG is an alge-
braic one-form θ on EG with values in g

θ ∈ H0(EG,Ω
1
EG

⊗C g)

such that

(1) for each point x ∈ X the restriction θ|(EG)x
coincides with the Maurer–Cartan

form ωx defined in (3.1), and

(2) θ intertwines the action of G on EG and the adjoint action of G on g, or in other
words, θ is equivariant for the actions of G.

When EG is a usual principal G-bundle, the above definition of a holomorphic

connection coincides with one given in [At].

Proposition 3.2 Let EG be a parabolic G-bundle equipped with a holomorphic con-

nection θ (as defined in Definition 3.1).

Let ρ : G → G1 be a homomorphism of connected algebraic groups. Then θ induces a

holomorphic connection on the parabolic G1-bundle EG(G1) obtained by extending the

structure group of EG using ρ.

Let H ⊂ G be a closed connected algebraic subgroup and EH ⊂ EG a reduction of

structure group of EG to H. Let

β : g → h

be an H-equivariant splitting of H-modules, where g (respectively, h) is the Lie algebra

of G (respectively, H); both g and h are considered as H-modules for the adjoint action.

Then β ◦ θ gives a holomorphic connection on the parabolic H-bundle EH .
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Proof Let dρ : g → g1 be the differential of ρ, where g1 is the Lie algebra of G1.
Consider the map r defined in (2.10). From the definition of a form defining a holo-

morphic connection it follows immediately that

dρ ◦ θ : Tr(EG) → g1

is a G-equivariant g1-valued one-form on the image of the map r. Now, this form
extends uniquely to a G1-equivariant g1-valued one-form on the total space of the
parabolic G1-bundle EG(G1). It is easy to check that this extended form defines a

connection on the parabolic G1-bundle EG(G1).

Take any β as in the statement of the proposition. So β ◦ ι is the identity map of
h, where ι : h →֒ g is the inclusion map. Consider the h-valued one-form β ◦ θ on
the subvariety EH ⊂ EG. Since the form θ is G-equivariant and β is H-equivariant,
it follows immediately that β ◦ θ is H-equivariant. The restriction of β ◦ θ to a

reduced fiber of the projection EH → X clearly coincides with the Maurer–Cartan
form (recall that β is a splitting of the inclusion of h in g). Therefore, β ◦ θ defines
a holomorphic connection on the parabolic H-bundle EH . This completes the proof
of the proposition.

Let Y be a connected smooth projective curve defined over C and

Γ ⊂ Aut(Y )

a finite subgroup of the automorphism group of Y . So Γ acts naturally on the right
of Y .

A Γ-linearized principal G-bundle over Y is a (usual) principal G-bundle

(3.2) ψ ′ : E ′
G → Y

over Y together with an algebraic right action of the finite group Γ on the total space

E ′
G such that

(1) the action of G on the principal G-bundle E ′
G commutes with the action of Γ on

E ′
G, and

(2) the projection ψ ′ in (3.2) commutes with the actions of Γ on E ′
G and Y .

Let YΓ denote the quotient Y/Γ. So YΓ is also a connected smooth projective

curve over C. Consider the quotient E ′
G/Γ, where E ′

G is a Γ-linearized principal G-
bundle over Y . Since the projection of E ′

G to Y commutes with the actions of Γ

(condition (2)), we have an induced projection

ψ : EG := E ′
G/Γ → YΓ

induced by ψ ′.

Since the actions of G and Γ on E ′
G commute, the quotient EG has an induced

action of G

f : EG × G → EG.
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It is easy to see that the triple (EG, ψ, f ) defines a parabolic G-bundle over YΓ. The
parabolic divisor is the divisor of YΓ over which the quotient map Y → YΓ is ram-

ified. All parabolic G-bundles arise as quotients of the above type [BBN2, Theorem
3.7]. It should be clarified that given a parabolic G-bundle EG over X the Galois
covering Y of X (such that EG is the quotient of a principal G-bundle over Y ) de-
pends on EG. The content of the above mentioned theorem of [BBN2] is that given

a parabolic G-bundle EG over X, there exists a Galois (ramified) covering of Y of X

and a Γ-linearized principal G-bundle E ′
G over Y , where Γ = Gal(Y/X) is the Galois

group, such that EG = E ′
G/Γ.

Let E ′
G be a principal G-bundle over Y . We recall that a holomorphic connection

on E ′
G is a G-equivariant algebraic one-form

(3.3) θ ′ ∈ H0(E ′
G,Ω

1
E ′

G
⊗C g)

whose restriction to each fiber coincides with the Maurer–Cartan form. Equivalently,
a holomorphic connection on E ′

G is a holomorphic splitting of the Atiyah exact se-
quence

(3.4) 0 → ad(E ′
G) → At(E ′

G) → TY → 0

over Y , where ad(E ′
G) is the adjoint bundle and At(E ′

G) the Atiyah bundle (see [At]
for the details).

Now assume that E ′
G is Γ-linearized, where Γ ⊂ Aut(Y ) is a finite subgroup.

Definition 3.3 A holomorphic connection θ ′ (as in (3.3)) on the G-bundle E ′
G will

be called a Γ-connection if the action of Γ on E ′
G leaves the form θ ′ invariant (the

action of Γ on g is the trivial action).

Note that the actions of Γ on X and E ′
G induce actions of Γ on all the three vec-

tor bundles in the Atiyah exact sequence (3.4), and the homomorphisms in (3.4)

commute with the actions of Γ. If the connection θ ′ in (3.3) corresponds to the
holomorphic splitting

D : TY → At(E ′
G)

of (3.4), then θ ′ is a Γ-connection if and only if the splitting homomorphism D

commutes with the actions of Γ on TY and At(E ′
G).

Let ψ : EG → X be a parabolic G-bundle over X (as in (2.4)). We noted earlier that

by [BBN2, Theorem 3.7] there is an irreducible smooth projective curve Y , a finite
subgroup Γ ⊂ Aut(Y ) and a Γ-linearized principal G-bundle E ′

G over Y such that
X = Y/Γ and EG = E ′

G/Γ.

Proposition 3.4 There is a natural bijective correspondence between the holomor-

phic connections on the parabolic G-bundle EG and the Γ-connections on the principal

G-bundle E ′
G.
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Proof Let

(3.5) q : E ′
G → E ′

G/Γ = EG

be the quotient map. Given a g-valued one-form θ on EG, the pullback

(3.6) θ ′ := q∗θ

is a g-valued one-form on E ′
G. Assume that θ satisfies the two conditions in Defini-

tion 3.1; in other words, θ is a holomorphic connection on EG. Then, as the pro-
jection q commutes with the actions of G on E ′

G and EG, the second condition in
Definition 3.1 that θ is G-equivariant implies that θ ′ is G-equivariant.

Let q ′ : Y → Y/Γ = X be the quotient map. For any closed point y ∈ Y the

restriction
q|(E ′

G)y
: (E ′

G)y → (EG)q ′(y)

is a finite unramified covering map, where (E ′
G)y is the fiber EG over y and (EG)q ′(y)

as before is the reduced inverse image ψ−1(q ′(y)). Since q|(E ′

G)y
is a finite unramified

covering map, the given condition that the restriction of θ to (EG)q ′(y) coincides with
the Maurer–Cartan form implies that the restriction of θ ′ to (E ′

G)y coincides with

the Maurer–Cartan form on (E ′
G)y . Therefore, the form θ ′ defines a holomorphic

connection on the G-bundle E ′
G.

Since θ ′ is a pullback of a form from E ′
G/Γ, we conclude that the action of Γ on

E ′
G leaves θ ′ invariant. Consequently, θ ′ defines a Γ-connection on E ′

G.

For the converse direction, let θ ′ be a Γ-invariant g-valued one-form on the total
space of E ′

G defining a Γ-connection on the principal G-bundle E ′
G. Since θ ′ is Γ-in-

variant, it descends to a g-valued one-form on the quotient EG = E ′
G/Γ. In other

words, there is a g-valued one-form θ on EG such that q∗θ = θ ′, where q is the

projection defined in (3.5). To prove the existence of such a form θ, note that for any
point y ∈ E ′

G, the map q around z is holomorphically isomorphic to a map of the
form

(z1, . . . , zn−1, zn) → (z1, . . . , zn−1, z
k
n)

where k is a positive integer. Therefore, it suffices to show that any holomorphic one-
form ω defined on the unit disk D ⊂ C and invariant under the multiplication action

(on D) of µk, the cyclic group defined by the k-th roots of unity, is a pullback of a
form on the quotient space D/µn. But this is clear as ω must vanish at 0 ∈ D of order
at least k − 1.

Now it is easy to check that the descended g-valued one-form θ on EG satisfies the

two conditions in Definition 3.1. Therefore, any form on E ′
G defining a Γ-connection

is the pullback of a form on EG defining a holomorphic connection on the parabolic
G-bundle EG. This completes the proof of the proposition.

Let ψ : EG → X be a parabolic G-bundle over X. Recall from the definition of a
parabolic G-bundle that ψ−1(X \ D) is a principal G-bundle over the complement
X \ D. Let

θ ∈ H0(EG,Ω
1
EG

⊗C g)

https://doi.org/10.4153/CJM-2006-011-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-011-4


Connection on Parabolic Principal Bundle 271

be a holomorphic connection on EG. So the restriction θ|ψ−1(X\D) is a holomorphic
connection on the principal G-bundle ψ−1(X \ D) over X \ D. Any holomorphic

connection on a curve is flat as there are no nonzero holomorphic two-forms on a
Riemann surface.

Therefore, θ|ψ−1(X\D) is a flat connection on the principal G-bundle ψ−1(X \ D)
over X \ D. Take any point pi ∈ D. Since θ ′ in (3.6) is a flat connection on E ′

G

over Y , it follows immediately that the monodromy of the connection on ψ−1(X \D)
(defined by θ|ψ−1(X\D)) along a loop in X \ D around pi and contractible in X is of
finite order.

Let E ′
G be a Γ-linearized principal G-bundle over Y . Let EG = E ′

G/Γ be the corre-

sponding parabolic G-bundle over X = Y/Γ. As in (3.5), the quotient map E ′
G → EG

will be denoted by q. Let EH ⊂ EG be a reduction of structure group to a subgroup
H ⊂ G. The inverse image

q−1(EH) ⊂ E ′
G

is clearly a reduction of structure group of the principal G-bundle E ′
G to H which is

left invariant by the action of Γ on E ′
G. It is also straightforward to check that if

E ′
H ⊂ E ′

G

is a reduction of structure group of E ′
G to H ⊂ G with the property that the action of

Γ on E ′
G leaves the subvariety E ′

H ⊂ E ′
G invariant, then

E ′
H/Γ ⊂ E ′

G/Γ

is a reduction of structure group to H of the parabolic G-bundle EG = E ′
G/Γ.

Let θ be a holomorphic connection on the parabolic G-bundle EG. Let θ ′ be the
corresponding Γ-connection on E ′

G constructed in Proposition 3.4. Let H and β be as
in Proposition 3.2. So using Proposition 3.2, the holomorphic connection θ induces

a holomorphic connection
θH := β ◦ θ|EH

on the parabolic H-bundle EH (we are using the notation of Proposition 3.2). On
the other hand, using β, the Γ-connection θ ′ on E ′

G induces a Γ-connection on the
Γ-linearized principal H-bundle E ′

H := q−1(EH), where q is the projection defined in
(3.5); the construction of this connection is identical to the construction of the con-

nection in the second part of Proposition 3.2. It is easy to see that the holomorphic
connection on EH = E ′

H/Γ corresponding to this Γ-connection on E ′
H coincides,

by the correspondence in Proposition 3.4, to the holomorphic connection θH on EH

constructed above.

Let ρ : G → G1 be a homomorphism as in (2.6). Let E ′
G(G1) = (E ′

G×G1)/G be the
Γ-linearized principal G1-bundle over Y obtained by extending the structure group
of the G-bundle E ′

G using ρ. Clearly we have

E ′
G(G1)/Γ = EG(G1),

where EG(G1) is the parabolic G-bundle defined in (2.7). Using this it is straight-
forward to check that the correspondence of connections given by Proposition 3.4 is

https://doi.org/10.4153/CJM-2006-011-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-011-4


272 I. Biswas

compatible with the construction given in Proposition 3.2 of induced connection on
an extension of structure group. In other words, if θ is a holomorphic connection on

EG and θ ′ the corresponding Γ-connection on E ′
G, then the holomorphic connection

on EG(G1) induced by θ corresponds to the Γ-connection on E ′
G(G1) induced by θ ′.

In the next section we will give a criterion for a parabolic G-bundle, where G is

reductive, to admit a holomorphic connection.

4 Criterion for Existence of a Connection

Let σ : X → EG/H, as in Definition 2.1, be a reduction of structure group to H of the

parabolic G-bundle EG over X. Let

EH := q−1
H (σ(X)) ⊂ EG

be the corresponding parabolic H-bundle, where qH is the projection in (2.8). Take a
character

χ : H → Gm = C
∗

of H. Let EH(C
∗) be the parabolic C

∗-bundle obtained by extending the structure
group of EH using the homomorphism χ. We noted earlier that there is a natural
bijective correspondence between parabolic GL(n,C)-bundles and parabolic vector

bundles of rank n. Let

(4.1) Eχ∗ = EH(C
∗)(C)∗

be the parabolic line bundle associated to the parabolic C
∗-bundle EH(C

∗).

Henceforth, G will be assumed to be a reductive group.

A closed connected subgroup P of G is called a parabolic subgroup if G/P is com-
plete. Note that we allow G to be a parabolic subgroup of itself. The unipotent radical

of P will be denoted by Ru(P). A Levi subgroup of G is a connected reductive subgroup
H ⊂ G such that

(1) H is contained in some parabolic subgroup P of G, and

(2) H projects isomorphically onto the Levi quotient P/Ru(P) of the above parabolic
subgroup P.

So Levi subgroups are precisely the centralizers of tori contained in G.

Theorem 4.1 Let EG be a parabolic G-bundle over the curve X, where G is a complex

reductive group. The parabolic G-bundle EG admits a holomorphic connection if and

only if for every Levi subgroup H ⊂ G, for every holomorphic reduction of structure

group EH ⊂ EG to H, and for every character χ of H the following holds:

par-deg(Eχ∗) = 0,

where the parabolic line bundle E
χ
∗ is defined in (4.1) and the parabolic degree is defined

in (2.3).
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Proof Let θ be a holomorphic connection on the parabolic G-bundle EG. Take a Γ-
linearized principal G-bundle E ′

G on Y , as in Proposition 3.4, that corresponds to EG.

Let θ ′ be the Γ-connection on E ′
G corresponding to θ by Proposition 3.4.

Take a Levi subgroup H ⊂ G and a reduction of structure group EH ⊂ EG as in
the statement of the theorem. Let

E ′
H = q−1(EH) ⊂ E ′

G

be the corresponding reduction of structure group of E ′
G to H, where q is the projec-

tion defined in (3.5).
Since H is a complex reductive group, any exact sequence of finite dimensional

complex H-modules splits. Consider the inclusion of H-modules h ⊂ g, where g

(respectively, h) is the Lie algebra of G (respectively, H), and h, g are considered as
H-modules using the adjoint action of H. Fix a splitting

β : g → h

of this inclusion of H-modules. The connection θ ′ and β combine together to give
a Γ-connection of E ′

H ; the connection on E ′
H is constructed exactly as done in the

second part of Proposition 3.2. Let θ ′H denote this connection on E ′
H .

As before, EH(C
∗) denotes the parabolic C

∗-bundle obtained by extending the
structure group of EH using the character χ of H. Note that EH(C

∗) corresponds to
the Γ-linearized principal C

∗-bundle E ′
H(C

∗) over Y obtained by extending the struc-

ture group of the principal H-bundle E ′
H using the character χ of H. The parabolic

line bundle E
χ
∗ defined in (4.1) corresponds to the Γ-linearized line bundle E ′

H(C)
over Y associated to the principal C

∗-bundle E ′
H(C

∗) for the standard action of C
∗

on C. (See [Bi] for the correspondence between parabolic vector bundles and the

Γ-linearized vector bundles.)
The holomorphic connection θ ′H on E ′

H constructed above induces a connection
on E ′

H(C
∗) which in turn induces a holomorphic connection on the line bundle

E ′
H(C) over Y . We conclude that

(4.2) degree(E ′
H(C)) = 0

as E ′
H(C) admits a holomorphic connection; see [At].

On the other hand, we have

#Γ · par-deg(Eχ∗) = degree(E ′
H(C))

[Bi, (3.12)], where #Γ is the order of the finite group Γ. Therefore, (4.2) gives that
par-deg(E

χ
∗) = 0.

To prove the converse, let EG be a parabolic G-bundle over X satisfying the condi-
tion that par-deg(Eχ∗) = 0 for all H, EH and χ as in the statement of the theorem.

Let E ′
G be a Γ-linearized principal G-bundle over Y as in Proposition 3.4 such that

EG = E ′
G/Γ. Using Proposition 3.4 it suffices to show that E ′

G admits a Γ-connection.
Assume that E ′

G admits a holomorphic connection. Let

θ ′ ∈ H0(E ′
G,Ω

1
E ′

G
⊗C g)
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be a form as in (3.3) defining a holomorphic connection on E ′
G. Consider the

g-valued one-form

θ ′ ′ =

∑
γ∈Γ

γ∗θ

#Γ

on the total space of E ′
G, where γ∗θ is the pullback of θ by the automorphism of E ′

G

defined by the action of γ on E ′
G. It is easy to see that the form θ ′ ′ is left invariant by

the action of Γ on E ′
G. Hence θ ′ ′ defines a Γ-connection on E ′

G.
Therefore, to complete the proof of the theorem it suffices to prove the following

lemma.

Lemma 4.2 Let E ′
G be a Γ-linearized principal G-bundle over Y such that for every

Levi subgroup H ⊂ G, for every Γ-invariant holomorphic reduction of structure group

E ′
H ⊂ E ′

G to H, and for every character χ of H the following holds:

degree(E ′
H(C)) = 0,

where E ′
H(C) = (E ′

H × C)/H is the line bundle over Y associated to the principal

H-bundle E ′
H for the characterχ. Then the principal G-bundle E ′

G admits a holomorphic

connection.

Proof To prove the lemma, we first recall that E ′
G admits a holomorphic connection

if and only if the Atiyah exact sequence (3.4) splits holomorphically. Let

(4.3) τ ∈ H1(Y, ad(E ′
G) ⊗ KY )

be the obstruction class for holomorphic splitting of (3.4), where KY is the holomor-
phic cotangent bundle of Y .

Since G is reductive, its Lie algebra g admits a nondegenerate symmetric bilinear
form which is left invariant by the adjoint action of G on g. In other words, g ∼= g∗

as G-modules. Fix such a G-invariant bilinear form. This gives an isomorphism of

vector bundles ad(E ′
G) ∼= ad(E ′

G)∗. Now using Serre duality, the cohomology class τ
in (4.3) corresponds to an element

τ ′ ∈ H0(Y, ad(E ′
G))∗.

Since the G-bundle E ′
G is Γ-linearized, we conclude that

(4.4) τ ′ ∈
(

H0(Y, ad(E ′
G))∗

)Γ ⊂ H0(Y, ad(E ′
G))∗,

where
(

H0(Y, ad(E ′
G))∗

)Γ ⊂ H0(Y, ad(E ′
G))∗ is the space of invariants for the in-

duced action of Γ on H0(Y, ad(E ′
G))∗.

Note that for any finite dimensional complex Γ-module V , the restriction homo-
morphism

fV : (V ∗)Γ → (V Γ)∗

is an isomorphism, where V Γ ⊂ V (respectively, (V ∗)Γ ⊂ V ∗) is the space of all
Γ-invariants. Indeed, for any nontrivial irreducible Γ-submodule V1 ⊂ V we have
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ω(V1) = 0, where ω ∈ (V ∗)Γ; hence fV is injective. To prove that fV is surjective,
extend any functional ω ∈ (V Γ)∗ to V by defining it to be zero on any nontrivial

irreducible Γ-submodule of V .
Therefore, we have

(4.5) τ ′ ∈
(

H0(Y, ad(E ′
G))Γ

)∗
=

(
H0(Y, ad(E ′

G))∗
)Γ ⊂ H0(Y, ad(E ′

G))∗,

where τ ′ is constructed in (4.4).
Take any invariant section

(4.6) φ ∈ H0(Y, ad(E ′
G))Γ.

The fibers of the Lie algebra bundle ad(E ′
G) over Y are isomorphic to the Lie algebra

g of G. Consider the Jordan decomposition

(4.7) φ = φs + φn

of φ in (4.6). So
φs, φn ∈ H0(Y, ad(E ′

G)),

and for any closed point y ∈ Y , the element

φs(y) ∈ ad(E ′
G)y

(respectively, φn(y) ∈ ad(E ′
G)y) is semisimple (respectively, nilpotent) with

[φs(y), φn(y)] = 0;

see [Bo, 4.4] for Jordan decomposition.
Note that from the uniqueness of the Jordan decomposition it follows immediately

that
φn, φs ∈ H0(Y, ad(E ′

G))Γ

(recall that φ ∈ H0(Y, ad(E ′
G))Γ).

Proposition 3.9 of [AB] says that

τ ′(φn) = 0,

where τ ′ is constructed in (4.5).
So to prove the lemma it is enough to show that

(4.8) τ ′(φs) = 0.

If H ⊂ G is a Levi subgroup and H1 ⊂ H a Levi subgroup of the reductive group

H, then H1 is a Levi subgroup of G. Indeed, this follows from the fact that if Z0(H1)
is the connected component of the center of H1 containing the identity element, then
the centralizer of Z0(H1) in H coincides with the intersection of H and the centralizer
of Z0(H1) in G.
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Using this property, we may assume that the Γ-linearized principal G-bundle E ′
G

does not admit any Γ-invariant reduction of structure group to any proper Levi sub-

group of G. Indeed, if E ′
G admits a Γ-invariant reduction of structure group EG1

⊂ EG

to a proper Levi subgroup G1 ⊂ G, then we can replace G by G1 and EG by EG1
in

the lemma; note that a holomorphic connection on EG1
induces a holomorphic con-

nection on EG. Repeating this inductively we finally obtain a Γ-invariant reduction

of structure group to a Levi subgroup which does not admit any further Γ-invariant
reduction to a proper Levi subgroup.

Therefore, we assume that the Γ-linearized principal G-bundle E ′
G does not admit

any Γ-invariant reduction of structure group to any proper Levi subgroup of G.

Let z(g) ⊂ g be the center of the Lie algebra. Since G acts trivially on z(g), the
adjoint vector bundle ad(E ′

G) has a trivial subbundle with fibers identified with z(g).
Therefore, there is a natural injective homomorphism

(4.9) δ : z(g) → H0(Y, ad(E ′
G))Γ.

We will show that the given condition that the Γ-linearized principal G-bundle

E ′
G does not admit any Γ-invariant reduction of structure group to any proper Levi

subgroup of G implies that the section φs (in (4.7)) is in the image of the homomor-
phism δ constructed in (4.9).

Let qg : E ′
G × g → ad(E ′

G) be the natural quotient map. Let

p1 : E ′
G × g → E ′

G

be the projection to the first factor of the Cartesian product. For the section φs in
(4.7) consider

Z(φs) := p1
(

q−1
g

(φs(Y ))
)
⊂ E ′

G,

where qg and p1 are defined above. It is easy to see that this subvariety Z(φs) ⊂ E ′
G de-

fines a reduction of structure group of E ′
G to a Levi subgroup of G, and furthermore,

the Levi subgroup is proper if

φs /∈ δ(z(g)),

where δ is constructed in (4.9) (see [BP] for the details).

Therefore, there is ω ∈ z(g) such that

(4.10) φs = δ(ω).

Let

(4.11) φ∗s = H0(Y, ad(E ′
G)∗)Γ

be the section defined by φs using the isomorphism ad(E ′
G)∗ ∼= ad(E ′

G) (recall that by
fixing a G-invariant bilinear form on g we obtained an isomorphism of ad(E ′

G) with

ad(E ′
G)∗).

For a character χ ′ : G → C
∗ of G, let

(4.12) dχ ′ : g → C
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be the homomorphism of Lie algebras defined by the differential of χ ′ at e ∈ G.

From (4.10) if follows that there are characters χ1, χ2, . . . , χk of G such that

(4.13) φ∗s =

k∑

i=1

λidχi,

where φ∗s (respectively, dχi) is defined in (4.11) (respectively, (4.12)) and λi ∈ C; the
above integer k can be taken to be dimC z(g). Indeed, this follows immediately from
the fact that the Lie algebra g decomposes as

g = [g, g] ⊕ z(g).

Take any character χ ′ : G → C
∗ of G. Let

E ′
G(χ ′) =

E ′
G × Cχ ′

G

be the line bundle over Y associated to the G-bundle E ′
G for the G-module Cχ ′ (the

G-module defined by the action of G on C through χ ′ is denoted by Cχ ′). The Atiyah
obstruction class τ in (4.3) is compatible with the extension of structure group of a
principal bundle. In other words, for any homomorphism ρ : G → G ′ of algebraic

groups, the Atiyah obstruction class for the principal G ′-bundle E ′
G(G ′) obtained by

extending the structure group of E ′
G using ρ coincides with the image of τ (defined

in (4.3)) in H1(Y, ad(E ′
G(G ′)) ⊗ KY ) by the homomorphism

H1(Y, ad(E ′
G) ⊗ KY ) → H1(Y, ad(E ′

G(G ′)) ⊗ KY )

constructed using ρ. Using this observation it is straightforward to check that the

following identity holds:

(4.14) 2π
√
−1 · degree(E ′

G(χ ′)) = 〈dχ ′, τ 〉,

where dχ ′ (respectively, τ ) is defined in (4.12) (respectively, (4.3)) and 〈−,−〉 is the
Serre duality pairing H0(Y, ad(E ′

G)∗) ⊗ H1(Y, ad(E ′
G) ⊗ KY ) → C.

Since the given condition in the statement of the lemma says that

degree(E ′
G(χ ′)) = 0

for all character χ ′, the equality (4.8) follows from (4.13) and (4.14). This completes
the proof of the lemma.

We already noted that Lemma 4.2 completes the proof of Theorem 4.1. Therefore,
the proof of Theorem 4.1 is complete.
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5 Einstein–Hermitian Connection on Stable Parabolic Bundles

As before, ψ : EG → X is a parabolic G-bundle with G a reductive group.
A complex connection on EG is a C∞ form, with values in g, of Hodge type (1, 1)

on the total space of EG

θ ∈ C∞(EG,Ω
1,0
EG

⊗C g)

such that

(1) for each point x ∈ X the restriction θ|(EG)x
to the fiber (EG)x coincides with the

Maurer–Cartan form ωx defined in (3.1), and
(2) θ intertwines the action of G on EG and the adjoint action of G on g, or, in other

words, θ is equivariant for the actions of G.

(See [KN, p. 64, Proposition 1.1].)

Note that if the above form θ defining a complex connection is a holomorphic
form, then it defines a holomorphic connection on EG. In other words, holomorphic
connections are a special case of complex connections.

Given a complex connection form θ, the g-valued two-form

(5.1) Ω(θ) := dθ +
1

2
[θ, θ]

is known as the curvature of θ (see [KN, p. 77, Theorem 5.2]).
Since θ is of Hodge type (1, 0), it follows immediately that the curvature form

Ω(θ) is a sum of a (2, 0)-form and a (1, 1)-form. We will show that Ω(θ) is of Hodge
type (1, 1), that is, the (2, 0) Hodge type component vanishes.

Since the connection form θ is G-equivariant, it follows immediately that the cur-
vature form Ω(θ) defined in (5.1) is also G-equivariant. Since a Maurer–Cartan

form ω satisfies the identity

dω +
1

2
[ω, ω] = 0

it follows that the curvature form Ω(θ) is given by a G-equivariant smooth section
of (

∧2
N) ⊗C g, where N is the normal bundle to the orbits for the action of G on

EG. Over the complement ψ−1(X \ D) ⊂ EG, the normal bundle N is identified with
ψ∗TRX, where TRX is the real tangent bundle over X; the isomorphism is given by

the differential of ψ. Now, the projection ψ is holomorphic and X does not admit
any nonzero form of Hodge type (2, 0). Consequently, Ω(θ) is a g-valued form on EG

of Hodge type (1, 1). Therefore, we have

(5.2) Ω(θ) = ∂θ.

A complex connection θ is called flat if the curvature Ω(θ) defined in (5.1) van-
ishes identically.

From (5.2) it follows immediately that the vanishing of Ω(θ) is equivalent to

form θ being holomorphic. Therefore, a flat complex connection on EG is the same
as a holomorphic connection on EG.

Fix a maximal compact subgroup

K(G) ⊂ G.
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As in (2.8), let qK(G) : EG/K(G) → X be the quotient map for the action of G on EG.
Take a smooth section σ of qK(G). So

σ : X → EG/K(G)

is a C∞ map and qK(G) ◦ σ is the identity map of X. As in Definition 2.1, such a

section σ will be called a C∞ reduction of structure group of EG to K(G) provided for
each point x ∈ X the projection qK(G) is a submersion at σ(x) ∈ EG/K(G).

For a section σ of the projection qK(G) consider

q−1
K(G)

(σ(X)) ⊂ EG.

The section σ gives a reduction of structure group of EG to K(G) if and only if for
each point pi ∈ D and any point z ∈ q−1

K(G)
(σ(pi)), the isotropy subgroup Gz ⊂ G

(for the action of G on EG) is contained in the compact subgroup K(G). (See the
comments following Definition 2.1.)

Take a reduction of structure group σ : X → EG/K(G) of EG to K(G). Set

Z(K(G)) := q−1
K(G)

(σ(X)) ⊂ EG.

There is a unique complex connection θ on EG satisfying the following condition: for

each point z ∈ Z(K(G)), the kernel of the homomorphism

θ(z) : TzEG → g

is contained in the subspace

TR

z Z(K(G)) −
√
−1 J(z)TR

z Z(K(G)) ⊂ TzEG,

where TR is the real tangent space and J(z) is the almost complex structure of EG at
the point z; here TR

z Z(K(G)) −
√
−1 J(z)TR

z Z(K(G)) denotes the space of all tangent
vectors of (1, 0) type, that is, tangent vectors of the form w −

√
−1 J(z)(w), where

w ∈ TR

z Z(K(G)).

The above assertion is a reformulation of [Ko, Proposition 4.9, p. 11].

Definition 5.1 A unitary connection on a parabolic G-bundle EG is a complex con-
nection θ on EG such that there is a reduction σ of structure group of EG to the
maximal compact subgroup K(G) with the property that the complex connection on

EG corresponding to σ coincides with θ.

We will now recall from [BBN2] the definition of a (semi)stable parabolic G-
bundle.

A parabolic G-bundle EG over X is called stable (respectively, semistable) if for any

reduction of structure group EH of EG to any proper parabolic subgroup H ⊂ G

and for every nontrivial antidominant character χ of H trivial on the center of G the
following inequality holds:

par-deg(Eχ∗) > 0
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(respectively, par-deg(E
χ
∗) ≥ 0), where E

χ
∗ is the parabolic line bundle over X con-

structed in (4.1) from EH and χ.

A semistable parabolic G-bundle EG is called polystable if there is a Levi subgroup
H ⊂ G and a reduction of structure group EH ⊂ EG of EG to H such that

(1) the parabolic H-bundle EH is stable, and
(2) for every character χ of H trivial on the center of G the associated parabolic line

bundle Eχ∗ (constructed in (4.1)) is of parabolic degree zero.

See [BBN2, p. 134, Definition 3.13] for the above definitions. These definitions

were modeled on [Ra].

Theorem 5.2 Let EG be a parabolic G-bundle over X, where G is a connected semisim-

ple linear algebraic group over C. The parabolic G-bundle EG admits a flat unitary con-

nection if and only if EG is polystable.

Proof Assume that EG is polystable. Take a Γ-linearized principal G-bundle E ′
G over

Y such that EG corresponds to E ′
G (see [BBN2, Theorem 3.7]). From [BBN2, Theo-

rem 3.14] and [BBN1, Proposition 4.1] it follows that the given condition that EG is
polystable implies that E ′

G is polystable. Consequently, the G-bundle E ′
G admits a uni-

tary holomorphic Γ-connection [BBN1, Proposition 4.7]; recall that a holomorphic
connection on a bundle over a curve is the same as a flat complex connection. Now

using Proposition 3.4 it follows immediately that EG admits a flat unitary connection.
For the converse direction, assume that EG admits a flat unitary connection. There-

fore, the G-bundle E ′
G over Y admits a unitary holomorphic connection (Proposi-

tion 3.4). Hence E ′
G is polystable [RS, Theorem 1]. From this it follows that EG is

polystable (see [BBN2, Theorem 3.14]). This completes the proof of the theorem.
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