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A FUNCTIONAL EQUATION FOR DEGREE TWO 
LOCAL FACTORS 

BY 

PAUL GÉRARDIN AND WEN-CH'ING WINNIE LI 

Dedicated to the memory of Robert Arnold Smith 

ABSTRACT. We show that the Fourier transforms of the admissible 
irreducible representations of the group GL2 over a nonarchimedian local 
field F are characterized by a functional equation (MF). We also prove that 
the functions satisfying (MF) and having at most one pole are exactly the 
Fourier transforms of the irreducible representations of the quaternion 
group H over F. The Jacquet-Langlands correspondence between irre
ducible representations of H and discrete series of GL2 then follows 
immediately from our criteria. 

Introduction. In this paper the base field F is a nonarchimedean local field with q 
elements in its residue field. Once and for all, fix a character u) of the additive group 
F which is trivial on the group 0 of integers but not on any larger O-module. In the 
group s&(Fx) of characters of the multiplicative group Fx of F, the subgroup of 
unramified characters is identified with Cx by Z t—» (/ \—> Zord '), where ord : F x —» Z 
is the order in the usual absolute value \t\ = q~0Td '. Put on $&(FX) the analytic structure 
so that the connected components are the cosets of C x and each connected component 
xC x is endowed with the usual analytic structure on C x. We complete each component 
\ C X by adding the origin xO. Clearly the components of s î (F x ) are parametrized by 
the discrete group 0X of characters of the group 0X of units. A function on s î (F x ) is 
said to be rational (resp. homogeneous) if it is a rational function (resp. a monomial) 
on each component xC x ; in particular, it has a finite order at the origin xO. For a 
ramified x £ <s4(Fx) denote by/ (x) (the exponent of) its conductor; set/(x) = 1 for 
X unramified. 

Recall that the gamma function T is a rational function on s&(Fx) defined by the 
principal value of the integral 

r(x)= f x(W(t)dxt 

as well as the analytic continuation on the component of unramified characters. Here 
dxt is the Haar measure on F x with vol(Ox) = 1. More precisely, 
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T(Z) = (1 — q ') ] — : — on the identity component 

and 

T(XZ) = Z - / ( x ) r (x ) (* 0) for X ramified and Z G C x . 

Introduce also the modified function 

7F(X) = (1 " q-])T(xq-m), 

then it satisfies the functional equation 

7 f(x)7F(X"') = X(-D. 

The Fourier transform 7^ of an admissible irreducible representation TT of the group 
G = GL2(F) is the scalar in the following functional equation in x ^ <s4(Fx) of 
operators: for any compactly supported locally constant function/on M2(F), 

f iT(x)x(àGtx)fMd*x = yAx) f ^ W x " 1 (det JC)/(JC) d*x, 
JG JG 

where d*x — |det x\'] dx with dx being the Haar measure on M2(F) such that M2(0) 
has volume 1 and / is the Fourier transform off with respect to i|/ o tr. See [3], Theorem 
3.3, for more details. It was proved by Jacquet and Langlands in [4], Theorem 2.18, 
Propositions 3.5, 3.6, and p. 84, that if TT is a principal series TT((X,V) for \x,v E 
s£(Fx) (possibly one-dimensional) or a special representation CT(|JL, V) for \iv~l = q±l 

(with the notations of [4], p. 103-104), then 

7*(x) = 7F(x^)7F(x^); 

otherwise, that is, when TT is supercuspidal, 7^ is homogeneous on s&(Fx). In case IT 
is infinite-dimensional, the Fourier transform 7^ also arises from the action of 

( ) in the Kirillov model of TT, and it determines the class of TT. A criterion for 

7-j, was given in [6], Theorem E, as a rational function 7 on s£(Fx) satisfying the 
following complement and multiplicative formulae for the same character 00. (In fact, 
ça is the central character of the representation.) 

COMPLEMENT FORMULA. There is a character oa of Fx such that 

7(X)7(X"1^"1) = <o(-l). 

In order to describe the multiplicative formula, we need some notation. On each 
component xC x of s&(Fx), choose a simple closed rectifiable curve Cx, positively 
oriented around the origin x0, such that the poles of 7 on this component lie outside 
Cx. Denote by Cm the union of these Cx's with/(x) ^ m. Choose the differential form 
d\ on s&(Fx) to be (2iri)~lZ~ldZ at each point xZ. 

(MF) MULTIPLICATIVE FORMULA. There is a character a> of F* such that, given any 
component of tâ(Fx) x $&(FX), we have, for m sufficiently large, 
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j r ( a X - 1 ) r (P X " 1 )7 (x ) dX = ( apo) ) ( - l ) r (a - 1 p- , a) - 1 ) 7 (a )7 (P) 

( 0 if aPco is ramified, 

/ ix Z if a(3(0 = Z is unramified, 
for all points (a, P) on the component with a inside Ca and p inside Cp. Here 
§cmg(x)dx means the sum of 1/(2TT/) <J>cx g(xZ) ^ ' dZ as Cx runs through all 
components of Cm. 

Evaluating the above contour integral by Cauchy's residue theorem and noting that 
r ( a x _ 1 ) has residue 1 at x = a, we can reformulate (MF) as follows: 

(ALTERNATE MF) There is a character wof/7* such that, given any component of 
s&(Fx) x ,s#(Fx), we have, for m sufficiently large and (a, P) in the component, 

( aPo) ) ( - l ) r ( a - 1 p- , a ) - , )7 (a ) 7 (P ) - r ( P a " , ) 7 ( a ) - r ( a P " 1 ) 7 ( P ) 

= S Res x 0 r (a X - , ) r (P X - 1 )7(x)^X 
f(X)<m 

( 0 if aPco is ramified, 

y-m+ 1 
<«>(- 1) _ if aPco = Z is unramified. 

Here 2/ (x)<m means that the sum over components of characters with conductor < m. 
REMARK. AS a result of Theorem 4 and Lemma 3 below, the last term in the above 

formula can be written as ^ „ ^ m 2/(x)=„ Resx 0r(ax_ 1)r(Px_ 1)7(x) d\ if aPco is 
ramified or aPco = Z with \Z\ > 1. In this case, the identity reads 

(aPo)) ( - l ) r (a - 1 p- 1 (o- 1 )7(a) 7 (P) - r f l J o T ' M a ) - H a p - ' h O ) 

= EResx0r(ax",)r(px-
,)7(x)rfx, 

where Se* means principal value, that is, Sw5=i 2/(x)=„. 
The purpose of this paper is to study properties of a rational function on s&(Fx) 

satisfying the multiplicative formula. We shall show 

THEOREM 1. The multiplicative formula implies the complement formula with the 
same co. 

An immediate consequence of this theorem is the following improvement of the 
criterion for Fourier transforms of representations of G given in Theorem E of [6]. 

THEOREM G. Let y be a rational function on s£(Fx). Then 7 = 7^ for some 
admissible irreducible representation it of G if and only if it satisfies the multiplicative 
formula. 
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Theorem G asserts that the rational functions satisfying the multiplicative formula are 
exactly the Fourier transforms of representations of G. In particular, 7(x) = 
7F(X|x)7F(xv) satisfies (MF) with o> = |xv as discussed earlier. We shall give a direct 
proof of this fact in Section 3. 

THEOREM 2. For any characters |x, v of F x , the function 

7(X) = 7F(X^)7F(Xv), X e ^ ( F x ) , 

satisfies the multiplicative formula with (o = |xv. 

We also prove the following statements without using representation theory. 

THEOREM 3. The inhomogeneous rational functions on sl(Fx) satisfying the multi
plicative formula are exactly those given by Theorem 2. 

PROPOSITION 1. Let y be a rational function satisfying (MF) for the character co. 
Denote by c the order at zero of y on the identity component. Then c < — 1 — /(co). 

THEOREM 4. Let y and c be as in Proposition 1. Then for all characters x E si(Fx) 
with conductor ^ — c, we have 

(DEEP TWIST) y(x) = 7F(x)7/r(x<*>). 

REMARK. Theorem 4 together with Lemma 2.2 of [5] implies that the character oo in 
the multiplicative formula is determined by 7. Another proof of this fact will be given 
in Section 5, Corollary 2. 

Let H be the multiplicative group of a quaternion algebra over F (unique up to 
isomorphism). For an irreducible representation a of//, its Fourier transform 7a is 
given by, for x £ $i{Fx), 

7a(x)W = ~ I v(x)X(Nx)ty(Tx)d*x, 
JH 

where A^resp. T) is the reduced norm (resp. trace), and d*x = \Nx\~]dx with dxbeing 
the Haar measure of the quaternion algebra assigning volume q~x to the ring of integers. 
If a has degree > 1, then 7CT is homogeneous; if a has degree 1, then CT = X ° N for some 
character X of Fx, in which case 

7a(x) = 7F(X>W,/2)7F(X>W~,/2) 

has a simple pole at x = k-,tf and is holomorphic elsewhere. The authors showed in 
[2], Corollary 2.2.9, that the Fourier transform 7CT determines the reduced character of 
a and hence the class of the representation. Moreover, 7a satisfies the multiplicative 
formula, the deep twist condition (Theorem 4), and the 

(CUSPIDAL CONDITION) There exists a character w of F x such that for any (v, T) G Fx 

x F with T = a + b and v = ab for two distinct elements a, b in Fx, we have 

J" (<f y(X)o>-l
X-2(t)x(vrldx)w-tT)\t\-]dxt = 0 

9" Cm 
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for m, n large enough, where 2P"'7 is the set of elements in F with order > — n. 
It was also shown in [2], Main Theorem 3.1.1, that these three conditions (with the 

same co) characterize the Fourier transforms of representations of H. In section 6 we 
prove 

THEOREM 5. Let y be a rational function on s&(Fx) satisfying the multiplicative 
formula (MF). Then it satisfies the cuspidal condition for the same oo if and only if it 
has at most one pole. 

As a consequence of Theorems 4 and 5, we have the following strengthened criterion 
for Fourier transforms of representations of H. 

THEOREM H. Let y be a rational function on $&(FX). Then 7 = 7^ for some 
irreducible representation a of H if and only if y satisfies the multiplicative formula and 
has at most one simple pole on $&{FX). 

Observe that the Fourier transform 7^ of an infinite-dimensional admissible 
irreducible representation TT of G has two simple poles or one double pole if IT is a 
principal series, it has one simple pole if IT is a special representation and is holo-
morphic if IT is supercuspidal. Thus 7^ has at most one simple pole on si{Fx) if and 
only if TT is a discrete series. Theorems G and H then give immediately the following 
local correspondence of Jacquet and Langlands (Theorem 15.1 of [4]): 

THEOREM HG. There is a bijection between representations of H and discrete series 
representations of G such that the corresponding representations have the same Fou
rier transform. 

This result was also proved in [2], Theorem 4.3.5, using orbital integrals. The 
approach in this paper avoids completely analysis in representation theory. 

1. Three lemmata. We begin by a simple observation. 

LEMMA 1. Let \ E s&(Fx). If y is a rational function on s&(Fx) satisfying the 
multiplicative formula for the character w, then the same is true for the function \ •—> 
7(X.X) with X2(o replacing a). 

For the second lemma, we take a rational function 7 on s î (F x) and set, for a, (3 E 
6#(Fx)andm > 0, 

^ ( a , P ) = 2 Res x 0 r (a X - 1 ) rOx" , )7 (x)^X. 
f(X)<m 

LEMMA 2. Viewed as a function in two variables A and B in C x , Rmy(aA, $B) is 
a finite linear combination of A~aB~b with positive integers a and b. 

PROOF. It suffices to show that on any connected component \ C X of s&(Fx), the 
function in A,B given by 

Resx 0r(aAX-1)r(P5x-1)7(x)^X 

is as described. I fa i snot inxC x , thenr(aAx_ 1) = r(ax~1)A~y(ax_l); if a i s i n x C x , 
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then near 7 = 0, T(aAx~lT~l) is a series in positive powers of A~lT. Hence near 
7 = 0 we have T(aAx^T'])T(^Bx~]T]) = 2fl,*>0 A" f l/r* ca,b(x)Ta+b for some 
constants cfl,fo(x)- As 7(x^) is rational in 7, the residue at 7 = 0 of 
r(aAx~]T~l)r($Bx~]T~])i(xT)T~] is a finite linear combination of A'aB~b with 
<2,/? > 0. This proves the lemma. 

The following expression of (Alternate MF) at (a, P) will be of frequent use: 

r ( P a " , ) 7 ( a ) + r ( a ( r ' ) 7 ( P ) + *„,7(a,P) 
(MF)' 

= ( apco ) ( - l ) r ( a - , p 1 co - , )7 (a )7 (P ) 

( 0 if a (Boo is ramified, 

/ Y)^ ^ a P ( 0 = % is unramified. 
The next lemma gives an example of computation of residues. 

LEMMA 3. Let a, p, |±, v be characters of Fx. If m is an integer satisfying m > 

2 / ( a ) , 2 / (P ) , 2/(p,), 2 / (v) , rte/i 

I Resx 0r(aX-1)r(pX-1)7F(X^)7F(Xv) 
/ ( X ) = m 

0 if aP|xv is ramified, 

(|xv)(—1)Z m if a$\Lv — Z w unramified, 

where the summation is over all components of characters of conductor equal to m. 

PROOF. This is Lemma 3.2.8 of [2] if we observe (cf. [1], 1.4) that 
7F(Xfx) x yF(xv) = 7F(x)7F(Xw) w r m w = V<v, using the hypothesis m > 
2/(p,), 2 / (v) . 

2. Complement formula. Let 7 be a rational function on si(Fx) satisfying the 
multiplicative formula (MF) for the character w. We prove Theorem 1, that is, for all 
a in s£(Fx), 

7(a)7(a~ lca~1) = w(—1). 

We may assume that a and a~~'co~' are not poles of 7. Then (MF)' at (aA, a~'00~' ) 
with m large reads 

r(A"1)7(aA)7(a_ 1a)-1) - r(a)"1a~2A- ,)7(aA) - r((oa2A)7(a"1co"1) 

A~m+X 

= Rmy(aA,a'](x)]) + — — co(-l). 
/\ 1 

By Lemma 2, the right hand side has a simple pole at A — 1 with residue a>( — 1). On 
the left hand side, the first term has a simple pole at A = 1 with residue 
7(a)7(a~ l(o"1), while the sum of the remaining two terms is holomorphic at A — 1 
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(which is obvious when a2o> =£ 1 and in case crco = 1 the residues at 1 of T(A ])y(aA) 
and r(A)7(a) are 7(a) and —7(a), respectively). This proves the theorem. 

COROLLARY 1. A rational function satisfying the multiplicative formula does not 
vanish identically on any component of sâ.(Fx). 

3. The multiplicative formula for inhomogeneous 7. In this section we show that 
for any characters |x, v of F x , the function 7(x) = 7F(xiJL)7F(Xv) satisfies the multi
plicative formula (MF) for w = |xv. We take the contour integral form. By analyticity 
in a, p, |x, v of both sides, it is sufficient to prove it for (a, p, |x, v) in an open set 
meeting every component of s£(Fx)4. For each character x of F x , we define |x| to be 
the positive number given by |x(0 | = l x l ° r d l > r Ê Fx. For |x| < 1, the integral 
/?/>-" x(Ol\f(t)dx t is absolutely convergent, and is equal to T(x) provided n > / ( x ) . 
If |a(3co| > 1, we can pass to the limit m -* 0° in (MF) and, by Lemma 3, our 7 will 
satisfy (MF) for 00 = JJLV if and only if 

(3.1) <f r (a X - , ) r (P X ~ 1 )7(x)^X = (aPco)(- l ) r (a- 1 p- 1 a)- , )7(a)7(P) , 

where C is the union of Cm. 
We introduce the algebra E = F x F. We identify F with the diagonal of E. We call 

, N, T the involution, norm, trace on E: if x = (w, v), then x = ( v, w), Nx = xx = 
uv, Tx = x + x = u+ v; the kernel £, of the normN:Ex —» Fx is the set of (t9t~

l) 
for t E Fx. We have Haar measures dx and dxx on E and £ x given by dudv and 
dxudx v, respectively, where dw and dv assign volume 1 to 0; if d*u = \u\~V2du, we 
write also d*x for d*ud*v, that is, d*x = |jV;v|~1/2<i;t. For any integer a, we write SP̂  
for 2Pfl x 9>fl. Observe that each t E Fx is the norm of an JC = (w, v) E £ x with 
[ordt/2] < ord u and ord v < fordt/2~|. The characters of £ x are the tensor products 
of two characters of Fx. For a E s&(Fx) with |a|x| and |av| < g1/2, our 7 function 
at a can be written as Jr^-«Q(x)a(Nx)\\f(Tx)d*x, a > / ( a | x ) , / ( a v ) , where 
6 = fx 0 v. (For simplicity, we wrote only 9^" instead of SP "̂ D £ x . ) This integral 
is the Fourier transform at a of the character G of Ex. It factors through 

/ * £ £ , , w * e ^ ' ' 0 ( W - * ) l | / ° T(\VX)dXW = 6 ( X ) î-a-ordu^orà^a + ordv(VV~])(t)\\l(tU + 

t~]v)dxt if JC = (w, v); this is also equal to 

(3.2) [x(Nx) J (u,v_,)(0i|i(^JC + * ~ V X ' , 
— a - ord Nx s£ ord f =e a 

which is stable for a > / ( J J L V _ I ) and -ordN*. Denote by J$(Nx) the stabilized value. 

Let r > 1. We take a, p, |x,v satisfying the inequalities |a | and |p | < r < |fx|_I^l/2 

and |v|_,^1/2, |aP^xv| > 1. Let C be the curve in $&(FX) given in each component by 
the circle of radius r centered at the origin. Then each of the involved T-functions in 
(MF) is represented by its integral form for x £ C; moreover the poles \x~lql/2 and 
v~xqm °f 7 a r e outside C. Take m ^ / ( a ) , / ( 0 ) , / ( | x ) , / ( v ) . Then, for a,b,c > m 
we have, by Fubini theorem, 
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<J> r ( a X - ' ) r ( P X
H ) 7 ( x ) ^ X = f (c»|i)(«)Oi|»)(v)(ei|»°7')(z) 

JCm
 Jt>?'ax^'hx9P~c 

The inner integral against x is 0 unless Nz G uv(\ + 2P"1), in which case it is Card©*; 
writing v = u~\Nz){\ + w) with w G <3>m, we have (Pi|/)(v) = 
($\\f)(u~]Nz)\\!(u~l wNz). The integral J^\\f(u^wNz)dw is 0 unless Nz G w9>~'\ in 
which case it is meas(l + $>m) = (Card©*)-1; so, for a and c ^ m > 
/ ( a ) , / ( P ) , / ( M , ) , / ( v ) , we have 

' j (Pi|/)(w"1A^z)(ei|i ° r)(z)d*z) </*«. 
z&}?F ,Nzew 

For each nonzero « £ ? " " , we choose x £ £ with norm « and in the integral in z we 
make the change of variable z = xy\ we then factor the integral in y through the norm 
map to make appear Jd(N(xy)) with 7e defined by (3.2); this leads to 

<f r(ax-,)r(0x~')7(x)rfx = f MOOo(f (W(v)y0(«v)j*v)^, 
./£• Jrjj>-(i \Jrjb~m / 

which is stable as a —> °°. By Lemma 3, we know that this sequence in m is convergent 
(we have assumed |aP|xv| > 1), so, finally, we have: 

(3.3) <j> r (a X " ' ) r (Px" 1 )7 (x )^X = Mm lim f (<M0(K) 

(Pi|i)(v)7e(wv)^*v)j*W . X 

On the other hand, for e ^ / ( a p , ) a n d / ( a v ) , / > / ( P | j , ) a n d / O v ) , d > / (apa>) , 
we have an absolutely convergent triple integral: 

( a P c o ) ( - l ) r ( a - , p - , a ) - , ) 7 ( a ) 7 ( P ) = f (aPa))(0~ ,a(yVx) 

X p(Aty)8(;t)8(;y)i|j(7* + 7> - t)d*td*xd*y 

which is also the limit as s goes to infinity of the truncated integral with d < ordr < 
5. For each tE<3>-d,t<£ SP, choose z G 2 ^ D D - \d/2\ with no component in 2P5, 
5 = r^/2l, such that Nz — t. Then under the change of variables x —» zx, y —> z y, 
the integrand becomes 

(3.4) (ai | i)(^)(pi|i)(^)(ev|i07)(x3;)iji0iV(z - x ~ y) 

and the measure becomes d*xd*y\Nz\dxNz\ by stability in e and/, we may integrate 
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V \y£ ®E \ Nz G <3>~d, Nz £ 2P. The integral in y gives a 
function of (JC,Z) E EX X EX which is invariant by the action of w 6 E| : (x,z) i—» 
(JCW, wz). We can write (£ x x Ex)/E] either as £ x x Fx by (JC,Z) H-> (X,NZ) or as 
F x x Ex by (JC, z) H* (NX, Z): we see that the measures d*x \Nz\dxz and \Nx\ V2dxNz 
dz correspond. So we rewrite our integral with a domain in (Nx, v, z) where JC G 9Êe~\ 
y G S^7-5 , z G S ^ N z G 9>5. This integral with the condition Nz £ 9>5 replaced by 
Nz E 9s is dominated by 

f ( — Y " dxu f rordN>'d*y f dz. 
JNVE

e~s V J9~f-S JV>-D,NzEVs 

The last integral can be computed explicitly: it is ((2D + s)(\ - q~x) + \)q~s\ the 
contribution of the two first is, up to a constant, (r2/q)~\ so the product is 0(sr~s) 
when s goes to infinity. Hence, the condition r > 1 allows us to consider only the 
integral of (3.4) on the set of (w, y,z) such that u = Nx, x G 9~E

e~\ y G 9>£/_\ z G 
9^°.The integral in z gives the term f&-D ij/ ° N(z — x — y)dz. From the definition 
E = F x F, we see that 

(3.5) f ty°N(z + x)dz = 
Jap D 

1 ifjcG9>~D, 
0 otherwise. 

Thus, this integration in z picks up the condition x + y E 9>£D. Now, the integral in 
y is, forjc G 9>â'~5: 

Oi|i)(^y)(ei|i o r)(jcy)d*y-

For D large enough, the condition i + y G ^ £ is satisfied; for/large enough we make 
appear JQ(N(xy)) as above and the integral of (3.4) is equal to 

f s (ai|i)(ii) f f ç (ai|i)(v)ye(«v)d*vd*ii. 

If we take now e ^ / and let s go to infinity, we get 

(a(3a))(-l)r(a" ,p"1a)-1)7(a)7(P) - lim lim J (ai|i)(u) 

X ( f (P4»)(v)ye(MV)d*v)rf*tt. 
\Jçj>-m / 

Comparing with (3.3), we have the multiplicative formula (MF). This shows that the 
function of x given by 7F(xiJL)7F(Xv) satisfied it for o> = jxv. 

This proof is similar to that of Theorem 3.3.1 of [2] for the Fourier transform of an 
irreducible representation of the quaternion group; there, the decisive relation corre
sponding to (3.5) is /// i|i °N(z) dz = — 1. We could also have taken a similar viewpoint, 
starting with a function 0 on Ex of type co under Fx and fixed by some 1 + 9^; then 
its Fourier transform 7(x) ~ IEX Q(x)x(Nx)ty(Tx) d*x satisfies (MF) if 8 is a character 
o f £ x . 
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4. Determining inhomogeneous 7. Let 7 be a rational function on s£(Fx ) satisfying 
the multiplicative formula for the character 00. We prove first 

PROPOSITION 2. Let a be a character ofFx. Then on the connected component of a, 
either 7(aA) is a monomial in A of degree at most —1 — f(a2u>) or y (a A) — 
yF(a[LA)yF(avA) for some characters JJL, V of FX with 00 = \xv. 

PROOF. In view of Lemma 1, we may assume a = 1. We examine the multiplicative 
formula (MF) at (A,B) for m sufficiently large. The identity (MF)' reads 

(4.1) r(£A- ' )7(A) + r(AB-l)y(B) + Rmy(A,B) 

= o K - U n c o - A ^ ) 7 ( A ) 7 ( £ ) + [ ° (ZAB)^ * " " " " ^ 

Here Rmy(A.B) is a polynomial in A"1 and B~x with degrees in A and B both ^ - 1 
by Lemma 2. As 7(A) is not identically zero by Corollary 1, for A with small absolute 
value, we can express 7(A) in series: 7(A) = 2wSSt. 7„A\ where c is the order of 7(A) 
at A = 0. Hence we shall regard (4.1) as an equation in the two variables A and B. We 
distinguish two cases according to the ramification of a). 

CASE 1. ea is ramified. For brevity we write / for /(<o). Noticing 

1 - q-lZ~] 

and 

Z- qlZ2 

T(Z~l) = (1 - q-xY 
Z - 1 

forZ G C x , we multiply both sides of (4.1) by (1 - q~x){\ - BA~{) to arrive at 

(4.2) (1 - q~]AB-])y(A) - (BA~] - q~]B2A~2)y(B) 

+ Rmty(A,B)(l - BA-])(l - q~l) = 7(A)7(5)r((o"1)a)(-l) 

X AfBf(l - AB~l)(\ - q-1) 

Observe that the monomials AaBh with a ^ 0 and b E Z do not occur in the last two 
terms of the left hand side of (4.2), therefore we obtain information about 7(A) by 
comparing the coefficients of these terms. The absence of AaBb for a ^ 0 and b ^ 1 
on the left side of (4.2) yields, from the right side of (4.2), 

7a7̂ >+i = 7«+i7/> f o r o,,b^ ~f 

which in turn implies 

(i) There is a complex number M such that 7,, = 7_/M"+/ for n ^ — / + 1. 
Equating the coefficients of A°B° and AB~X gives rise to 
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(ii) 7o = (1 - q l)T(o) ,)o)(-l)(72_ / - 7- /+ ,7-/-i) 
and 
(iii) 7o = ~q{\ - ^"1)r(a)" ,)co(-l)(7_ /+ ,7_ /_, - 7_/+27-/-2> 
respectively. Finally, comparing the coefficients of AaBc+f for a ^ 0 leads to 
(iv) If c < -f - 1, then 7(A) is a finite series in A with degree ^ —/ — 1. 
Thus if y (A) is a finite series, then it has degree ^ —/by (i) and hence ^ — / — 1 by 
(ii). If 7(A) is an infinite series, then c ^ —f — 1 by (iv) (so that 7-7-2 — 0), and, by 
(i), 7„ = y-fM"+f =£ 0 for n ^ —/. Equating (ii) and (iii) yields 

7- , . , = (1 - qyly-fM-\ 

We can then obtain the value of y-f in terms of M from (iii): 

7_/= a)(-l)M / /r(a)~1) . 

Summarizing the above discussion, we have 

r(fiA) 
70*) = 2 7„A" = (o(-l)-

„*-/-• r(a)HMA) 
7F(MA) 

= co(-l) — ; = 7F(M)7F(vA), 
7 (*» M ) 

where |x = Mqm and JULV = oa. Note that in this case 7 has a zero on the identity 
component. 

Similar conclusion holds for 7(a) -1 A). In particular, if 7(A) is a finite series in A 
and is not a monomial, then it has zero(s) and no pole on the identity component. The 
complement formula y(A)y((o~lA~l) = co(-l) then implies that 7(o)_1A) has pole(s) 
and no zero on the component of 00 _1, a contradiction. This proves the proposition for 
ramified a>. 

CASE 2. a) = Z is unramified. Multiply both sides of (4.1) by (1 - BA~X) (1 -
ZAB){\ - q"x) to get 

(4.3) (1 - q-lAB~l)(\ - ZAB)y(A) - (BA] - q]B2A-2)(l - ZAB)y(B) 

+ R'(A,B)(l - BA~]) = 7(A)7(5) 

X (-ZAB + q-]Z2A2B2)(l - BAl), 

where tf'(A,£) = (1 - q~x)Rm^{A,B){\ - ZAB) - co(-l)(l - q~])(ZABym+] is 
a finite series in A and Z? with degree in A ^ 0 and degree in B ^ 0. This time note 
that the monomial AaBb with « ^ 1 and fr E Z do not occur in the last two terms of 
the left hand side of (4.3). The vanishing of AaBb with a ^ 1, 6 ^ 2 on the left and 
hence right hand side of (4.3) yields 

(v) 7*(7a+i + q~xZ~ia-\) = ya(yb+l + q'xZyb-x) for a,b ^ 0. 

If 7(A) is a finite series in A, then (v) implies that it has degree ^ - 1 . In fact, the 
degree is ̂  - 2 by checking the coefficient of AB. Next assume that 7(A) is an infinite 
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series. Then, from (v), there is a complex number N such that 

(vi) 7„+i + q~lZy„-i = Nyn for n ^ 0. 

The absence of AaBb terms with a > 0 and b ^ - 2 from the left hand side of (4.3) 

implies c ^ - 2 . To determine 7(A) we need to know 7„ for n = - 2 , - 1 and 0. For 

this, choose any integer a ^ 0 such that ya =£ 0 and compare the coefficients of 

Aa+iB~l, Aa+l and Aa+lB in (4.3). Using 7_3 = 7_4 = 0 and (vi), we arrive at 

q~lya = Z7_27a, A 7̂a = (ZN7-2 - Z r - i h , , , 

and 

7« = (-Ny-i + q~lZy-2 + 7o)7*> 

in other words, 

7_2 = ç - ' Z - 1 , 7_, = (*"' - D^VZ"1 

and 

7o = (1 - q'1) + (q~] ~ l)N2Z~] 

since ya =£ 0. Writing N = M + q~lZM~l, we get 

_ r (MA) 
7 ( A ) - S 7nAw = - — — — — = 7 " ( M ) 7 F ( v A ) , 

„2*-2 l ( Z 'MA ') 

where jx = Mql/2 and |xv = 00 = Z. 

We conclude that either 7(A) = yF(\xA)yF(vA) for some characters jx, v of Fx with 

|xv = a), or 7(A) is a monomial in A of degree ^ - 2 by the same argument as in Case 

1. This completes the proof of Proposition 2. 

In the course of the proof, we also showed that c = - 1 - /(o>) if 7(A) is not a 

monomial. Combined with the monomial case, we have shown Proposition 1, that is, 

the order of 7(A) at A = 0 is ^ - 1 - /(a>). 

Now we proceed to prove Theorem 3. We know from Theorem 2 that 7 ( x ) — 

7 / r ( | xx )7 F (vx) satisfies (MF). It remains to show that these are the only in-

homogeneous ones. Suppose that 7 is a rational function on si(Fx ) satisfying (MF) for 

the character co and 7 is not a monomial on the component of a E si(Fx). Then, by 

the proposition above, we have 

(4.4) 7 ( a A ) = 7 F ( (xaA)7 F (vaA) , 

where fx, v G s&(Fx)y |xa = Z is unramified and jxv — 00. We want to prove 

7 ( P ) = 7 F ( ^ P ) 7 F ( v P ) for £Ed(Fx). 

The complement formula together with the functional equation satisfied by 7^ shows 

that the above equality holds for (3 in the component of a - 1 a ) - 1 . So we may assume 

a ( 3 - 1 and aP<o both ramified. We may also assume that (3 is not a pole of 7. The 

identity (MF)' at (aA, p) with m large gives 
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(4.5) r (Pa- , )7(aA)A / ( P a _ , ) + r(ap- ,)7(P)A~ / ( a~'P ) + Rm,y(aA, P) 

= 7(aA)7(P)r(a~1p-10)-1)(aPa))(-l)A / ( aP<0) , 

where Rm 7(aA, (3) is a finite series in A with degree ^ - 1 by Lemma 2. As before, 
for A with small absolute value, write y(aA) = 2w3BC(a) 7„A\ Choosing an integer 
« > c and n > c — / ( a 0 a > ) + / ( p a _ I ) such that 7„ =£ 0 and comparing the coefficient 
of An+/ (aPw)in(4.5), we find 

, « v / o w n r ( P a _ 1 ) 7«- / (a^a ) ) + / (Pa- , ) 

7(P) = (aPa)) ( - l ) Ha- ' p - ' a ) " 1 ) 7« 

If (oa2 is unramified, then/(aP(o) = / ( P a _ 1 ) and hence 

rocr1) 
7(P) = ( a P ( o ) ( - l ) - — - — — - = 7F(a_ 1P)7F(«a)p) = 7F(^P)7F(vp) 

T(a 'P 'co ') 

since |x = a~]Z and v = acoZ-1. If am2 is ramified, then (4.4) gives 

7/i+/(«P<*)-/Oa )/7n 1^4 / 

by our choice of «, and hence 

r(pa-*z^-,/2) 
7(P) = (aPco)(-l) 

r(a-1p-,a)-^-1/2z) 
7/r(aP) 

= (M(-l) = 7F(M-P)7F(vp), 
7̂ (v-,p !) 

as desired. This proves Theorem 3. 

5. Deep twist. The deep twist property gives an explicit form for 7(x) satisfying 
(MF) at characters x with sufficiently large conductor. As before, let 7 be a rational 
function satisfying (MF) with the character w. Denote by c the order at zero of 7 on 
the identity component. Let a be a character of Fx with conductor at least —c. By 
Proposition 1, the inequality / ( a ) ^ —c implies / ( a ) > /(co). In particular, 
/ ( a w ) = / ( a ) ^ 2. The multiplicative formula (MF)' at (a,B) with m large says 

[ (aco)(- l ) r (a- ,o)- 1 )7(a) - T(a)]Bf(a)y(B) 

= T(a-l)y(a)B-fia) + Rm,y(a,B). 

Because/(a) ^ - c , the left hand side is holomorphic ati? = 0, while the right hand 
side is a polynomial, without constant term, in B~l by Lemma 2. Hence both sides are 
identically zero; this gives 

r (a ) (aco) ( - l ) 7 f(c0(aa>)(-l) 
7(a) = = = 7 (<*)r (<*<o), 

T(a 'co ') 7F(a 'co ') 
which proves Theorem 4. 
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COROLLARY 2. In (MF), the character co is determined by 7. 

PROOF. Let m be an integer ^ 2 / ( œ ) and ^ - c as in Theorem 4. Then for x E 
si{Fx) with conductor/(x) = m, we have 7F(o)x) = 7(x)/7F(x)- Since the function 
on g r̂̂ /21 g j v e n by M ^ x(l + w) is a n additive character, there is an element tx E 
Fx of order ra, unique modx(l + $>[m/2]), such that x(l + u) = \\f(t~]u). Then we have 
7F(Xo>) = co(r;1)7F(x) (cf [1], 1.4), in other words, o>(fx) = 7F(x) 2 /7(x) . As 
[m/2] ^/(o>), these rx's determine the values of co on the elements in F x of order ra. 
Therefore co is completely determined by 7 at the characters of conductor m and 
ra + 1. 

COROLLARY 3. Wïr/i 7 r̂ad c as in Proposition 1, the multiplicative formula (MF) 
holds for {a, (3) provided m is larger than or equal to 2 / ( a ) , 2/((3), 2/(a>) «ftd — c. 

PROOF. From Theorem 4, we have 7(x) = 7F(x)7F(X(°) f ° r / ( x ) ^ m- Then 
Corollary follows from Lemma 3 by observing that, for two integers m,n, with n^ ra, 

7-M + 1 7-/W+1 
_ _ y-/w 1 1 y - r t+1 

1 - z 1 - z z • z • 
6. Cuspidal condition and singularities of 7. In this section, we prove Theorem 

5. Let 7 be a rational function on si(Fx) satisfying the multiplicative formula (MF). 
Assume first that 7 also satisfies the cuspidal condition for the same 00. If 7 is not 
homogeneous, then by Proposition 3.2.4 of [2], 7 has a simple pole at x = \^q for some 
character |JL with 00 = |x~2. Then Theorem 3 implies that 7 has the form 

7F(XIX~1)2 if XM*-1 is ramified, 

7-2 «Z ~ l if X ^ 1 = Z, 
q-Z 

and consequently, \x,q is the only singularity of 7 on si(Fx). 
Conversely, assume that 7 has at most one simple pole at, say, x = \^q- Then 00 = 

(JL-2 if 7 has a pole. Let r be a number satisfying g|a)|-1/2 > r > g1/2|co|~1/2 and let r' 
be a number satisfying r > r' > q\u>\~lr~l, where |00| is the real number given by 
IcoJordr __ 1 (̂7)1 for avj 1 (= /7X On each connected component xC x of ,s$(Fx), choose 
two circles Cx and Cx with center origin and radius r', r, respectively. In case 7 has 
a pole at ixg, the condition g|a)|~1/2 = q\[i\ > r implies that this pole is outside C^, 
hence we may assume that the curve Cm in (MF) is the union of the Cx's with/(x) ^ 
m. Since each circle Cx lies inside Cx and, for each point a on Cx, the point a~lo)~lq 
lies inside the circle Cx-ia)-i, the multiplicative formula (MF) at (a, a -1(o_1g) holds for 
m sufficiently large. Let C'm be the union of the curves Cx with/(x) ^ m. 

Now we proceed to prove the cuspidal condition with the same a) as in (MF). Observe 
that if the condition holds for (v, T) E FX X F, then it holds for (w2v, WT) with u E Fx 

by changing the variable t 1—» ut in the integral. Thus it suffices to prove it for T = 
1 + v, and v ± 1. Our proof is similar to that of Lemma 3.4.4 of [2] in which we 
computed the case v = 1. Let m be a positive integer ^ max(2/(co), — c, 1 + 

7(X) = 7 F ( X ^ V , / 2 ) 7 F ( X ^ ~ V / 2 ) 
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2ord(v - 1)), where c is as in Theorem 4. In particular, the deep twist formula is valid 

for x in si(Fx) w i t h / ( x ) ^ m, and hence for a character a w i t h / ( a ) ^ m, the 

multiplicative formula at (a,a~l(û~lq) holds when integrated over Clm. 

It follows from our choice of C'm that 7 ( a ) and 7(0* - ,o)~ lq) are holomorphic at 

a E C'm\ since T(x) has a zero at x = q~l, the function r(q~l)y(a)y(a~l<s)~]q) is 

equal to zero on C'm. From (MF) we get 

Jc2 

which yields 

j r ( a X - , ) r ( a - , a ) - , ^x" , )7 (x )^X = <«>(-l)(l - qylq-2m, 

(6.1) f U r(ax-l)r(a-lo>-lqX-l)l(x)dx)<*(v)\v\da 
C'm Cjm 

= a>(- l ) ( l - q)~]q~2m <P a ( v ) | v | d a = 0 
C'm 

since v ^ 1 + <3>m. We split the integral on the left side as §c>m §Cm + §c>m §c2m\cm
 a nd 

compute each of them. As the integrand is continuous on C'm x C2m, we may inter
change the order of integration. 

Our choice of C'm and Cm allows us to express r ( a x _ 1 ) and T(oL~xiù~xqx~x) in 
series: 

r ( a X - ' ) = 1 U a x ' 1 ) , r ( a - ' a , - | ^ x " l ) = 2 r ^ o r ' a T 1 ™ - ' ) . 

where 

r a ( p ) = f p(M) i | i (M)d x ï i , 

and (a) denotes the set of elements in F x of order a. Hence, for a character \ with 

f(\) *S m, 

<P T(ax~l)T(a-]o)-'qx~])oi(v)da 

= 2 ra^ordA^x~lWa(^'l^-lqx~])Hv) 

and the series converges absolutely. Summing over all components C( of C'm yields 

f r ( a x " 1 ) r ( a ~ 1 ( o ~ , ^ x " 1 ) a ( v ) | v | J a 
C'm 

= f ( f 2 ( a x - , ) ( 0 * ( 0 ( a - 1 a ) - ^ x " , ) a v ) 

X i|j(fv)a(v)|v|</xv]</xf 

^ f (a>-Ix~2)(Okl"1(co1x"I)(v)iJ/(r(l + v))dxL 
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Therefore 

(6.2) j (j r(aX-|)r(a-1a)-^x"l)7(x)«(v)|v|Ja)rfX 

= <o(-v)-,<( (f 7(x)(w-'x~2)(Ox(vr,4'(-?T)M-|c/xr)rfx. 
JCm

 XJ
v-

i<3>~m f 

Because 7 ( x ) x ( v ) 1 ls bounded and |a>~'x~2<7l < 1 on Cm9 thus the integral in t 
converges absolutely. This allows us to interchange the order of integration in the above 
double integral, which becomes what appears in the cuspidal condition. 

In view of (6.1) and (6.2), the cuspidal condition at (v, 1 + v) will hold for m as 
chosen and n ^ m 4- ord v if we can show 

j> U r(ax",)r(a-,a>-1^x_1)7(x)«(v)^x)^ = 0. 
C'm C->m\C,„ Jcm

 XJc2m\c, 

Recall that 7(x) = 7 (x)7 (Xe0) f ° r / (x ) ^ m> hence the above equation will result 
from 

i U r(aX-1)r(a- ,a)-^X"1) 
JC JC \C 

x r(x)T(x^)oi(v)dx)da = 0 for m < n ^ 2m. 

To evaluate this integral, express the four T-functions in their integral form and 
integrate against x; it becomes 

<P J a(v~1v)o)(r)i|i(w(l + r)(l + vr))dxu dx v dxr da. 
^C'm ^uE(-n),v,rE€x 

If v is not a unit, then integration against a gives zero and we are done. If v is a unit, 
then integrating against a first and v next yields 

(6.3) J o)(r)i|i(M(l + r)(l + rv))dxudxr 
^uE(-n),rE-\+<3>" m 

= J o)(-l + w)\\f(uw(w + v"1 - 1))(1 - q'lyldxudw 

under the change of variables u \—» v~]u and r = 1 + w. Using /<_„> I|I(M v) dxu = 
1 — q~\— q~\Q according as ord v ^ n, ord v = n — 1, ord v < « — 1 respectively, 
we bring (6.3) to the form 

(6.4) o)(- l + w)dw - q~] co(-l + w) dw, 
JS' JS 

where 

5 = {w G 3>n"m: ord w 4- ord(w 4- v"1 - 1) ̂  rc - 1} 
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and 

S' = {w E S P " : ord w + ord (w + v"1 - \) ^ n} C S. 

Write e for ord (v_1 - 1) = ord (v - 1). We have m ^ 2e + 1 and m ̂  2/(o)) by 
our choice. 

CASE 1. rc - m > e. Then ord (w + v'] - 1) = efor all w E SP- '", and 5 = g*"-'-', 
5" - S>l,"f. From« - 1 - e ̂  m ̂  2/(o>) we have <o(-l + w) = (o(-l)for w E 
5, and, consequently, (6.4) is equal to zero. 

CASE 2. n — m ^ e. Because n + 1 ̂  m + 2 > 2e, an element w E S has 
order ^ e . Moreover, n - 1 - e > e, thus w E 5 has order >e if and only if it is in 
2P,J~1~f', and it has order e if and only if it is in 1 - v~l + $>"-]~e. This shows that 
S = <3>"-]~e U (1 - v"1 + <3>"-]-e). Similarly, S' = ^n~e U (1 - v~x + S^ - ' ) . From 
n— \— e>n— \— m/2 ^ / (o>) we know co(—1 + w) is equal to co(— 1) for 
w E gp" 1 - ' and co(-v)"1 for w E 1 - v"1 + SP"-'. This proves that (6.4) vanishes. 
The proof of Theorem 5 is completed. 
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