Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T12:20:35.563Z Has data issue: false hasContentIssue false

Late Glacial Atmospheric Radiocarbon Variations Recorded in Scots Pine (Pinus sylvestris L.) Wood from KwiatkÓw, Central Poland

Published online by Cambridge University Press:  10 September 2018

Marek Krąpiec*
Affiliation:
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Kraków, Poland
Danuta J Michczyńska
Affiliation:
Silesian University of Technology, Institute of Physics–CSE, Gliwice, Poland
Adam Michczyński
Affiliation:
Silesian University of Technology, Institute of Physics–CSE, Gliwice, Poland
Natalia Piotrowska
Affiliation:
Silesian University of Technology, Institute of Physics–CSE, Gliwice, Poland
Tomasz Goslar
Affiliation:
Faculty of Physics, Adam Mickiewicz University, Poznań, Poland Poznań Radiocarbon Laboratory, Foundation of the A. Mickiewicz University, Poznań, Poland
Elżbieta Szychowska-Krąpiec
Affiliation:
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Kraków, Poland
*
*Corresponding author. Email: mkrapiec@agh.edu.pl.

Abstract

Our project aimed to construct a Scots Pine (Pinus sylvestris L.) chronology for part of the Late Glacial and reconstruct changes in the 14C concentrations during this period. Kwiatków (Kolska Basin, central Poland) proved to be very prospective site, in which wood from the end of Allerød was recognized. A level of organic deposits with so-called fossil forest was encountered within the late-Vistulian terrace of the low valley of the Warta river. Dendrochronological analysis of over 267 samples complying to the requirements of the method allowed, at the present stage of the research, to construct a chronology spanning 265 yr. Fifty-two samples (5 consecutive rings each) were subjected to α-cellulose extraction and 14C measurements. Ninety-six results and the wiggle-matching technique anchor the chronology to the period 13,821–13,561 cal BP (Acomb=141.6%) according to the D_Sequence procedure and the IntCal13 calibration curve or to 13,800–13,540 cal BP according to the wiggle-matching technique using the χ2 test and raw data, i.e. the Heidelberg tree-ring sequence.

Type
Atmosphere
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alley, RB, Shuman, CA, Meese, DA, Gow, AJ, Taylor, KC, Cuffey, KM, Fitzpatrick, JJ, Grootes, PM, Zielinski, GA, Ram, M, Spinelli, G, Elder, BC. 1997. Visual-stratigraphic dating of the GISP2 ice core: basis, reproducibility, and application. Journal of Geophysical Research 102:2636726381.Google Scholar
Anchukaitis, KJ, Evans, MN, Lange, T, Smith, DR, Leavitt, SW, Schrag, DP. 2008. Consequences of a rapid cellulose extraction technique for oxygen isotope and radiocarbon analyses. Analytical Chemistry 80:20352041. doi: 10.1021/ac7020272.Google Scholar
Baillie, MGL, Pilcher, JR. 1973. A simple cross-dating program for tree-ring research. Tree-Ring Bulletin 33:714.Google Scholar
Bird, M, Ayliffe, LK, Fifield, LK, Turney, CSM, Cresswell, RG, Barrows, T, David, B. 1999. Radiocarbon dating of “old” charcoal using a wet oxidation, stepped-combustion procedure. Radiocarbon 41(1):127140.Google Scholar
Brauer, A, Endres, C, Güntera, C, Litt, T, Stebich, M, Negendanka, JFW. 1999. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quaternary Science Reviews 18(3):321329.Google Scholar
Bronk Ramsey, C, van der Plicht, J, Weninger, B. 2001. “Wiggle matching” radiocarbon dates. Radiocarbon 43(2A):381389.Google Scholar
Cook, ER, Kairiukstis, LA, editors. 1990. Methods of Dendrochronology. Dordrecht: Kluwer Academic Publishers.Google Scholar
Dzieduszyńska, DA, Kittel, P, Petera-Zganiacz, J, Brooks, SJ, Korzeń, K, Krąpiec, M, Pawłowski, D, Płaza, DK, Płóciennik, M, Stachowicz-Rybka, R, Twardy, J. 2014. Environmental influence on forest development and decline in the Warta River valley (Central Poland) during the Late Weichselian. Quaternary International 324:99114.Google Scholar
Friedrich, M, Knipping, M, von der Kroft, P, Renno, A, Ullrich, O, Vollbrecht, J. 2001. Ein Wald am Ende der letzten Eiszeit. Untersuchungen zur Besiedelungs-, Landschafts- und Vegetationsentwicklung an einem verlandeten See im Tagebau Reichwalde, Niederschlesischer Oberlausitzkreis. Arbeits- und Forschungsberichte zur sächsischen Bodendenkmalpflege 43:2194.Google Scholar
Friedrich, M, Remmele, S, Kromer, B, Hofmann, J, Spurk, M, Kaiser, KF, Orcel, C, Küppers, M. 2004. The 12,460 year Hohenheim oak and pine tree-ring chronology from Central Europe e a unique annual record for radiocarbon calibration and paleo-environment reconstructions. Radiocarbon 46(3):11111122.Google Scholar
Goslar, T, Kuc, T, Ralska-Jasiewiczowa, M, Różanski, K, Arnold, M, Bard, E, Van Geel, B, Pazdur, MF, Szeroczyńska, K, Wicik, B, Więckowski, K, Walanus, A. 1993. High-resolution lacustrine record of the Lateglacial/Holocene transition in Central Europe. Quaternary Science Reviews 12:287294.Google Scholar
Goslar, T, Arnold, M, Tisnerat-Laborde, N, Czernik, J, Ralska-Jasiewiczowa, M. 2000. Variations of Younger Dryas atmospheric radiocarbon explicable without ocean circulation changes. Nature 403:877880.Google Scholar
Goslar, T, Czernik, J, Goslar, E. 2004. Low-energy 14C AMS in Poznan radiocarbon Laboratory, Poland. Nuclear Instruments and Methods in Physics Research B 223-224:511.Google Scholar
Hajdas, I, Hendriks, L, Fontana, A, Monegato, G. 2016. Evaluation of preparation methods in radiocarbon dating of old wood. Radiocarbon 58(1):111. doi: 10.1017/RDC.2016.98.Google Scholar
Hajdas, I, Ivy-Ochs, SD, Beer, J, Bonani, G, Imboden, D, Lotter, AF, Sturm, M, Suter, M. 1993. AMS radiocarbon dating and varve chronology of Lake Soppensee: 6,000 to 12,000 14C years BP. Climate Dynamics 9:107116.Google Scholar
Hajdas, I, Ivy-Ochs, SD, Bonani, G, Lotter, AF, Zollitschka, B, Schlüchter, C. 1995. Radiocarbon age of the Laacher See tephra: 11,230 40 BP. Radiocarbon 37(2):149154.Google Scholar
Hoper, ST, Mccormac, FG, Hogg, AG, Higham, TFG, Head, MJ. 1998. Evaluation of wood pretreatments on oak and cedar. Radiocarbon 40(1):4550.Google Scholar
Hughen, KA, Southon, JR, Lehman, SJ, Overpeck, JT. 2000. Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290:19511954.Google Scholar
Johnsen, SJ, Clausen, HB, Dansgaard, W, Fuhrer, K, Gundestrup, N, Hammer, CU, Iversen, P, Jouzel, J, Stauffer, B, Steffensen, JP. 1992. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359:311313.Google Scholar
Kaiser, KF, Friedrich, M, Miramont, C, Kromer, B, Sgier, M, Schaub, M, Boeren, I, Talamo, S, Guibal, F, Sivan, O. 2012. Challenging process to make the Lateglacial tree-ring chronologies from Europe absolute—an inventory. Quaternary Science Reviews 36:7890.Google Scholar
Kitagawa, H, van der Plicht, J. 1998. A 40,000 years varve chronology from Lake Suigetsu, Japan: extension of the 14C calibrations curve. Radiocarbon 40(3):505515.Google Scholar
Michczyńska, DJ, Krąpiec, M, Michczyński, A, Pawlyta, J, Barniak, J, Goslar, T, Nawrocka, N, Piotrowska, N, Szychowska-Krąpiec, E, Waliszewska, B, Zborowska, M. 2018. Different pretreatment method for 14C dating of Younger Dryas and Allerød pine wood (Pinus sylvestris L.). Quaternary Geochronology. doi: 10.1016/j.quageo.2018.07.013Google Scholar
Nakagawa, T, Kitagawa, H, Yasuda, Y, Tarasov, PE, Nishida, K, Gotonda, K, Sawai, Y. 2003. Asynchronous climate changes in the North Atlantic and Japan during the last termination. Science 299:688691.Google Scholar
Nemec, M, Wacker, L, Hajdas, I, Gäggeler, H. 2010. Alternative Methods for Cellulose Preparation for Ams Measurement. Radiocarbon 52(3):13581370.Google Scholar
Rasmussen, SO, Andersen, KK, Svensson, AM, Steffensen, JP, Vinther, BM, Clausen, HB, Siggaard-Andersen, M-L, Johnsen, SJ, Larsen, LB, Bigler, M, Röthlisberger, R, Fischer, H, Goto-Azuma, K, Hansson, ME, Ruth, U. 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111:D06102. doi: 10.1029/ 2005JD006079.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887. doi: 10.2458/azu_js_rc.55.16947.Google Scholar
Rinn, F. 2005. TSAP-win. Time Series Analysis and Presentation for Dendrochronology and Related Applications. User Reference. Heidelberg.Google Scholar
Santos, GM, Ormsby, K. 2013. Behavioral variability in ABA chemical pretreatment close to the 14C age limit. Radiocarbon 55(3):534544. doi: 10.2458/azu_js_rc.55.16102.Google Scholar
Santos, GM, Bird, MI, Pillans, B, Fifield, LK, Alloway, BV, Chappell, J, Hausladen, PA, Arneth, A. 2001. Radiocarbon dating of wood using different pretreatment procedures: Application to the chronology of Rotoehu Ash, New Zealand. Radiocarbon 143(1):239248.Google Scholar
Schwander, J, Eicher, U, Ammann, B. 2000. Oxygen isotopes of lake marl at Gerzensee and Leysin (Switzerland), covering the Younger Dryas and two minor oscillations, and their correlation to the GRIP ice core. Palaeogeography, Palaeoclimatology, Palaeoecology 159(3–4):203214. doi: 10.1016/S0031-0182(00)00085-7.Google Scholar
Sookdeo, A, Wacker, L, Fahrni, S, McIntyre, CP, Friedrich, M, Reinig, F, Nievergelt, D, Tegel, W, Kromer, B, Büntgen, U. 2016. Speed dating: a rapid way to determine the radiocarbon age of wood By EA-AMS. Radiocarbon 58(1):17. doi: 10.1017/RDC.2016.76.Google Scholar
Southon, JR, Magana, AL. 2010. A comparison of cellulose extraction and ABA pretreatment methods for AMS 14C dating of ancient wood. Radiocarbon 52(3):13711379.Google Scholar
Spurk, M, Friedrich, M, Hofmann, J, Remmele, S, Frenzel, B, Leuschner, HH, Kromer, B. 1998a. Paleo-environment and radiocarbon calibration as derived from Lateglacial/Early Holocene tree-ring chronologies. Quaternary International 61:2739.Google Scholar
Spurk, M, Friedrich, M, Hofmann, J, Remmele, S, Frenzel, B, Leuschner, HH, Kromer, B. 1998b. Revisions and extension of the Hohenheim oak and pine chronologies: New evidence about the timing of the Younger Dryas/Preboreal transition. Radiocarbon 40(3):11071116.Google Scholar
Staff, R, Reynard, L, Brock, F, Bronk Ramsey, C. 2014. Wood pretreatment protocols and measurement of tree-ring standards at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 56:709715. doi: 10.2458/56.17449.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.Google Scholar
Wacker, L, Nemec, M, Bourquin, J. 2010. A revolutionary graphitisation system: Fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268(7-8):931934.Google Scholar
Wacker, L, Güttler, D, Goll, J, Hurni, JP, Synal, H-A, Walti, N. 2014. Radiocarbon dating to a single year by means of rapid atmospheric 14C changes. Radiocarbon 56:573579. doi: 10.2458/56.17634.Google Scholar
Wang, YJ, Cheng, H, Edwards, RL, An, ZS, Wu, JY, Shen, C-C, Dorale, JA. 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294:23452348.Google Scholar