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Abstract A harmonic morphism defined on R
3 with values in a Riemann surface is characterized in

terms of a complex analytic curve in the complex surface of straight lines. We show how, to a certain
family of complex curves, the singular set of the corresponding harmonic morphism has an isolated
component consisting of a continuously embedded knot.
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1. Introduction

In complex variable theory the polynomial equation

P (w, z) ≡ z2 − w = 0,

determines z as a 2-valued analytic function of w. The point w = 0 is called a singular
point. It is a branch point of the function z, i.e. a point where the equation P = 0 has a
multiple root. More generally, if P (w, z) is analytic in both variables, a point w ∈ C is
said to be singular if there exists z ∈ C such that

P (w, z) = 0,
∂P

∂z
(w, z) = 0.

The notion of harmonic morphism was introduced in the 1960s as a natural generaliza-
tion of analytic functions in the plane [4,5]. In general terms, a harmonic morphism is a
mapping that preserves harmonic functions. The study of these mappings in the context
of Riemannian manifolds began with the work of Fuglede [7] and Ishihara [10]. Thus,
let φ : M → N be a continuous mapping of Riemannian manifolds. Then φ is called
a harmonic morphism if, for every real-valued function f , harmonic on an open subset
V ⊂ N such that φ−1(V ) is non-empty, the composition f ◦ φ is harmonic on φ−1(V )
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in M . The fundamental characterization [7,10] asserts that φ : M → N is a harmonic
morphism if and only if φ is both horizontally conformal and harmonic. (For background
on harmonic mappings, see [6]. A map φ is said to be horizontally conformal if, for each
x ∈ M , where dφx 6= 0, the restriction dφx|(ker dφx)⊥ : (ker dφx)⊥ → Tφ(x)N is conformal
and surjective.)

Consequently, if φ : M → N is a harmonic morphism between Riemannian manifolds
[7], then

(i) φ is smooth, i.e. C∞; and

(ii) φ is an open mapping (in particular dimM > dimN).

Hence, such mappings possess properties enjoyed by analytic functions.
Harmonic morphisms from domains in R

3 with values in a Riemann surface were
characterized by Baird and Wood [3] in the following way. Let φ : U ⊂ R

3 → N be a
harmonic morphism to a Riemann surface N . Consider a point x0 ∈ U , and let ψ : V ⊂
N → C be a local chart about φ(x0) ∈ N . Set z = ψ ◦ φ. Then, in a neighbourhood of
x0, z = z(x) is determined implicitly by

(1 − g(z)2)x1 + i(1 + g(z)2)x2 − 2g(z)x3 = 2h(z) (x = (x1, x2, x3)), (1.1)

where g(z), h(z) are meromorphic or anti-meromorphic functions of z. Conversely, any
local solution z to (1.1) defined on an open subset U ⊂ R

3 determines a harmonic
morphism z : U → C. In particular,

(i) the fibres are always line segments (this is a consequence of a more general result
of [2]); and

(ii) the foliation by line segments extends to critical points of φ.

By changing orientation on the codomain, we can always assume that g and h are
meromorphic functions of z. If in addition we suppose they are rational functions, then
equation (1.1) becomes a polynomial equation in z of the form

P (x, z) ≡ an(x)zn + an−1(x)zn−1 + · · · + a1(x)z + a0(x) = 0, (1.2)

affine linear in x, which can be thought of as defining a multivalued harmonic morphism.
By analogy with analytic function theory, the singular set K ⊂ R

3 is defined to be
those points x ∈ R

3 simultaneously satisfying

P = 0,
∂P

∂z
= 0.

Singular points are points where the polynomial P has a multiple root (i.e. the dis-
criminant vanishes). They occur as the envelope points of the congruence of lines deter-
mined by (1.2). At such points, a branch z of the solution to (1.2) becomes singular (i.e.
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|dz|2 → ∞). They can also occur as the inverse image of a critical point of a weakly con-
formal transformation of the codomain: since the composition of a harmonic morphism
with a weakly conformal mapping is also a harmonic morphism; if, for example, we set
z = (w − a)p, p > 2, then

∂P

∂w
=
∂P

∂z

dz
dw

= p
∂P

∂z
(w − a)p−1

vanishes when w = a, and the fibre over w = a determined by P (x,w) = 0 is singular.
Multivalued harmonic morphisms were considered in [1] in the compact case (replacing

R
3 by S3, where a similar representation to (1.1) holds, see [3]). By taking an r-valued

harmonic morphism defined on S3, branched over two linked circles, it was shown how to
construct the Lens spaces L(r, 1) together with a single-valued harmonic morphism φ :
L(r, 1) → S2, by cutting and gluing in a similar fashion to the procedure for constructing
compact Riemann surfaces from multivalued analytic functions [12].

This construction was put on a formal footing, at least in the R
3 case (indeed R

m) by
Gudmundsson and Wood [8]. They showed how an equation of the type (1.2) determines
a smooth submanifold M ⊂ R

3 × C, which is a branched covering of R
3, branched over

the singular set K, together with a single-valued harmonic morphism φ : M → N . They
proved that the singular set K is real analytic, and, apart from exceptional cases, consists
of arcs of curves, joining points where the multiplicity of the roots of (1.2) increases.

A simple example is given by taking g(z) = z, h(z) = iz. Then (1.2) becomes the
polynomial equation

z2(x1 − ix2) + 2z(x3 + i) − (x1 + ix2) = 0.

The solution z is a 2-valued harmonic morphism branched along the singular set K which
is given by x3 = 0, x2

1 +x2
2 = 1, i.e. the unit circle in the (x1, x2)-plane. The manifold M

is diffeomorphic to S2 × R, which double covers R
3, branched over the circle K. There

are very few other examples where the singular set has been constructed and in all such
cases, it has a very simple structure.

Following the well-known topological construction, obtaining 3-manifolds as branched
coverings over knots (see [13]), it becomes interesting to know whether it is possible to
obtain a knot singularity to equation (1.2). In this paper, we prove that such singularities
exist. Precisely, we give examples of g and h such that the singular set K has an isolated
component consisting of a continuously embedded knotted curve. In fact, we exhibit a
family of such parametrized by the odd integers p = 3, 5, 7, . . . , beginning with the trefoil
knot (p = 3).

We consider a particular holomorphic curve C in C
2 parametrized in the form

g = zp, h = zp+2 + iβzp,

for β a real positive number. By estimating roots of a certain polynomial equation, we
are able to demonstrate that a connected component of the singular set in R

3 is a knot.
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2. The singular set of a harmonic morphism

Let z : U → C, U open in R
3 be implicitly defined by equation (1.1). For ease of exposition

we write q = x1 + ix2, identifying R
3 with C × R, so that (1.1) can now be written

P (x, z) ≡ g2q̄ + 2gx3 − q − 2h = 0, (2.1)

for meromorphic functions g and h.
The singular set of z is defined to be the solution set in R

3 of the simultaneous equations

P = 0,
∂P

∂z
= 0.


 (2.2)

Note that this represents four real constraints in five real variables. In general, the solution
in x will be a real analytic subset of R

3 of codimension 2 [8].
There is also a solution set in the z-plane, which we refer to as the singular values of

z.
In terms of the representation (2.1), equation (2.2) has the form

g2q̄ + 2gx3 − q − 2h = 0,

gg′q̄ + g′x3 − h′ = 0.

Solving for q and x3 gives

q =
2{ḡ′(hg′ − gh′) − g2g′(h̄ḡ′ − ḡh̄′)}

|g′|2(1 − |g|4) ,

x3 = −gq̄ − h′

g′ .




(2.3)

The requirement that x3 be real yields the condition

2|g′|2(gh̄− ḡh) = (1 + |g|2)(g′h̄′ − ḡ′h′). (2.4)

Equation (2.4) determines the singular values Σ of z. The image of Σ under the
mapping (2.3) gives the singular set K ⊂ R

3.
If we holomorphically reparametrize z by a transformation z = z(w), z′(w) 6= 0,

then g′(z) = g′(w)w′(z) and we see that equation (2.4) remains invariant as well as the
image K determined by (2.3). In particular, the singular set K depends only on the
holomorphic curve C ⊂ C × C determined by g and h. (More precisely, the space of lines
in R

3 is identified with the complex surface TS2 (cf. [9]), and C should be thought of as
lying in TS2. Then g and h may admit poles. However, for our purposes, it suffices to
work in a trivialization: T (S2 \ point) ∼= C × C.)

3. Knot examples

Let g(z) = zp, where p is an odd integer > 3 and set h(z) = zp+2 + iβzp, where β is a
real positive number. Equation (2.4) becomes

2p|z|4p−2(z̄2 − z2 − 2iβ) = (1 + |z|2p)|z|2p−2((p+ 2)(z̄2 − z2) − 2ipβ).
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Figure 1. The set of singular values for (g, h) = (zp, zp+2 + iβzp).

Thus, either z = 0, or, incorporating constants into β,

(z̄2 − z2)((p− 2)|z|2p − (p+ 2)) − iβ(|z|2p − 1) = 0. (3.1)

We will prove the solution has the form sketched in Figure 1.

Theorem 3.1. For β > 0, the solution set to (3.1) inside the circle |z| = a, a =
((p+2)/(p−2))1/2p, consists of a smoothly embedded closed curve. The curve is symmetric
under reflection in the lines y = ±x and may be parametrized in the form z =

√
Reiθ,

where R = R(θ) is a smooth positive function satisfying R > 1 for θ ∈ (0, π/2)∪(π, 3π/2);
R < 1 for θ ∈ (π/2, π)∪ (3π/2, 2π); R is monotone increasing on the interval (−π/4, π/4)
and has Taylor expansion about θ = 0 given by

R(θ) = 1 +
8θ
pβ

− 16(p2 − 6)θ2

p2β2 + O(θ3). (3.2)

Remark 3.2. The estimates on R provide essential information in establishing wind-
ing numbers, which will confirm that the singular set is a knot.

Note that the point z = 1 satisfies (3.1). It is the solution passing through this point
that we isolate. By the reflectional symmetry of (3.1), we restrict out attention to the
quadrant −π/4 6 θ 6 π/4.

Lemma 3.3. The solution set to equation (3.1) consists of smoothly embedded curves.

Proof. This is a simple application of the Implicit Function Theorem. �
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Let z = reiθ and set R = r2, then (3.1) becomes

Pβ(R, θ) ≡ R{(p− 2)Rp − (p+ 2)} sin 2θ − β(1 −Rp) = 0. (3.3)

For θ = 0, this has the unique solution R = 1.

Lemma 3.4.

(i) For θ ∈ (−π/4, 0), there is precisely one positive root R = R(θ) to (3.3) satisfying
Rp < (p+ 2)/(p− 2). This root lies in the interval

I =
(

0,min
{

β

−(p− 2) sin 2θ
, 1

})
.

(ii) For θ ∈ (0, π/4), there is precisely one positive root R = R(θ) to equation (3.3);
this lies in the interval

J =
(

max
{

1,
(
p+ 2
p− 2

− 4β
(p− 2)2 sin 2θ

)1/p}
,

(
p+ 2
p− 2

)1/p)
.

Proof. (i) Define f on the interval

(0, a2), a =
(
p+ 2
p− 2

)1/2p

,

by

f(R) =
β(1 −Rp)

R{(p− 2)Rp − (p+ 2)} .

Then Pβ(R, θ) = 0 if and only if sin 2θ = f(R). Now,

lim
R→0

f(R) = −∞ and lim
R→a2

f(R) = +∞,

so for each θ, there exists R(θ) ∈ (0, a2) such that f(R(θ)) = sin 2θ. A calculation of the
derivative,

f ′(R) =
β{2(p− 2)R2p + (p+ 2)Rp + (p+ 2)}

R2{(p− 2)Rp − (p+ 2)}2 > 0,

shows that f is monotone over (0, a2), and the root R = R(θ) is unique.
To locate the root more accurately for θ ∈ (−π/4, 0), we note that

Pβ(0, θ) = −β < 0,

Pβ

(
β

−(p− 2) sin 2θ
, θ

)
= 4β/(p− 2) > 0,

Pβ(1, θ) = −4 sin 2θ > 0,

so the root R(θ) lies in I.
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(ii) As for part (i), for θ ∈ (0, π/4), there is a unique root R = R(θ) lying in the
interval (0, a2). There can be no other root, since Pβ(R, θ) > 0 for R > a2.

For R = ((p+ 2)/(p− 2))1/p, Pβ(R, θ) = 4β/(p− 2) > 0.
For R = 1, Pβ(R, θ) = −4 sin 2θ < 0.
For

R =
((

p+ 2
p− 2

)
− 4β

(p− 2)2 sin 2θ

)1/p

(> 1),

Pβ(R, θ) = − 4βR
(p− 2)

− 4β2

(p− 2)2 sin 2θ
+

4β
(p− 2)

< 0,

so the root lies in J . �

For each θ ∈ [0, 2π], let R(θ) denote the unique root to Pβ(R, θ) = 0 lying in the
interval (0, ((p + 2)/(p − 2))1/p). Then by Lemma 3.3, R = R(θ) is a smooth function
of θ.

Lemma 3.5. R(θ) is monotone increasing on the interval (−π/4, π/4).

Proof. Differentiating equation (3.3) implicitly yields

R′ =
2R{(p+ 2) − (p− 2)Rp} cos 2θ

{(p+ 1)(p− 2)Rp sin 2θ − (p+ 2) sin 2θ + pβRp−1} .

Expressing sin 2θ in terms of R, again using equation (3.3) yields

R′ =
2R2{(p+ 2) − (p− 2)Rp}2 cos 2θ
{(p− 2)Rp + (p+ 2)}(1 +Rp)β

, (3.4)

which is strictly positive on (−π/4, π/4). �

Setting θ = 0 in (3.4) yields R′(0) = 8/pβ. Differentiating once more establishes
R′′(0) = −32(p2 − 6)/p2β2 and the Taylor expansion to order two for R(θ) about θ = 0
follows. This completes the proof of Theorem 3.1. �

We now consider the map (2.3) into R
3, sending Γβ to the singular set. We establish

the following theorem.

Theorem 3.6. The singular set of the multivalued harmonic morphism determined
by equation (1.1), with g(z) = zp, h(z) = zp+2 + iβzp, p = 3, 5, 7, . . . , where β is a real
positive number, has a compact component Kp

0 , consisting of a continuously embedded
knotted curve. For each p = 3, 5, 7, . . . , all of the knots Kp

0 are distinct, i.e. non-isotopic.

By equation (2.3)

q(z) =
4zp−2(−z4 + |z|2p+4)

p(1 − |z|4p)
,

x3(z) =
4z̄|z|2p + (p− 2)z2|z|4p − (p+ 2)z2

p(1 − |z|4p)
− iβ.




(3.5)
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Lemma 3.7. The maps q and x3 are continuous on the set Γβ . The image of the point
z = 1 is given by q(1) = (−2 + iβ)/p, x3(1) = −1.

Proof. By Lemma 3.4 (showing |z| 6= 1 for z ∈ Γβ , −π/4 6 arg z < 0 and 0 < arg z 6
π/4), we need only check continuity at the points z = ±1,±i and indeed by reflectional
symmetry, the point z = 1 will suffice.

Note that, if ξ : C → C × C is the map ξ(z) = (q(z), x3(z)) given by (2.3), then ξ is
not continuous at z = 1. Setting z = 1 + ρeiα, we calculate

q(z) = −2
p

+
4i tanα
p2 ,

whose limit as ρ → 0 depends on α. However, along Γβ we have continuity.
From equation (3.5),

q(θ) =
4R(p+2)/2

p(1 −R2p)
{−ei(p+2)θ +Rpei(p−2)θ}, (3.6)

x3(θ) = −R{(p− 2)Rp + (p+ 2)}
p(1 +Rp)

cos 2θ. (3.7)

Substituting the Taylor approximation to first order for R(θ) about θ = 0,

R(θ) = 1 +
8θ
pβ

+ O(θ2),

we see that, as θ → 0, q → (−2 + iβ)/p, x3 → −1. �

Note that q obeys the same reflectional symmetry (now in the planes x1 = ±x2) as
the R-curve, and, as a consequence (or by direct observation), q(θ) = −q(θ + π). Also,
the height function x3 satisfies x3(θ) = x3(θ + π).

A useful picture to have in mind is that of a horizontal rotating rod that moves up
and down the x3-axis. Imagine two points at opposite ends of the rod, equidistant from
the x3-axis, that move in and out. These two points will trace out the curve Kp

0 .
Sketches of Kp

0 for p = 3 and p = 5 are given in Figure 2.
In order to establish this form, we calculate the winding numbers of the inner and

outer curves about the x3-axis. However, to be sure no local knotting, unknotting or
self-intersection points occur, we must study the functions |q(θ)| and arg q(θ).

Lemma 3.8. The argument arg q(θ) is a C1 function of θ such that (d/dθ) arg q(θ) > 0
for all θ. In particular, arg q(θ) is a strictly increasing function of θ.

Note. The continuous function q(θ) is not even differentiable.

Proof.

arg q = arg{−ei(p+2)θ +Rpei(p−2)θ}
= arg{X + iY },
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Figure 2. The trefoil and cinquofoil knots arise as
the compact components K3

0 and K5
0 , respectively.

where X = − cos(p+ 2)θ+Rp cos(p− 2)θ and Y = − sin(p+ 2)θ+Rp sin(p− 2)θ. Then

d
dθ

arg q =
XY ′ − Y X ′

X2 + Y 2 .

Setting N(θ) = XY ′ − Y X ′ and D(θ) = X2 + Y 2, a lengthy calculation verifies

N = p(1 −Rp)2 + 2pR2(1 − cos 4θ) + 2(1 −R2p) + pRp−1R′ sin 4θ, (3.8)

D = (1 −Rp)2 + 2Rp(1 − cos 4θ). (3.9)

Clearly D > 0 and D = 0 if and only if R = 1 and θ = 0, π/2, π, 3π/2.
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Substituting the expression for R′ given by equation (3.4) and using (3.3) to eliminate
θ, we calculate

N =
(1 −Rp)2{(p+ 2) − (p− 2)R2}2

(1 +Rp){(p+ 2) + (p− 2)Rp}
+

8pβ2Rp−2(1 −Rp)2{(p+ 2) + (p− 2)R2p}
(1 +Rp){(p+ 2) − (p− 2)Rp}2{(p+ 2) + (p− 2)Rp} , (3.10)

which again is > 0 and = 0 if and only if R = 1 (and so θ = 0, π/2, π, 3π/2).
In order to evaluate the limit, limθ→0N(θ)/D(θ), we evaluate the Taylor expansions

to order 2 of N and D, using the expansion for R given by (3.2). This is most simply
done by substituting into equations (3.8) and (3.9) and we find

N(θ) =
16
pβ2 (16 + p2β2)θ2 + O(θ3),

D(θ) =
16
p2β2 (4 + p2β2)θ2 + O(θ3),

so that (d/dθ) arg q is continuous and positive for all θ with

d
dθ

arg q|θ=0 =
p(16 + p2β2)

4 + p2β2 .

�

Thus, there can be no ‘local’ knotting or self-intersection, i.e. for θ in a sufficiently
small interval. Knotting or self-intersection can only occur as a consequence of winding
about the x3-axis.

Lemma 3.9. The function |q|2 is monotone increasing on the interval −π/4 < θ <

π/4.

Proof. Now

|q|2 =
16Rp+2

p2(1 −R2p)2
{1 +R2p − 2Rp cos 4θ},

which, after setting cos 4θ = 1 − 2 sin2 2θ and substituting for sin 2θ from equation (3.3),
becomes

|q|2 =
16Rp+2

p2(1 +Rp)2

{
1 +

4Rp−2β2

{(p− 2)Rp − (p+ 2)}2

}
.

Differentiating with respect to θ yields

d
dθ

|q|2 =
16Rp+1

p2(1 +Rp)

{{(p+ 2) − (p− 2)R2}
(1 +Rp)2

(
1 +

4β2Rp−2

{(p− 2)Rp − (p+ 2)}2

)

+
4(p− 2)(p+ 2)Rp−2β2

{(p+ 2) − (p− 2)Rp}3

}
R′.

The coefficient of R′ in this expression is always > 0, so that the sign of (d/dθ)|q|2
equals that of R′ and |q|2 increases and decreases with R. The result now follows from
Theorem 3.1. �
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Figure 3. The tear drop curve α(θ) = 1 − Rpe−4iθ.

Lemma 3.10.

(i) As θ varies from −π/2 to 0 (the inner curve), q(θ) rotates about the origin through
an angle (p + 2)π/2 − 2 tan−1(β/2), beginning at the point (−1)(p−1)/2(β − 2i)/p
and ending at the point (−2 + iβ)/p.

(ii) As θ varies from 0 to π/2 (the outer curve), q(θ) rotates about the origin through
an angle (p− 2)π/2+2 tan−1(β/2), beginning at the point (−2+ iβ)/p and ending
at the point (−1)(p−1)/2(−β + 2i)/p.

Remark 3.11. Because of reflectional symmetry of q in the lines θ = ±π/4, the above
lemma describes the rotation of q completely. For example, as θ varies from −π/4 to π/4,
q rotates through (p+ 2)π/4 − tan−1(β/2) + (p− 2)π/4 + tan−1(β/2) = pπ/2 about the
origin.

Proof. The index about the origin,

Indγ(0) =
∫
γ′

γ
dθ,

of a curve γ not passing through 0, measures the change in argument about 0. Noting
that Indγµ(0) = Indγ(0) + Indµ(0), we deduce

Ind(γ+µ)(0) = Indγ(1+(µ/γ))(0) = Indγ(0) + Ind(1+(µ/γ))(0). (3.11)

Suppose −π/2 < θ < 0. Let γ(θ) = −ei(p+2)θ, µ(θ) = Rpei(p−2)θ. Then µ/γ =
−Rpe−4iθ. Noting that R < 1 in the interval (−π/2, 0), we apply equation (3.11) and
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Figure 4. Two interlacing spirals corresponding to the shadows of two arcs of K5
0 .

study the change in argument of the curve α(θ) = 1 −Rpe−4iθ, which begins and termi-
nates at 0 and has the tear drop shape indicated in Figure 3.

Now,

argα = tan−1
(

Rp sin 4θ
1 −Rp cos 4θ

)
.

We evaluate limθ→0 tan argα. From Theorem 3.1, the Taylor expansion to first order of
R(θ) is given by

R(θ) ∼ 1 +
8θ
pβ
,

so that

Rp sin 4θ ∼ 4θ
(

1 +
8θ
β

)

and
1 −Rp sin 4θ ∼ −8θ/β.

Thus
lim
θ→0

tan argα = −β/2.
On the other hand, Indγ(0) = (p + 2)π/2. The result now follows from (3.11) and
Lemma 3.7. Similar arguments give part (ii). �

Finally, we note the behaviour of the height function x3.

Lemma 3.12. The sign of x3 is equal to the sign of − cos 2θ.

Proof. This is a simple consequence of equation (3.7). �
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Figure 5. The shadow of the trefoil knot with x3 < 0 depicted by the continuous curve and
x3 > 0 depicted by the dashed curve.

Proof of Theorem 3.6. As θ varies from −π/4 to π/4 and from 3π/4 to 5π/4 (x3

negative), the shadows in the q-plane of the corresponding arcs of Kp
0 trace out two

interlacing spirals, which, by Remark 3.11, rotate through pπ/2 as indicated in Figure 4.
These spirals can never intersect on account of Lemma 3.9, since |q| is strictly increasing

over these intervals.
A similar pair of interlacing spirals occur on the complementary arcs (π/4, 3π/4) and

(5π/4, 7π/4), now with x3 positive. In R
3, the curves are joined at the points (q(θk), 0),

θk = (2k + 1)π/4, k = 0, 1, 2, 3, . . . , giving a simple continuous closed curve Kp
0 with no

self-intersection points, i.e. a knot. This is sketched in Figure 5, where the continuous
curve corresponds to x3 < 0 and the broken curve to x3 > 0.

To establish the topological nature of the knot Kp
0 , we can ‘pull back’ the outer curve

(0 6 θ 6 π/2 and π 6 θ 6 3π/2), like winding a spring and increase the rotation of the
inner curve by (p−2) 1

2π+2 tan−1( 1
2β). Then each ‘inner curve’ now rotates through pπ.

It is well known (cf. [11]) that these knots all have distinct Alexander Polynomials,
and, hence, are non-isotopic. This establishes Theorem 3.6. �

4. Comments and further problems

Similar considerations apply to the holomorphic curve g = zp, h = zp+1 + iβzp, for
p = 2, 3, 4, . . . , which yields a closed loop of singular values as sketched in Figure 6.
However, the corresponding closed loop singularity in R

3 is never knotted.
For more general holomorphic curves, the singularity becomes difficult to compute,
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Figure 6. The set of singular values for (g, h) = (zp, zp+1 + iβzp).

however, it is to be expected that knots and links of various kinds should occur. Also,
more general deformations of the type

g = zp, h = zq + ε1z
r1 + ε2z

r2 + · · · ,

following a Puiseux expansion, should yield interesting behaviour. It would be useful to
have an effective computer method to sketch the singular set in R

3.
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