KNOT SINGULARITIES OF HARMONIC MORPHISMS

PAUL BAIRD
Département de Mathématiques, Université de Bretagne Occidentale, 6 Avenue Le Gorgeu, BP 452, 29275 Brest Cedex, France
(Paul.Baird@univ-brest.fr)

(Received 8 December 1998)

Abstract

A harmonic morphism defined on \mathbb{R}^{3} with values in a Riemann surface is characterized in terms of a complex analytic curve in the complex surface of straight lines. We show how, to a certain family of complex curves, the singular set of the corresponding harmonic morphism has an isolated component consisting of a continuously embedded knot.

Keywords: knot; knot singularity; harmonic morphism; algebraic curve
AMS 2000 Mathematics subject classification: Primary 57M25
Secondary 57M12; 58E20

1. Introduction

In complex variable theory the polynomial equation

$$
P(w, z) \equiv z^{2}-w=0
$$

determines z as a 2 -valued analytic function of w. The point $w=0$ is called a singular point. It is a branch point of the function z, i.e. a point where the equation $P=0$ has a multiple root. More generally, if $P(w, z)$ is analytic in both variables, a point $w \in \mathbb{C}$ is said to be singular if there exists $z \in \mathbb{C}$ such that

$$
\begin{aligned}
P(w, z) & =0 \\
\frac{\partial P}{\partial z}(w, z) & =0
\end{aligned}
$$

The notion of harmonic morphism was introduced in the 1960s as a natural generalization of analytic functions in the plane $[\mathbf{4}, \mathbf{5}]$. In general terms, a harmonic morphism is a mapping that preserves harmonic functions. The study of these mappings in the context of Riemannian manifolds began with the work of Fuglede [7] and Ishihara [10]. Thus, let $\phi: M \rightarrow N$ be a continuous mapping of Riemannian manifolds. Then ϕ is called a harmonic morphism if, for every real-valued function f, harmonic on an open subset $V \subset N$ such that $\phi^{-1}(V)$ is non-empty, the composition $f \circ \phi$ is harmonic on $\phi^{-1}(V)$
in M. The fundamental characterization $[\mathbf{7}, \mathbf{1 0}]$ asserts that $\phi: M \rightarrow N$ is a harmonic morphism if and only if ϕ is both horizontally conformal and harmonic. (For background on harmonic mappings, see [6]. A map ϕ is said to be horizontally conformal if, for each $x \in M$, where $\mathrm{d} \phi_{x} \neq 0$, the restriction $\left.\mathrm{d} \phi_{x}\right|_{\left(\operatorname{ker~} \phi_{x}\right)^{\perp}}:\left(\operatorname{ker~d} \phi_{x}\right)^{\perp} \rightarrow T_{\phi(x)} N$ is conformal and surjective.)

Consequently, if $\phi: M \rightarrow N$ is a harmonic morphism between Riemannian manifolds [7], then
(i) ϕ is smooth, i.e. C^{∞}; and
(ii) ϕ is an open mapping (in particular $\operatorname{dim} M \geqslant \operatorname{dim} N$).

Hence, such mappings possess properties enjoyed by analytic functions.
Harmonic morphisms from domains in \mathbb{R}^{3} with values in a Riemann surface were characterized by Baird and Wood [3] in the following way. Let $\phi: U \subset \mathbb{R}^{3} \rightarrow N$ be a harmonic morphism to a Riemann surface N. Consider a point $x_{0} \in U$, and let $\psi: V \subset$ $N \rightarrow \mathbb{C}$ be a local chart about $\phi\left(x_{0}\right) \in N$. Set $z=\psi \circ \phi$. Then, in a neighbourhood of $x_{0}, z=z(x)$ is determined implicitly by

$$
\begin{equation*}
\left(1-g(z)^{2}\right) x_{1}+\mathrm{i}\left(1+g(z)^{2}\right) x_{2}-2 g(z) x_{3}=2 h(z) \quad\left(x=\left(x_{1}, x_{2}, x_{3}\right)\right) \tag{1.1}
\end{equation*}
$$

where $g(z), h(z)$ are meromorphic or anti-meromorphic functions of z. Conversely, any local solution z to (1.1) defined on an open subset $U \subset \mathbb{R}^{3}$ determines a harmonic morphism $z: U \rightarrow \mathbb{C}$. In particular,
(i) the fibres are always line segments (this is a consequence of a more general result of [2]); and
(ii) the foliation by line segments extends to critical points of ϕ.

By changing orientation on the codomain, we can always assume that g and h are meromorphic functions of z. If in addition we suppose they are rational functions, then equation (1.1) becomes a polynomial equation in z of the form

$$
\begin{equation*}
P(x, z) \equiv a_{n}(x) z^{n}+a_{n-1}(x) z^{n-1}+\cdots+a_{1}(x) z+a_{0}(x)=0 \tag{1.2}
\end{equation*}
$$

affine linear in x, which can be thought of as defining a multivalued harmonic morphism.
By analogy with analytic function theory, the singular set $K \subset \mathbb{R}^{3}$ is defined to be those points $x \in \mathbb{R}^{3}$ simultaneously satisfying

$$
\begin{aligned}
P & =0 \\
\frac{\partial P}{\partial z} & =0
\end{aligned}
$$

Singular points are points where the polynomial P has a multiple root (i.e. the discriminant vanishes). They occur as the envelope points of the congruence of lines determined by (1.2). At such points, a branch z of the solution to (1.2) becomes singular (i.e.
$\left.|\mathrm{d} z|^{2} \rightarrow \infty\right)$. They can also occur as the inverse image of a critical point of a weakly conformal transformation of the codomain: since the composition of a harmonic morphism with a weakly conformal mapping is also a harmonic morphism; if, for example, we set $z=(w-a)^{p}, p \geqslant 2$, then

$$
\begin{aligned}
\frac{\partial P}{\partial w} & =\frac{\partial P}{\partial z} \frac{\mathrm{~d} z}{\mathrm{~d} w} \\
& =p \frac{\partial P}{\partial z}(w-a)^{p-1}
\end{aligned}
$$

vanishes when $w=a$, and the fibre over $w=a$ determined by $P(x, w)=0$ is singular.
Multivalued harmonic morphisms were considered in [1] in the compact case (replacing \mathbb{R}^{3} by S^{3}, where a similar representation to (1.1) holds, see $[\mathbf{3}]$). By taking an r-valued harmonic morphism defined on S^{3}, branched over two linked circles, it was shown how to construct the Lens spaces $L(r, 1)$ together with a single-valued harmonic morphism ϕ : $L(r, 1) \rightarrow S^{2}$, by cutting and gluing in a similar fashion to the procedure for constructing compact Riemann surfaces from multivalued analytic functions [12].

This construction was put on a formal footing, at least in the \mathbb{R}^{3} case (indeed \mathbb{R}^{m}) by Gudmundsson and Wood [8]. They showed how an equation of the type (1.2) determines a smooth submanifold $M \subset \mathbb{R}^{3} \times \mathbb{C}$, which is a branched covering of \mathbb{R}^{3}, branched over the singular set K, together with a single-valued harmonic morphism $\phi: M \rightarrow N$. They proved that the singular set K is real analytic, and, apart from exceptional cases, consists of arcs of curves, joining points where the multiplicity of the roots of (1.2) increases.

A simple example is given by taking $g(z)=z, h(z)=\mathrm{i} z$. Then (1.2) becomes the polynomial equation

$$
z^{2}\left(x_{1}-\mathrm{i} x_{2}\right)+2 z\left(x_{3}+\mathrm{i}\right)-\left(x_{1}+\mathrm{i} x_{2}\right)=0
$$

The solution z is a 2 -valued harmonic morphism branched along the singular set K which is given by $x_{3}=0, x_{1}^{2}+x_{2}^{2}=1$, i.e. the unit circle in the (x_{1}, x_{2})-plane. The manifold M is diffeomorphic to $S^{2} \times \mathbb{R}$, which double covers \mathbb{R}^{3}, branched over the circle K. There are very few other examples where the singular set has been constructed and in all such cases, it has a very simple structure.

Following the well-known topological construction, obtaining 3-manifolds as branched coverings over knots (see [13]), it becomes interesting to know whether it is possible to obtain a knot singularity to equation (1.2). In this paper, we prove that such singularities exist. Precisely, we give examples of g and h such that the singular set K has an isolated component consisting of a continuously embedded knotted curve. In fact, we exhibit a family of such parametrized by the odd integers $p=3,5,7, \ldots$, beginning with the trefoil $\operatorname{knot}(p=3)$.

We consider a particular holomorphic curve \mathcal{C} in \mathbb{C}^{2} parametrized in the form

$$
g=z^{p}, \quad h=z^{p+2}+\mathrm{i} \beta z^{p}
$$

for β a real positive number. By estimating roots of a certain polynomial equation, we are able to demonstrate that a connected component of the singular set in \mathbb{R}^{3} is a knot.

2. The singular set of a harmonic morphism

Let $z: U \rightarrow \mathbb{C}, U$ open in \mathbb{R}^{3} be implicitly defined by equation (1.1). For ease of exposition we write $q=x_{1}+\mathrm{i} x_{2}$, identifying \mathbb{R}^{3} with $\mathbb{C} \times \mathbb{R}$, so that (1.1) can now be written

$$
\begin{equation*}
P(x, z) \equiv g^{2} \bar{q}+2 g x_{3}-q-2 h=0 \tag{2.1}
\end{equation*}
$$

for meromorphic functions g and h.
The singular set of z is defined to be the solution set in \mathbb{R}^{3} of the simultaneous equations

$$
\left.\begin{array}{rl}
P & =0 \tag{2.2}\\
\frac{\partial P}{\partial z} & =0 .
\end{array}\right\}
$$

Note that this represents four real constraints in five real variables. In general, the solution in x will be a real analytic subset of \mathbb{R}^{3} of codimension $2[8]$.

There is also a solution set in the z-plane, which we refer to as the singular values of z.

In terms of the representation (2.1), equation (2.2) has the form

$$
\begin{aligned}
g^{2} \bar{q}+2 g x_{3}-q-2 h & =0 \\
g g^{\prime} \bar{q}+g^{\prime} x_{3}-h^{\prime} & =0
\end{aligned}
$$

Solving for q and x_{3} gives

$$
\left.\begin{array}{rl}
q & =\frac{2\left\{\bar{g}^{\prime}\left(h g^{\prime}-g h^{\prime}\right)-g^{2} g^{\prime}\left(\bar{h} \bar{g}^{\prime}-\bar{g} \bar{h}^{\prime}\right)\right\}}{\left|g^{\prime}\right|^{2}\left(1-|g|^{4}\right)} \tag{2.3}\\
x_{3} & =-g \bar{q}-\frac{h^{\prime}}{g^{\prime}}
\end{array}\right\}
$$

The requirement that x_{3} be real yields the condition

$$
\begin{equation*}
2\left|g^{\prime}\right|^{2}(g \bar{h}-\bar{g} h)=\left(1+|g|^{2}\right)\left(g^{\prime} \bar{h}^{\prime}-\bar{g}^{\prime} h^{\prime}\right) \tag{2.4}
\end{equation*}
$$

Equation (2.4) determines the singular values Σ of z. The image of Σ under the mapping (2.3) gives the singular set $K \subset \mathbb{R}^{3}$.

If we holomorphically reparametrize z by a transformation $z=z(w), z^{\prime}(w) \neq 0$, then $g^{\prime}(z)=g^{\prime}(w) w^{\prime}(z)$ and we see that equation (2.4) remains invariant as well as the image K determined by (2.3). In particular, the singular set K depends only on the holomorphic curve $\mathcal{C} \subset \mathbb{C} \times \mathbb{C}$ determined by g and h. (More precisely, the space of lines in \mathbb{R}^{3} is identified with the complex surface $T S^{2}$ (cf. [9]), and \mathcal{C} should be thought of as lying in $T S^{2}$. Then g and h may admit poles. However, for our purposes, it suffices to work in a trivialization: $T\left(S^{2} \backslash\right.$ point $) \cong \mathbb{C} \times \mathbb{C}$.)

3. Knot examples

Let $g(z)=z^{p}$, where p is an odd integer $\geqslant 3$ and set $h(z)=z^{p+2}+\mathrm{i} \beta z^{p}$, where β is a real positive number. Equation (2.4) becomes

$$
2 p|z|^{4 p-2}\left(\bar{z}^{2}-z^{2}-2 \mathrm{i} \beta\right)=\left(1+|z|^{2 p}\right)|z|^{2 p-2}\left((p+2)\left(\bar{z}^{2}-z^{2}\right)-2 \mathrm{i} p \beta\right)
$$

Figure 1. The set of singular values for $(g, h)=\left(z^{p}, z^{p+2}+\mathrm{i} \beta z^{p}\right)$.
Thus, either $z=0$, or, incorporating constants into β,

$$
\begin{equation*}
\left(\bar{z}^{2}-z^{2}\right)\left((p-2)|z|^{2 p}-(p+2)\right)-\mathrm{i} \beta\left(|z|^{2 p}-1\right)=0 \tag{3.1}
\end{equation*}
$$

We will prove the solution has the form sketched in Figure 1.
Theorem 3.1. For $\beta>0$, the solution set to (3.1) inside the circle $|z|=a$, $a=$ $((p+2) /(p-2))^{1 / 2 p}$, consists of a smoothly embedded closed curve. The curve is symmetric under reflection in the lines $y= \pm x$ and may be parametrized in the form $z=\sqrt{R} \mathrm{e}^{\mathrm{i} \theta}$, where $R=R(\theta)$ is a smooth positive function satisfying $R>1$ for $\theta \in(0, \pi / 2) \cup(\pi, 3 \pi / 2)$; $R<1$ for $\theta \in(\pi / 2, \pi) \cup(3 \pi / 2,2 \pi) ; R$ is monotone increasing on the interval $(-\pi / 4, \pi / 4)$ and has Taylor expansion about $\theta=0$ given by

$$
\begin{equation*}
R(\theta)=1+\frac{8 \theta}{p \beta}-\frac{16\left(p^{2}-6\right) \theta^{2}}{p^{2} \beta^{2}}+\mathcal{O}\left(\theta^{3}\right) \tag{3.2}
\end{equation*}
$$

Remark 3.2. The estimates on R provide essential information in establishing winding numbers, which will confirm that the singular set is a knot.

Note that the point $z=1$ satisfies (3.1). It is the solution passing through this point that we isolate. By the reflectional symmetry of (3.1), we restrict out attention to the quadrant $-\pi / 4 \leqslant \theta \leqslant \pi / 4$.

Lemma 3.3. The solution set to equation (3.1) consists of smoothly embedded curves.
Proof. This is a simple application of the Implicit Function Theorem.

Let $z=r \mathrm{e}^{\mathrm{i} \theta}$ and set $R=r^{2}$, then (3.1) becomes

$$
\begin{equation*}
P_{\beta}(R, \theta) \equiv R\left\{(p-2) R^{p}-(p+2)\right\} \sin 2 \theta-\beta\left(1-R^{p}\right)=0 \tag{3.3}
\end{equation*}
$$

For $\theta=0$, this has the unique solution $R=1$.

Lemma 3.4.

(i) For $\theta \in(-\pi / 4,0)$, there is precisely one positive root $R=R(\theta)$ to (3.3) satisfying $R^{p}<(p+2) /(p-2)$. This root lies in the interval

$$
I=\left(0, \min \left\{\frac{\beta}{-(p-2) \sin 2 \theta}, 1\right\}\right)
$$

(ii) For $\theta \in(0, \pi / 4)$, there is precisely one positive root $R=R(\theta)$ to equation (3.3); this lies in the interval

$$
J=\left(\max \left\{1,\left(\frac{p+2}{p-2}-\frac{4 \beta}{(p-2)^{2} \sin 2 \theta}\right)^{1 / p}\right\},\left(\frac{p+2}{p-2}\right)^{1 / p}\right)
$$

Proof. (i) Define f on the interval

$$
\left(0, a^{2}\right), \quad a=\left(\frac{p+2}{p-2}\right)^{1 / 2 p}
$$

by

$$
f(R)=\frac{\beta\left(1-R^{p}\right)}{R\left\{(p-2) R^{p}-(p+2)\right\}}
$$

Then $P_{\beta}(R, \theta)=0$ if and only if $\sin 2 \theta=f(R)$. Now,

$$
\lim _{R \rightarrow 0} f(R)=-\infty \quad \text { and } \quad \lim _{R \rightarrow a^{2}} f(R)=+\infty
$$

so for each θ, there exists $R(\theta) \in\left(0, a^{2}\right)$ such that $f(R(\theta))=\sin 2 \theta$. A calculation of the derivative,

$$
f^{\prime}(R)=\frac{\beta\left\{2(p-2) R^{2 p}+(p+2) R^{p}+(p+2)\right\}}{R^{2}\left\{(p-2) R^{p}-(p+2)\right\}^{2}}>0
$$

shows that f is monotone over $\left(0, a^{2}\right)$, and the root $R=R(\theta)$ is unique.
To locate the root more accurately for $\theta \in(-\pi / 4,0)$, we note that

$$
\begin{gathered}
P_{\beta}(0, \theta)=-\beta<0 \\
P_{\beta}\left(\frac{\beta}{-(p-2) \sin 2 \theta}, \theta\right)=4 \beta /(p-2)>0 \\
P_{\beta}(1, \theta)=-4 \sin 2 \theta>0
\end{gathered}
$$

so the root $R(\theta)$ lies in I.
(ii) As for part (i), for $\theta \in(0, \pi / 4)$, there is a unique root $R=R(\theta)$ lying in the interval $\left(0, a^{2}\right)$. There can be no other root, since $P_{\beta}(R, \theta)>0$ for $R \geqslant a^{2}$.

For $R=((p+2) /(p-2))^{1 / p}, P_{\beta}(R, \theta)=4 \beta /(p-2)>0$.
For $R=1, P_{\beta}(R, \theta)=-4 \sin 2 \theta<0$.
For

$$
\begin{gathered}
R=\left(\left(\frac{p+2}{p-2}\right)-\frac{4 \beta}{(p-2)^{2} \sin 2 \theta}\right)^{1 / p}(\geqslant 1), \\
P_{\beta}(R, \theta)=-\frac{4 \beta R}{(p-2)}-\frac{4 \beta^{2}}{(p-2)^{2} \sin 2 \theta}+\frac{4 \beta}{(p-2)}<0
\end{gathered}
$$

so the root lies in J.
For each $\theta \in[0,2 \pi]$, let $R(\theta)$ denote the unique root to $P_{\beta}(R, \theta)=0$ lying in the interval $\left(0,((p+2) /(p-2))^{1 / p}\right)$. Then by Lemma $3.3, R=R(\theta)$ is a smooth function of θ.

Lemma 3.5. $R(\theta)$ is monotone increasing on the interval $(-\pi / 4, \pi / 4)$.
Proof. Differentiating equation (3.3) implicitly yields

$$
R^{\prime}=\frac{2 R\left\{(p+2)-(p-2) R^{p}\right\} \cos 2 \theta}{\left\{(p+1)(p-2) R^{p} \sin 2 \theta-(p+2) \sin 2 \theta+p \beta R^{p-1}\right\}}
$$

Expressing $\sin 2 \theta$ in terms of R, again using equation (3.3) yields

$$
\begin{equation*}
R^{\prime}=\frac{2 R^{2}\left\{(p+2)-(p-2) R^{p}\right\}^{2} \cos 2 \theta}{\left\{(p-2) R^{p}+(p+2)\right\}\left(1+R^{p}\right) \beta}, \tag{3.4}
\end{equation*}
$$

which is strictly positive on $(-\pi / 4, \pi / 4)$.
Setting $\theta=0$ in (3.4) yields $R^{\prime}(0)=8 / p \beta$. Differentiating once more establishes $R^{\prime \prime}(0)=-32\left(p^{2}-6\right) / p^{2} \beta^{2}$ and the Taylor expansion to order two for $R(\theta)$ about $\theta=0$ follows. This completes the proof of Theorem 3.1.
We now consider the map (2.3) into \mathbb{R}^{3}, sending Γ_{β} to the singular set. We establish the following theorem.

Theorem 3.6. The singular set of the multivalued harmonic morphism determined by equation (1.1), with $g(z)=z^{p}, h(z)=z^{p+2}+\mathrm{i} \beta z^{p}, p=3,5,7, \ldots$, where β is a real positive number, has a compact component K_{0}^{p}, consisting of a continuously embedded knotted curve. For each $p=3,5,7, \ldots$, all of the knots K_{0}^{p} are distinct, i.e. non-isotopic.

By equation (2.3)

$$
\left.\begin{array}{rl}
q(z) & =\frac{4 z^{p-2}\left(-z^{4}+|z|^{2 p+4}\right)}{p\left(1-|z|^{4 p}\right)} \tag{3.5}\\
x_{3}(z) & =\frac{4 \bar{z}|z|^{2 p}+(p-2) z^{2}|z|^{4 p}-(p+2) z^{2}}{p\left(1-|z|^{4 p}\right)}-\mathrm{i} \beta
\end{array}\right\}
$$

Lemma 3.7. The maps q and x_{3} are continuous on the set Γ_{β}. The image of the point $z=1$ is given by $q(1)=(-2+\mathrm{i} \beta) / p, x_{3}(1)=-1$.

Proof. By Lemma 3.4 (showing $|z| \neq 1$ for $z \in \Gamma_{\beta},-\pi / 4 \leqslant \arg z<0$ and $0<\arg z \leqslant$ $\pi / 4$), we need only check continuity at the points $z= \pm 1, \pm \mathrm{i}$ and indeed by reflectional symmetry, the point $z=1$ will suffice.

Note that, if $\xi: \mathbb{C} \rightarrow \mathbb{C} \times \mathbb{C}$ is the map $\xi(z)=\left(q(z), x_{3}(z)\right)$ given by (2.3), then ξ is not continuous at $z=1$. Setting $z=1+\rho \mathrm{e}^{\mathrm{i} \alpha}$, we calculate

$$
q(z)=-\frac{2}{p}+\frac{4 \mathrm{i} \tan \alpha}{p^{2}}
$$

whose limit as $\rho \rightarrow 0$ depends on α. However, along Γ_{β} we have continuity.
From equation (3.5),

$$
\begin{align*}
q(\theta) & =\frac{4 R^{(p+2) / 2}}{p\left(1-R^{2 p}\right)}\left\{-\mathrm{e}^{\mathrm{i}(p+2) \theta}+R^{p} \mathrm{e}^{\mathrm{i}(p-2) \theta}\right\} \tag{3.6}\\
x_{3}(\theta) & =-\frac{R\left\{(p-2) R^{p}+(p+2)\right\}}{p\left(1+R^{p}\right)} \cos 2 \theta \tag{3.7}
\end{align*}
$$

Substituting the Taylor approximation to first order for $R(\theta)$ about $\theta=0$,

$$
R(\theta)=1+\frac{8 \theta}{p \beta}+\mathcal{O}\left(\theta^{2}\right)
$$

we see that, as $\theta \rightarrow 0, q \rightarrow(-2+\mathrm{i} \beta) / p, x_{3} \rightarrow-1$.
Note that q obeys the same reflectional symmetry (now in the planes $x_{1}= \pm x_{2}$) as the R-curve, and, as a consequence (or by direct observation), $q(\theta)=-q(\theta+\pi)$. Also, the height function x_{3} satisfies $x_{3}(\theta)=x_{3}(\theta+\pi)$.

A useful picture to have in mind is that of a horizontal rotating rod that moves up and down the x_{3}-axis. Imagine two points at opposite ends of the rod, equidistant from the x_{3}-axis, that move in and out. These two points will trace out the curve K_{0}^{p}.

Sketches of K_{0}^{p} for $p=3$ and $p=5$ are given in Figure 2.
In order to establish this form, we calculate the winding numbers of the inner and outer curves about the x_{3}-axis. However, to be sure no local knotting, unknotting or self-intersection points occur, we must study the functions $|q(\theta)|$ and $\arg q(\theta)$.

Lemma 3.8. The argument $\arg q(\theta)$ is a C^{1} function of θ such that $(\mathrm{d} / \mathrm{d} \theta) \arg q(\theta)>0$ for all θ. In particular, $\arg q(\theta)$ is a strictly increasing function of θ.

Note. The continuous function $q(\theta)$ is not even differentiable.

Proof.

$$
\begin{aligned}
\arg q & =\arg \left\{-\mathrm{e}^{\mathrm{i}(p+2) \theta}+R^{p} \mathrm{e}^{\mathrm{i}(p-2) \theta}\right\} \\
& =\arg \{X+\mathrm{i} Y\}
\end{aligned}
$$

Figure 2. The trefoil and cinquofoil knots arise as the compact components K_{0}^{3} and K_{0}^{5}, respectively.
where $X=-\cos (p+2) \theta+R^{p} \cos (p-2) \theta$ and $Y=-\sin (p+2) \theta+R^{p} \sin (p-2) \theta$. Then

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta} \arg q=\frac{X Y^{\prime}-Y X^{\prime}}{X^{2}+Y^{2}}
$$

Setting $N(\theta)=X Y^{\prime}-Y X^{\prime}$ and $D(\theta)=X^{2}+Y^{2}$, a lengthy calculation verifies

$$
\begin{gather*}
N=p\left(1-R^{p}\right)^{2}+2 p R^{2}(1-\cos 4 \theta)+2\left(1-R^{2 p}\right)+p R^{p-1} R^{\prime} \sin 4 \theta \tag{3.8}\\
D=\left(1-R^{p}\right)^{2}+2 R^{p}(1-\cos 4 \theta) \tag{3.9}
\end{gather*}
$$

Clearly $D \geqslant 0$ and $D=0$ if and only if $R=1$ and $\theta=0, \pi / 2, \pi, 3 \pi / 2$.

Substituting the expression for R^{\prime} given by equation (3.4) and using (3.3) to eliminate θ, we calculate

$$
\begin{align*}
N= & \frac{\left(1-R^{p}\right)^{2}\left\{(p+2)-(p-2) R^{2}\right\}^{2}}{\left(1+R^{p}\right)\left\{(p+2)+(p-2) R^{p}\right\}} \\
& +\frac{8 p \beta^{2} R^{p-2}\left(1-R^{p}\right)^{2}\left\{(p+2)+(p-2) R^{2 p}\right\}}{\left(1+R^{p}\right)\left\{(p+2)-(p-2) R^{p}\right\}^{2}\left\{(p+2)+(p-2) R^{p}\right\}} \tag{3.10}
\end{align*}
$$

which again is $\geqslant 0$ and $=0$ if and only if $R=1$ (and so $\theta=0, \pi / 2, \pi, 3 \pi / 2$).
In order to evaluate the limit, $\lim _{\theta \rightarrow 0} N(\theta) / D(\theta)$, we evaluate the Taylor expansions to order 2 of N and D, using the expansion for R given by (3.2). This is most simply done by substituting into equations (3.8) and (3.9) and we find

$$
\begin{aligned}
& N(\theta)=\frac{16}{p \beta^{2}}\left(16+p^{2} \beta^{2}\right) \theta^{2}+\mathcal{O}\left(\theta^{3}\right) \\
& D(\theta)=\frac{16}{p^{2} \beta^{2}}\left(4+p^{2} \beta^{2}\right) \theta^{2}+\mathcal{O}\left(\theta^{3}\right)
\end{aligned}
$$

so that $(\mathrm{d} / \mathrm{d} \theta) \arg q$ is continuous and positive for all θ with

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} \theta} \arg q\right|_{\theta=0}=\frac{p\left(16+p^{2} \beta^{2}\right)}{4+p^{2} \beta^{2}}
$$

Thus, there can be no 'local' knotting or self-intersection, i.e. for θ in a sufficiently small interval. Knotting or self-intersection can only occur as a consequence of winding about the x_{3}-axis.

Lemma 3.9. The function $|q|^{2}$ is monotone increasing on the interval $-\pi / 4<\theta<$ $\pi / 4$.

Proof. Now

$$
|q|^{2}=\frac{16 R^{p+2}}{p^{2}\left(1-R^{2 p}\right)^{2}}\left\{1+R^{2 p}-2 R^{p} \cos 4 \theta\right\}
$$

which, after setting $\cos 4 \theta=1-2 \sin ^{2} 2 \theta$ and substituting for $\sin 2 \theta$ from equation (3.3), becomes

$$
|q|^{2}=\frac{16 R^{p+2}}{p^{2}\left(1+R^{p}\right)^{2}}\left\{1+\frac{4 R^{p-2} \beta^{2}}{\left\{(p-2) R^{p}-(p+2)\right\}^{2}}\right\}
$$

Differentiating with respect to θ yields

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \theta}|q|^{2}=\frac{16 R^{p+1}}{p^{2}\left(1+R^{p}\right)}\left\{\frac{\left\{(p+2)-(p-2) R^{2}\right\}}{\left(1+R^{p}\right)^{2}}(1\right. & \left.+\frac{4 \beta^{2} R^{p-2}}{\left\{(p-2) R^{p}-(p+2)\right\}^{2}}\right) \\
& \left.+\frac{4(p-2)(p+2) R^{p-2} \beta^{2}}{\left\{(p+2)-(p-2) R^{p}\right\}^{3}}\right\} R^{\prime}
\end{aligned}
$$

The coefficient of R^{\prime} in this expression is always >0, so that the sign of $(\mathrm{d} / \mathrm{d} \theta)|q|^{2}$ equals that of R^{\prime} and $|q|^{2}$ increases and decreases with R. The result now follows from Theorem 3.1.

Figure 3. The tear drop curve $\alpha(\theta)=1-R^{p} \mathrm{e}^{-4 i \theta}$.

Lemma 3.10.

(i) As θ varies from $-\pi / 2$ to 0 (the inner curve), $q(\theta)$ rotates about the origin through an angle $(p+2) \pi / 2-2 \tan ^{-1}(\beta / 2)$, beginning at the point $(-1)^{(p-1) / 2}(\beta-2 \mathrm{i}) / p$ and ending at the point $(-2+\mathrm{i} \beta) / p$.
(ii) As θ varies from 0 to $\pi / 2$ (the outer curve), $q(\theta)$ rotates about the origin through an angle $(p-2) \pi / 2+2 \tan ^{-1}(\beta / 2)$, beginning at the point $(-2+\mathrm{i} \beta) / p$ and ending at the point $(-1)^{(p-1) / 2}(-\beta+2 \mathrm{i}) / p$.

Remark 3.11. Because of reflectional symmetry of q in the lines $\theta= \pm \pi / 4$, the above lemma describes the rotation of q completely. For example, as θ varies from $-\pi / 4$ to $\pi / 4$, q rotates through $(p+2) \pi / 4-\tan ^{-1}(\beta / 2)+(p-2) \pi / 4+\tan ^{-1}(\beta / 2)=p \pi / 2$ about the origin.

Proof. The index about the origin,

$$
\operatorname{Ind}_{\gamma}(0)=\int \frac{\gamma^{\prime}}{\gamma} \mathrm{d} \theta
$$

of a curve γ not passing through 0 , measures the change in argument about 0 . Noting that $\operatorname{Ind}_{\gamma \mu}(0)=\operatorname{Ind}_{\gamma}(0)+\operatorname{Ind}_{\mu}(0)$, we deduce

$$
\begin{equation*}
\operatorname{Ind}_{(\gamma+\mu)}(0)=\operatorname{Ind}_{\gamma(1+(\mu / \gamma))}(0)=\operatorname{Ind}_{\gamma}(0)+\operatorname{Ind}_{(1+(\mu / \gamma))}(0) \tag{3.11}
\end{equation*}
$$

Suppose $-\pi / 2<\theta<0$. Let $\gamma(\theta)=-\mathrm{e}^{\mathrm{i}(p+2) \theta}, \mu(\theta)=R^{p} \mathrm{e}^{\mathrm{i}(p-2) \theta}$. Then $\mu / \gamma=$ $-R^{p} \mathrm{e}^{-4 i \theta}$. Noting that $R<1$ in the interval $(-\pi / 2,0)$, we apply equation (3.11) and

Figure 4. Two interlacing spirals corresponding to the shadows of two arcs of K_{0}^{5}.
study the change in argument of the curve $\alpha(\theta)=1-R^{p} \mathrm{e}^{-4 \mathrm{i} \theta}$, which begins and terminates at 0 and has the tear drop shape indicated in Figure 3.

Now,

$$
\arg \alpha=\tan ^{-1}\left(\frac{R^{p} \sin 4 \theta}{1-R^{p} \cos 4 \theta}\right) .
$$

We evaluate $\lim _{\theta \rightarrow 0} \tan \arg \alpha$. From Theorem 3.1, the Taylor expansion to first order of $R(\theta)$ is given by

$$
R(\theta) \sim 1+\frac{8 \theta}{p \beta},
$$

so that

$$
R^{p} \sin 4 \theta \sim 4 \theta\left(1+\frac{8 \theta}{\beta}\right)
$$

and

$$
1-R^{p} \sin 4 \theta \sim-8 \theta / \beta
$$

Thus

$$
\lim _{\theta \rightarrow 0} \tan \arg \alpha=-\beta / 2
$$

On the other hand, $\operatorname{Ind}_{\gamma}(0)=(p+2) \pi / 2$. The result now follows from (3.11) and Lemma 3.7. Similar arguments give part (ii).

Finally, we note the behaviour of the height function x_{3}.
Lemma 3.12. The sign of x_{3} is equal to the sign of $-\cos 2 \theta$.
Proof. This is a simple consequence of equation (3.7).

Figure 5. The shadow of the trefoil knot with $x_{3}<0$ depicted by the continuous curve and $x_{3}>0$ depicted by the dashed curve.

Proof of Theorem 3.6. As θ varies from $-\pi / 4$ to $\pi / 4$ and from $3 \pi / 4$ to $5 \pi / 4$ (x_{3} negative), the shadows in the q-plane of the corresponding arcs of K_{0}^{p} trace out two interlacing spirals, which, by Remark 3.11, rotate through $p \pi / 2$ as indicated in Figure 4.

These spirals can never intersect on account of Lemma 3.9, since $|q|$ is strictly increasing over these intervals.

A similar pair of interlacing spirals occur on the complementary $\operatorname{arcs}(\pi / 4,3 \pi / 4)$ and $(5 \pi / 4,7 \pi / 4)$, now with x_{3} positive. In \mathbb{R}^{3}, the curves are joined at the points $\left(q\left(\theta_{k}\right), 0\right)$, $\theta_{k}=(2 k+1) \pi / 4, k=0,1,2,3, \ldots$, giving a simple continuous closed curve K_{0}^{p} with no self-intersection points, i.e. a knot. This is sketched in Figure 5, where the continuous curve corresponds to $x_{3}<0$ and the broken curve to $x_{3}>0$.

To establish the topological nature of the knot K_{0}^{p}, we can 'pull back' the outer curve $(0 \leqslant \theta \leqslant \pi / 2$ and $\pi \leqslant \theta \leqslant 3 \pi / 2)$, like winding a spring and increase the rotation of the inner curve by $(p-2) \frac{1}{2} \pi+2 \tan ^{-1}\left(\frac{1}{2} \beta\right)$. Then each 'inner curve' now rotates through $p \pi$.

It is well known (cf. [11]) that these knots all have distinct Alexander Polynomials, and, hence, are non-isotopic. This establishes Theorem 3.6.

4. Comments and further problems

Similar considerations apply to the holomorphic curve $g=z^{p}, h=z^{p+1}+\mathrm{i} \beta z^{p}$, for $p=2,3,4, \ldots$, which yields a closed loop of singular values as sketched in Figure 6. However, the corresponding closed loop singularity in \mathbb{R}^{3} is never knotted.

For more general holomorphic curves, the singularity becomes difficult to compute,

Figure 6. The set of singular values for $(g, h)=\left(z^{p}, z^{p+1}+\mathrm{i} \beta z^{p}\right)$.
however, it is to be expected that knots and links of various kinds should occur. Also, more general deformations of the type

$$
g=z^{p}, \quad h=z^{q}+\varepsilon_{1} z^{r_{1}}+\varepsilon_{2} z^{r_{2}}+\cdots,
$$

following a Puiseux expansion, should yield interesting behaviour. It would be useful to have an effective computer method to sketch the singular set in \mathbb{R}^{3}.

Acknowledgements. I thank Luis Gallardo whose computer pictures prompted the ideas behind this work. I also thank the Department of Pure Mathematics at the University of Adelaide and the Australian Research Council for making possible a visit during July and August, 1996, when much of this work was done. The diagrams have been done using Richard Palais's 3-D Filmstrip, and I am grateful to Christopher Anand for drawing my attention to this marvellous tool.

References

1. P. Baird, Harmonic morphisms and circle actions on 3- and 4-manifolds, Ann. Inst. Fourier Grenoble 40 (1990), 177-212.
2. P. Baird and J. Eells, A conservation law for harmonic maps, in Geometry Symp. Utrecht 1980, Springer Notes, vol. 894, pp. 1-25 (Springer, 1981).
3. P. Baird and J. C. Wood, Bernstein theorems for harmonic morphisms from \mathbb{R}^{3} and S^{3}, Math. Ann. 280 (1988), 579-603.
4. G. E. Brelot, Lectures on potential theory (Tata Institute of Fundamental Research, Bombay, 1960).
5. C. Constantinescu and A. Cornea, Compactifications of harmonic spaces, Nagoya Math. J. 25 (1965), 1-57.
6. J. Eells and L. Lemaire, A report on harmonic maps, Bull. Lond. Math. Soc. 10 (1978), 1-68.
7. B. Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier Grenoble 28 (1978), 107-144.
8. S. Gudmundsson and J. C. Wood, Multivalued harmonic morphisms, Math. Scand. 73 (1994), 127-155.
9. N. J. Hitchin, Monopoles and geodesics, Commun. Math. Phys. 83 (1982), 579-602.
10. T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ. 19 (1979), 215-229.
11. L. H. Kauffman, Formal knot theory, Mathematical Notes, vol. 30 (Princeton University Press, Princeton, NJ, 1983).
12. C. L Seigel, Topics in complex function theory I (Wiley, 1969).
13. W. Thurston, The geometry and topology of 3-manifolds, Lecture notes, Department of Mathematics, Princeton University, Princeton, NJ (1977).
