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Abstract

Based on the concept of multipower variation we establish a class of easily computable
and robust estimators for the integrated volatility, especially including the squared
integrated volatility, in Lévy-type stochastic volatility models. We derive consistency and
feasible distributional results for the estimators. Furthermore, we discuss the applications
to time-changed CGMY, normal inverse Gaussian, and hyperbolic models with and
without leverage, where the time-changes are based on integrated Cox–Ingersoll–Ross
or Ornstein–Uhlenbeck-type processes. We deduce which type of market microstructure
does not affect the estimates.
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1. Introduction

Lévy-type stochastic volatility models formulated as time-changed Lévy processes have
recently been introduced by Carr et al. (2003). These models can on the one hand be motivated
by empirical observations, namely to merge the desirable properties of homogeneous expo-
nential Lévy models and stochastic volatility models. Lévy-type stochastic volatility models
incorporate a rich behaviour suitable to fit options across maturities, and make it possible to
reproduce the time-dependence of the variance, the skewness and the kurtosis. Especially
when taking an integrated mean reverting process as the time-change, this introduces volatility
clustering to the model. Furthermore, it is straightforward to introduce leverage in the same way
as in the Barndorff-Nielsen and Shephard model (cf. Barndorff-Nielsen and Shephard (2001))
by adding a mean process consisting of the process which drives the volatility.

On the other hand, these models can be motivated by the theoretical arguments that price
processes for financial assets must have a jump component, but need not have a diffusion
component (cf. Geman et al. (2001)). The argument may be summarized in the following way:
all processes of interest may be expressed as a time-changed Brownian motion subordinated
to a random clock, which may be viewed as a cumulative measure of economic activity. This
clock must be certainly increasing and consist of jumps, since otherwise it would be locally
deterministic. Finally these jumps in the clock introduce jumps in the price process.

Our aim is now to introduce a class of estimators for the integrated volatility, especially the
integrated squared and the absolute volatility, which provides a measure for the level of volatility
as needed for risk assessment and forecasting. Furthermore, the quantities of the squared and
absolute integrated volatility are the basic quantities for pricing variance and volatility swaps,
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cf. Howison et al. (2002). These financial instruments have become popular recently as a tool
for hedging volatility risk.

We use the class of multipower variation estimators, i.e. estimators based on the appropriately
normed sum of neighbouring log-returns, which lead to easily computable and robust estimators
based on high-frequency data. For classical stochastic volatility models, i.e. when the driving
process is a Brownian motion, this class of estimators was introduced by Barndorff-Nielsen and
Shephard (2004) to estimate the pth power of the integrated volatility for p ≥ 2 robustly and was
extensively studied in Barndorf-Nielsen and Shephard (2006), Barndorff-Nielsen et al. (2006b),
and Woerner (2006). For the special case of bipower variation, this class of estimators was
extensively studied in Barndorff-Nielsen et al. (2006a) and for the special case of power variation
in Barndorff-Nielsen and Shephard (2003), and Woerner (2005). For the power variation case,
Barndorff-Nielsen and Shephard (2007) and Corcuera et al. (2007) considered stable processes
as driving processes, when the integral is viewed as an Itô integral or a refinement Riemann-
Stieltjes integral, respectively. Woerner (2003a) considered general purely discontinuous Lévy
processes and Corcuera et al. (2006) considered fractional Brownian motion.

The situation for purely discontinuous Lévy processes is, however, very different to the
Brownian motion case. Heuristically this can be seen when comparing the results for non-
normed power variation in the classical setting

∑
i

∣∣∣∣
∫ ti

ti−1

σs dBs

∣∣∣∣
p

p−→

⎧⎪⎪⎨
⎪⎪⎩

0 if p > 2,∫ t

0
σ 2

s ds if p = 2,

∞ if p < 2,

where B denotes a Brownian motion and σ a volatility process, and the case for the Lévy model

∑
i

∣∣L∫ ti
0 σs ds

− L∫ ti−1
0 σs ds

∣∣p p−→
{∑(∣∣L∫ u

0 σs ds − L∫ u−
0 σs ds

∣∣p : 0 < u ≤ t
)

if p > β,

∞ if p < β,
(1)

under appropriate regularity conditions (cf.Woerner (2003a)), where β denotes the Blumenthal–
Getoor index of L, i.e. a measure for the activity of the jumps. Furthermore, from (1) we can
see immediately that we can only derive results for power variation estimates of the integrated
volatility for p < β and not, as in the classical setting, for all p. As β < 2, this implies
that we cannot obtain results for the squared integrated volatility, i.e. the variance swap which
corresponds to p = 2. Power variation estimators in Lévy stochastic volatility models, when
the model is not given by a time-change, as here, but by a stochastic integral with respect to
a Lévy process, have been considered in Woerner (2003b). By using multipower variation
estimates, where the number of neighbouring increments has to be chosen appropriately, we
can also derive estimates for both the squared and the absolute integrated volatility.

The outline of this paper is as follows: first we introduce the notation, then we prove
consistency and a distributional result for the multipower variation estimates. Furthermore, we
discuss the robustness of the estimators and establish which type of mean process is negligible.
This can be viewed as robustness against market microstructure noise or model misspecification.
Finally, we apply our results to some specific stochastic volatility models.
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2. Notation and definitions

First let us now briefly review the definition of Lévy processes X, which are stochastic
processes with independent and stationary increments. They are given by the characteristic
function via the Lévy–Khinchin formula

E[eiuXt ] = exp

{
t

(
iαu − σ 2u2

2
+

∫
(eiux − 1 − iuh(x))G(dx)

)}
,

or for short by the Lévy triplet (tα, tσ 2, tG)h, where α denotes the drift, σ 2 the Gaussian part,
G the Lévy measure and h is a truncation function, in general bounded and behaving like x

around the origin, hence ensuring the existence of the integral. Obviously σ 2 determines the
continuous part and the Lévy measure determines the frequency and size of the jumps. If σ = 0
and

∫
(1 ∧ |x|)G(dx) < ∞ the process has bounded variation, if

∫
G(dx) < ∞ the process

jumps only finitely many times in any finite time-interval, called finite activity, it is a compound
Poisson process. Furthermore, the support of G determines the size and direction of the jumps.
For more details see Sato (1999, pp. 148–159).

The concept of power variation in a mathematical framework was introduced in the context
of studying the path behaviour of stochastic processes in the 1960s, cf. Berman (1965), Hudson
and Mason (1976) for additive processes or Lepingle (1976) for semimartingales. Assume that
we are given a stochastic process X on some finite time interval [0, t]. Let n be a positive
integer and denote by Sn = {0 = tn,0, tn,1, . . . , tn,n = t} a partition of [0, t], such that
0 < tn,1 < tn,2 < · · · < tn,n and max1≤k≤n{tn,k − tn,k−1} → 0 as n → ∞. Now the pth power
variation is defined to be

n∑
i=1

|Xtn,i
− Xtn,i−1 |p = Vp(X, Sn).

We are interested in the limit as n → ∞, hence, the setting of high-frequency data. Closely
related to the finiteness of this limit is the Blumenthal–Getoor index β, which provides a measure
for the activity of the jumps. For Lévy processes it is defined by

β = inf

{
δ > 0 :

∫ 1

−1
|x|δG(dx) < ∞

}
.

It is well known that for p > β, Vp tends to some nontrivial finite limit, whereas for p < β

the limit is zero. As in the Brownian motion case the natural step for getting nontrivial limits is
to introduce an appropriate norming sequence, which leads to the normed pth power variation
introduced by Barndorff-Nielsen and Shephard (2003)

�
γ
n

n∑
i=1

|Xtn,i
− Xtn,i−1 |p = �

γ
nVp(X, Sn),

where γ ∈ R and tn,i − tn,i−1 = �n denotes the distance between neighbouring time-points
in the equally spaced setting. A further extension of power variation is the concept of normed
bipower or multipower variation, which makes it possible to also include the case for the
squared or even higher-order integrated volatility. Let us introduce the following notation for
the normed (r + s)th bipower variation

�
γ
n

n−1∑
i=1

|Xtn,i+1 − Xtn,i
|r |Xtn,i

− Xtn,i−1 |s = �
γ
nVr,s(X, Sn),
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where γ ≥ 0. Analogously for the
∑k

i=1 ri th k-power variation

�
γ
n

n−k+1∑
i=1

i+k−1∏
j=i

|Xtj − Xtj−1 |rj−i+1 = �
γ
nVr1,··· ,rk (X, Sn),

where again tn,i − tn,i−1 = �n.

3. Multipower variation estimators

As we have indicated in the introduction, multipower variation estimates, based on the appro-
priately normed multipower variation, are a natural tool for estimating integrated volatility. For
models based on a time-changed Lévy process k-power variation estimates with

∑k
i=1 ri = p

lead to estimates of
∫ t

0 σ
p/β
u du, where maxi (ri) < β; whereas for Lévy models involving

integrals with respect to the Lévy process (cf. Woerner (2003b)) they estimate
∫ t

0 σ
p
u du. This

implies that in order to obtain an estimate for the absolute integrated volatility we need at least
bipower variation and for the squared integrated volatility we need at least tripower variation,
independent of the value of the Blumenthal–Getoor index.

The appropriate norming sequence is �
1−∑k

i=1 ri/β
n , where β denotes the Blumenthal–Getoor

index of the underlying Lévy process L. Obviously the case β = 0, e.g. a compound Poisson
process, is excluded. This is due to the fact that we need the condition that around the origin
the Lévy process behaves like a stable process with index β. The form of the norming sequence
is in line with the Brownian motion case and the result for power variation of Lévy processes.

For simplicity we look at the bipower variation first.

Theorem 1. Let
Xt = L∫ t

0 σs ds
,

where L denotes a purely discontinuous Lévy process with Blumenthal–Getoor index β ∈ (0, 2).
Assume that the density of the Lévy measure g can be expanded in the following Taylor series
expansion as x → 0,

g(x) = 1

|x|1+β
(c0 + O(|x|)). (2)

Assume, furthermore, that the Lévy triplet is given in the following form:

(a) if β < 1, we take h = 0 and the Lévy triplet is (0, 0, tg(x))0,

(b) if β ≥ 1 and
∫
|x|>1 |x|g(x)dx < ∞ , we take h(x) = x and the Lévy triplet is

(0, 0, tg(x))x ,

(c) if β ≥ 1 and g is symmetric, we take

h(x) = x1|x|≤1(x)

and the Lévy triplet is (0, 0, g(x))x1|x|≤1(x).

Assume that the process σ is a locally bounded Riemann integrable, nonnegative, stochastically
independent of L, and σ r/β and σ s/β have finite quadratic variation. Then for any t > 0 and
for max(r, s) < β we obtain

�
1−(r+s)/β
n Vr,s(X, Sn)

p−→ µr,βµs,β

(
c0

β

)(r+s)/β ∫ t

0
σ

(r+s)/β
u du, (3)
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as n → ∞, where µp,β = E(|S|p) and S is symmetrical β-stable distributed with Lévy triplet
(0, 0, β|x|−1−β)h.

We obtain the same result for Zt = Yt + Xt , when Yt is some stochastic process satisfying

�
1−(r+s)/β
n Vr,s(Y, Sn)

p−→ 0, (4)

�
1−(r+s)/β
n

n−1∑
i=1

|X(i+1)�n
− Xi�n |r |Yi�n − Y(i−1)�n

|s p−→ 0, (5)

�
1−(r+s)/β
n

n−1∑
i=1

|Y(i+1)�n
− Yi�n |r |Xi�n − X(i−1)�n

|s p−→ 0.

Remark. As in the Brownian motion case, the absolute moments may be calculated explicitly
(cf. Sato (1999, Example 25.10)), which leads to

µp,β = c
p/β
β

2p�((1 + p)/2)�(1 − p/β)√
π�(1 − p/2)

,

where cβ = −2β�(−β) cos(βπ/2) if β 	= 1, and cβ = βπ if β = 1.

Proof. First we prove the result for Y = 0 and then show that under the conditions on Y it
is actually negligible. As a first step we calculate the characteristic function of the increment
Xn,i = Xi�n − X(i−1)�n

, which is straightforward to obtain since σ is independent of L,

E
(
exp

(
iu

(
L∫ i�n

0 σs ds
− L∫ (i−1)�n

0 σs ds

)) | σ
)

= exp

(∫ i�n

(i−1)�n

σs ds

∫
(eiux − 1 − iuh(x))g(x) dx

)
.

Next we have to determine the distribution of Xn,i/�
1/β
n conditionally under σ , for which

we can use the condition on the Lévy measure and deduce that as n → ∞ it behaves like a
stable random variable. We obtain

E

(
exp

(
iu

Xn,i

�
1/β
n

) ∣∣∣ σ

)
= exp

(∫ i�n

(i−1)�n

σs ds

∫ (
exp

(
iux

�
1/β
n

)
− 1 − iuh(x)

�
1/β
n

)
g(x) dx

)

= exp

(∫ i�n

(i−1)�n

σs ds

∫ (
eiuy − 1 − iuh(�

1/β
n y)

�
1/β
n

)

× g(�
1/β
n y)�

1/β
n dy

)
.

Hence, as n → ∞ the characteristic triplet of Xn,i/�
1/β
n is

(0, 0, c0σn,i

1

|x|1+β
+ O(�

1/β
n ))h, (6)

by the asymptotic expansion of g, where σn,i = ∫ i�n

(i−1)�n
σs ds/�n. This implies that asymp-

totically the scaled increments behave like a symmetric stable random variable with scale
parameter c0σn,i/β and are independent conditionally under σ .
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Now we can use the law of large numbers for triangular schemes (cf. Gnedenko and
Kolmogorov (1968, p. 134)) which states that for a triangular scheme of independent random
variables, χn,i , we obtain that in probability as n → ∞

n∑
i=1

χn,i − An → 0,

if
n∑

i=1

P(|χn,i | ≥ 1) → 0, (7)

n∑
i=1

E(χ2
n,i1|χn,i |<1) → 0, (8)

An =
n∑

i=1

E(χn,i). (9)

To get independent random variables we have to work conditionally under σ and use the same
technique as in Barndorff-Nielsen and Shephard (2004), namely considering independent copies
R = ∑n

i=1 χn,i and R′ = ∑n
i=1 χ ′

n,i . For the sum R + R′, we can arrange the summands in an
alternating way such there are two sums with independent random variables, which we denote
by

χ̃n,i = �n

∣∣∣∣ X̃n,i+1

�
1/β
n

∣∣∣∣
r ∣∣∣∣ X̃n,i

�
1/β
n

∣∣∣∣
s

.

For (7), taking δ > 0 to be sufficiently small, we obtain

n−1∑
i=1

P

(
�n

∣∣∣∣ X̃n,i+1

�
1/β
n

∣∣∣∣
r ∣∣∣∣ X̃n,i

�
1/β
n

∣∣∣∣
s

≥ 1

)
≤

n−1∑
i=1

�1+δ
n E

(∣∣∣∣
∣∣∣∣ X̃n,i+1

�
1/β
n

∣∣∣∣
r ∣∣∣∣ X̃n,i

�
1/β
n

∣∣∣∣
s∣∣∣∣

1+δ)

→ 0.

Similarly, for (8) we obtain

n−1∑
i=1

E

(
�2

n

∣∣∣∣ X̃n,i+1

�
1/β
n

∣∣∣∣
2r ∣∣∣∣ X̃n,i

�
1/β
n

∣∣∣∣
2s

1
�n|X̃n,i+1/�

1/β
n |r |X̃n,i/�

1/β
n |s<1

)

=
n−1∑
i=1

�1+δ
n E

(∣∣∣∣
∣∣∣∣ X̃n,i+1

�
1/β
n

∣∣∣∣
r ∣∣∣∣ X̃n,i

�
1/β
n

∣∣∣∣
s∣∣∣∣

1+δ

× �1−δ
n

∣∣∣∣
∣∣∣∣ X̃n,i+1

�
1/β
n

∣∣∣∣
r ∣∣∣∣ X̃n,i

�
1/β
n

∣∣∣∣
s∣∣∣∣

1−δ

1
�n|X̃n,i+1/�

1/β
n |r |X̃n,i/�

1/β
n |s<1

)

≤
n−1∑
i=1

�1+δ
n E

(∣∣∣∣
∣∣∣∣ X̃n,i+1

�
1/β
n

∣∣∣∣
r ∣∣∣∣ X̃n,i

�
1/β
n

∣∣∣∣
s∣∣∣∣

1+δ)

→ 0.
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To establish the limit in (9) we have to use the scaling relation for stable processes which leads
to the sum

∑n−1
i=1 �nσ

r/β
n,i+1σ

s/β
n,i , which we have to show tends to

∫ t

0 σ
(r+s)/β
u du. For this, it is

sufficient to show that

n−1∑
i=1

�nσ
r/β
n,i+1σ

s/β
n,i −

n−1∑
i=1

�nσ
(r+s)/β
n,i

p−→ 0. (10)

We use Hölder’s inequality and obtain

n−1∑
i=1

�nσ
s/β
n,i (σ

r/β
n,i+1 − σ

r/β
n,i ) ≤ �

1/2
n

(n−1∑
i=1

�nσ
2s/β
n,i

)1/2(n−1∑
i=1

(σ
r/β
n,i+1 − σ

r/β
n,i )2

)1/2

,

where as n → ∞,
n−1∑
i=1

�nσ
2s/β
n,i →

∫ t

0
σ

2s/β
u du < ∞,

and
n−1∑
i=1

(σ
r/β
n,i+1 − σ

r/β
n,i )2 → [σ r/β ]t < ∞,

which yields (10). Hence, altogether, noting that for max(r, s) < β we have E |S|r = µr,β < ∞
and E |S|s = µs,β < ∞, we find that as n → ∞,

Ãn−1 =
n−1∑
i=1

�n E

(∣∣∣∣ X̃n,i+1

�
1/β
n

∣∣∣∣
r ∣∣∣∣ X̃n,i

�
1/β
n

∣∣∣∣
s)

→
(

c0

β

)(r+s)/β

µr,βµs,β

∫ t

0
σ

(r+s)/β
s ds.

This yields R + R′ − An−1 − A′
n−1 → 0 and hence also R − An−1 → 0. Finally, we can

deduce the unconditional result as for ε > 0,

lim
n→∞ P(|R − An−1| ≥ ε) = lim

n→∞ E(1|R−An−1|≥ε)

= lim
n→∞ E(E(1|R−An−1|≥ε | σ))

= 0,

which completes the result for Y = 0.
For a nontrivial mean process we can use the same technique as in Woerner (2006), relying

on a combination of triangular and Minkowski’s inequality. For 0 < r, s ≤ 1 we obtain, for all
λ > 0,

P

(∣∣∣∣�1−(r+s)/β
n

n−1∑
j=1

|Xn,j+1 + Yn,j+1|r |Xn,j + Yn,j |s

− µr,βµs,β

(
c0

β

)(r+s)/β ∫ t

0
σ

(r+s)/β
u du

∣∣∣∣ > λ

)

≤ P

(∣∣∣∣�1−(r+s)/β
n

n−1∑
j=1

|Xn,j+1 + Yn,j+1|r |Xn,j + Yn,j |s
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− �
1−(r+s)/β
n

n−1∑
j=1

|Xn,j+1|r |Xn,j |s
∣∣∣∣ >

λ

2

)

+ P

(∣∣∣∣�1−(r+s)/β
n

n−1∑
j=1

|Xn,j+1|r |Xn,j |s

− µr,βµs,β

(
c0

β

)(r+s)/β ∫ t

0
σ

(r+s)/β
u du

∣∣∣∣ >
λ

2

)

≤ P

(∣∣∣∣�1−(r+s)/β
n

n−1∑
j=1

|Xn,j+1|r |Yn,j |s
∣∣∣∣ >

λ

6

)
(11)

+ P

(∣∣∣∣�1−(r+s)/β
n

n−1∑
j=1

|Yn,j+1|r |Xn,j |s
∣∣∣∣ >

λ

6

)
(12)

+ P

(∣∣∣∣�1−(r+s)/β
n

n−1∑
j=1

|Yn,j+1|r |Yn,j |s
∣∣∣∣ >

λ

6

)
(13)

+ P

(∣∣∣∣�1−(r+s)/β
n

n−1∑
j=1

|Xn,j+1|r |Xn,j |s

− µr,βµs,β

(
c0

β

)(r+s)/β ∫ t

0
σ

(r+s)/β
u du

∣∣∣∣ >
λ

2

)
. (14)

As n → ∞, (14) tends to zero by the first part of the proof and (11) to (13) tend to zero by the
assumptions on Y .

For the other parameter constellations we obtain similarly, assuming without loss of gener-
ality that r < s and s > 1.

P

(∣∣∣∣
(

�
1−(r+s)/β
n

n−1∑
j=1

|Xn,j+1 + Yn,j+1|r |Xn,j + Yn,j |s
)1/s

−
(

µr,βµs,β

(
c0

β

)(r+s)/β ∫ t

0
σ

(r+s)/β
u du

)1/s∣∣∣∣ > λ

)

≤ P

(∣∣∣∣
(

�
1−(r+s)/β
n

n−1∑
j=1

|Xn,j+1|r |Yn,j |s
)1/s∣∣∣∣ >

λ

6

)

+ P

(∣∣∣∣
(

�
1−(r+s)/β
n

n−1∑
j=1

|Yn,j+1|r |Xn,j |s
)1/s∣∣∣∣ >

λ

6

)

+ P

(∣∣∣∣
(

�
1−(r+s)/β
n

n−1∑
j=1

|Yn,j+1|r |Yn,j |s
)1/s∣∣∣∣ >

λ

6

)

+ P

(∣∣∣∣
(

�
1−(r+s)/β
n

n−1∑
j=1

|Xn,j+1|r |Xn,j |s
)1/s
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−
(

µr,βµs,β

(
c0

β

)(r+s)/β ∫ t

0
σ

(r+s)/β
u du

)1/s∣∣∣∣ >
λ

2

)
.

These expressions tend to zero under the same conditions as for the case above, which completes
our proof.

However, for the squared integrated volatility, bipower variation is not sufficient, we have
to look at tripower variation. Next we extend the result to k-power variation.

Theorem 2. Under the same conditions as in the previous theorem, for any t > 0 and
maxi∈{1,··· ,k}(ri) < β, we obtain

�
1−(

∑k
i=1 ri )/β

n Vr1,...,rk (X, Sn)
p−→

∏
1≤i≤k

µri ,β

(
c0

β

)(
∑k

i=1 ri )/β ∫ t

0
σ

(
∑k

i=1 ri )/β
u du,

as n → ∞, where µp,β = E(|S|p) and S is symmetrical β-stable distributed with Lévy triplet
(0, 0, β|x|−1−β)h.

Proof. The proof follows the same lines as the proof of Theorem 1. For the mean process Y

we have to consider all permutations of X and Y increments, however, it turns out that this
condition is satisfied for the same processes as for the k = 2 case.

Now we have to look at the conditions of Theorem 1. First we will see that the condition on
the Lévy process is quite mild.

Example. (Stable process.) For symmetrical β-stable processes, (2) is clearly satisfied with
c0 = β and (a), (b), or (c) applied. Hence, for max(r, s) < β we obtain

�
1−(r+s)/β
n Vr,s(X, Sn)

p−→ µr,βµs,β

∫ t

0
σ

(r+s)/β
u du,

as n → ∞.

Example. (Generalized hyperbolic Lévy motion.) The generalized hyperbolic Lévy motion
includes many processes used in finance. The density at t = 1 is given by

dGH(λ,α,γ,δ,µ)(x)

= a(λ, α, γ, δ, µ)(δ2 + (x − µ)2)(λ−1/2)/2eγ (x−µ)Kλ−1/2(α
√

δ2 + (x − µ)2),

where

a(λ, α, γ, δ, µ) = (α2 − γ 2)λ/2

√
2παλ−1/2δλKλ(δ

√
α2 − γ 2)

,

and Kλ denotes the modified Bessel function of the third kind with index λ. We have the
following parameter dependence, α > 0 determines the sharp, 0 ≤ |γ | < α the skewness,
µ ∈ R is a location parameter and δ > 0 determines the scaling. In general the density of the
process is only known for t = 1, however, we can give a formula for the Lévy triplet

(
tµ, 0, t

eγ x

|x|
( ∫ ∞

0

e−
√

2y+α2|x|

π2y(J 2|λ|(δ
√

2y) + Y 2|λ|(δ
√

2y))
dy + max{0, λ}e−α|x|

))
,
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where Jλ denotes the Bessel function of the first order with index λ, and Yλ the Bessel function
of the second order with index λ. Furthermore, we have α, δ > 0, and 0 ≤ |γ | < α. For
λ = 1 we obtain the hyperbolic Lévy motion, for λ = − 1

2 the normal inverse Gaussian process
and for α = γ = 0 the Student-t process. For a discussion of all possible limiting cases see
Eberlein and von Hammerstein (2004).

From Raible (2000) we know that the density of the Lévy measure can be expanded in the
form

g(x) = δ

πx2 + λ + 1
2

2

|x|
x2 + δγ

π

1

x
+ o

( |x|
x2

)
, (15)

as x → 0. Furthermore, the first moment exists which is equivalent to
∫ |x|1|x|>1(x)g(x) < ∞.

Hence, (2) and (b) are satisfied and for p < 1 we obtain (3) with γ = 1 and c0 = δ/π . We see
that we can consider all possible limiting cases for the parameters, except δ → 0 which would
require changing the Blumenthal–Getoor index to zero.

Example. (CGMY process.) CGMY processes form a flexible class for modelling in finance,
see, e.g. Carr et al. (2002). The density of the Lévy measure is given by

C
exp(−G|x|)

|x|1+Y
1x<0(x) + C

exp(−M|x|)
|x|1+Y

1x>0(x),

where C > 0 describes the overall level of activity, G, M ≥ 0 control the rate of exponential
decay on the right and the left tail, and Y < 2 characterizes the fine structure of the process.
Clearly, for 2 > Y > 0 condition (2) is satisfied by Taylor expanding the exponential term.
For G, M > 0, (a) or (b) is satisfied, whereas for G = M = 0 we are back to a stable process.
Hence, we obtain (3) with β = Y and c0 = C.

The conditions on the mean process Y are basically satisfied when Y is dominated by X

in the sense that it possesses more regularity in the sample paths. Ait-Sahalia and Jacod
(2007) introduced a similar concept of dominance when X is a stable process. The process
Y can either be viewed as part of the model, e.g. as a continuous mean component of the
form

∫ t

0 as ds or a leverage component. Furthermore, it can be interpreted as a continuous
market microstructure noise or market friction component, especially when we have a low
jump frequency. For a discussion of market microstructure noise in a continuous semimartingale
setting, see, e.g. Barndorff-Nielsen and Shephard (2007).

Example. (Hölder continuous process.) If Y is Hölder continuous of the order γ ∈ (1/β, 1]
the conditions on Y are satisfied, as

�
1−(r+s)/β
n

n−1∑
i=1

|Yn,i+1|r |Yn,i |s ≤ tC�
(r+s)(γ−1/β)
n ,

�
1−(r+s)/β
n

n−1∑
i=1

|Xn,i+1|r |Yn,i |s ≤ C�
1−s/β+sγ
n

n−1∑
i=1

∣∣∣∣Xn,i+1

�
1/β
n

∣∣∣∣
r

,

which both tend to zero as n → ∞. Hence, we can only have a continuous mean component
if β > 1, which means that there are sufficiently many small jumps, i.e. the driving process is
close to the behaviour of a Brownian motion.
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Example. (Compound Poisson process.) If Y is a compound Poisson process the conditions
are satisfied. For (4), we have only to note that by taking sufficiently large n the probability of
contiguous jumps is zero. For (5) we can use the fact that only finitely many terms contribute
and s < β.

Example. (Infinite activity jump process.) One possibility is to take a jump process Y having
the same structure as X with Blumenthal–Getoor index γ < β, then for max(r, s) < γ the
conditions on Y are satisfied using the technique discussed in Theorem 1. Of course, this leads
to a restriction on the range of r and s which is not desirable from the point of view of estimating
the squared integrated volatility with as few neighbouring increments as possible. However,
putting β ≥ 1 we can get rid of this restriction. Assume that Y is some pure jump process
with Blumenthal–Getoor index 0 < γ < β and β ≥ 1. The idea is to use the same technique
as in Woerner (2003b), namely, splitting the process Y into a component with finitely many
jumps bigger than ε, for which we can argue as we did for the compound Poisson process, and
a process with infinitely many small jumps. We define Ij (ε) to be one if there are no jumps of
absolute value bigger than ε in the j th time interval and zero otherwise. Furthermore, denote

Y ε
t = Yt −

∑
(J (Ys) : |J (Ys)| > ε, 0 < s ≤ t),

where J (Ys) = Ys − Ys−, hence denote the jumps of Y . It is clear that |Yj |sIj (ε) ≤ |Y ε
j |s and

that for sufficiently small �n, supj |Y ε
j | ≤ 2ε and �n ≤ 2ε. Hence, we can bound the part

with the small jumps of (5), using Hölder’s inequality with 1/a + 1/b = 1, by

(
�

1−ar/β
n

n−1∑
i=1

|Xn,i+1|ar

)1/a(
(2ε)1−bs/β+bs−c

n−1∑
i=1

|Y ε
n,i |c

)1/b

,

where c ∈ (γ, bs). Choosing a close to one, the first term tends to a finite limit as r < β by (3).
The second term tends to zero by first letting n tend to infinity and then letting ε tend to zero,
provided that bs > γ and 1 − bs/β + bs − γ > 0. This is clearly satisfied if β ≥ 1 and γ < 1.
For (4), the parts involving jumps bigger than ε can be treated as the compound Poisson case,
while the part with only small jumps can be treated using the same technique as for (5).

Next we derive a distributional theory, which is feasible as the variance term can also be
estimated in terms of multipower variation estimates. Again, we look at the case of bipower
variation first, though for the absolute integrated volatility it turns out that we need tripower
and for the squared integrated volatility we need quintpower.

The conditions under which a mean process is negligible are a bit more restrictive than for
consistency, namely, now no continuous mean process is possible. The form of the normalizing
constant C has a similar form as in the Brownian motion case and also shares the property that
multipower variation is less efficient than power variation.

Theorem 3. Let
Xt = L∫ t

0 σs ds
.

Assume the same conditions on L and σ as in Theorem 1. Furthermore, we assume that σ

satisfies

n−1∑
i=1

�
1/2
n

((∫ (i+1)�n

i�n
σu du

�n

)r/β(∫ i�n

(i−1)�n
σu du

�n

)s/β

−
∫ i�n

(i−1)�n
σ

(r+s)/β
u du

�n

)
→ 0. (16)
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Then, for any t > 0 and max(r, s) < β/2, we obtain

�
1−(r+s)/β
n Vr,s(X, Sn) − µr,βµs,β(c0/β)(r+s)/β

∫ t

0 σ
(r+s)/β
u du√

µ−1
2r,βµ−1

2s,βC�
2−2(r+s)/β
n V2r,2s(X, Sn)

d−→ N(0, 1), (17)

as n → ∞, where µp,β = E(|S|p) with S a symmetrical β-stable random variable and
C = µ2r,βµ2s,β + 2µr,βµs,βµr+s,β − 3µ2

r,βµ2
s,β .

We obtain the same result for Zt = Yt + Xt , when Yt is some stochastic process satisfying

�
1−2(r+s)/β
n V2r,2s(Y, Sn)

p−→ 0, (18)

�
1−2(r+s)/β
n

n−1∑
i=1

|X(i+1)�n
− Xi�n |2r |Yi�n − Y(i−1)�n

|2s p−→ 0, (19)

�
1/2−(r+s)/β
n Vr,s(Y, Sn)

p−→ 0, (20)

�
1/2−(r+s)/β
n

n−1∑
i=1

|X(i+1)�n
− Xi�n |r |Yi�n − Y(i−1)�n

|s p−→ 0, (21)

where (19) and (21) also have to hold when X and Y are exchanged.

Proof. First of all, by (18) and (19) together with Theorem 1 and Slutzky’s Lemma, to
establish (17), it is sufficient to show

�
1−(r+s)/β
n Vr,s(X, Sn) − µr,βµs,β(c0/β)(r+s)/β

∫ t

0 σ
(r+s)/β
u du

�
1/2
n

√
C(c0/β)2(r+s)/β

∫ t

0 σ
2(r+s)/β
u du

d−→ N(0, 1).

Now we consider the case Y = 0. We apply the central limit theorem (CLT) for triangular
arrays (cf. Gnedenko and Kolmogorov (1968)), which states that for independent χn,i with
E(χn,i) = 0, if for n → ∞,

n∑
i=1

E(χ2
n,i) → S2 > 0, (22)

n∑
i=1

E(χ2
n,i1|χn,i |>ε) → 0, (23)

for all ε > 0, then
n∑

i=1

χn,i
d−→ N(0, S2).

To get independent increments we have to use the same method as in Theorem 1, working
conditionally under σ and rearranging to independent copies of

∑n
i=1 χn,i . For the rearranged

summands, we set

χ̃n,i = �
1/2
n

(∣∣∣∣ X̃n,i+1

�
1/β
n

∣∣∣∣
r ∣∣∣∣ X̃n,i

�
1/β
n

∣∣∣∣
s

− E

[∣∣∣∣ X̃n,i+1

�
1/β
n

∣∣∣∣
r ∣∣∣∣ X̃n,i

�
1/β
n

∣∣∣∣
s])

.

https://doi.org/10.1239/aap/1183667622 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1183667622


Inference in Lévy-type stochastic volatility models 543

Clearly (23) is satisfied, as 2(r + s) < β. For (22), we have to use (6) and (10). This yields that
the sum of the two independent copies of

∑n
i=1 χn,i is normally distributed, hence,

∑n
i=1 χn,i

is also normally distributed and we only have to calculate the appropriate variance. As we have
correlations between neighbouring terms, we obtain the constant

C = µ2r,βµ2s,β + 2µr,βµs,βµr+s,β − 3µ2
r,βµ2

s,β ,

and the variance

S2 = C

(
c0

β

)2(r+s)/β ∫ t

0
σ

2(r+s)/β
u du.

Altogether, this yields

n−1∑
i=1

�
1/2
n

S

(∣∣∣∣Xn,i+1

�
1/β
n

∣∣∣∣
r ∣∣∣∣ Xn,i

�
1/β
n

∣∣∣∣
s

− E

[∣∣∣∣Xn,i+1

�
1/β
n

∣∣∣∣
r ∣∣∣∣ Xn,i

�
1/β
n

∣∣∣∣
s])

d−→ N(0, 1).

Hence, it remains to show that in probability as n → ∞,

n−1∑
i=1

�
1/2
n E

[∣∣∣∣Xn,i+1

�
1/β
n

∣∣∣∣
r ∣∣∣∣ Xn,i

�
1/β
n

∣∣∣∣
s ∣∣∣∣ σ

]
− �

−1/2
n µr,βµs,β

(
c0

β

)(r+s)/β ∫ t

0
σ

(r+s)/β
u du → 0.

This follows from

n−1∑
i=1

�
1/2
n

(
E

[∣∣∣∣Xn,i+1

�
1/β
n

∣∣∣∣
r ∣∣∣∣ Xn,i

�
1/β
n

∣∣∣∣
s ∣∣∣∣ σ

]
− µr,βµs,β

(
c0

β

)(r+s)/β

σ
r+s/β
n,i

)
→ 0,

as

E

[∣∣∣∣Xn,i+1

�
1/β
n

∣∣∣∣
r ∣∣∣∣ Xn,i

�
1/β
n

∣∣∣∣
s ∣∣∣∣ σ

]
− µr,βµs,β

(
c0

β

)(r+s)/β

σ
r/β
n,i−1σ

s/β
n,i = O(�

1/β
n ),

by (6) and furthermore

n−1∑
i=1

�
1/2
n

((∫ (i+1)�n

i�n
σu du

�n

)r/β(∫ i�n

(i−1)�n
σu du

�n

)s/β

−
∫ i�n

(i−1)�n
σ

(r+s)/β
u du

�n

)
→ 0,

by assumption (16). Again the unconditional version of the CLT follows straightforwardly from
the conditional one.

Next we have to look at the case with nontrivial mean process Y . By Slutzky’s Lemma we
only have to establish that

�
1/2−(r+s)/β
n (Vr,s(X + Y, Sn) − Vr,s(X, Sn))

p−→ 0,

as n → ∞. As in Theorem 1 this holds if

�
1/2−(r+s)/β
n Vr,s(Y, Sn)

p−→ 0,

�
1/2−(r+s)/β
n

n−1∑
i=1

|X(i+1)�n
− Xi�n |r |Yi�n − Y(i−1)�n

|s p−→ 0,

which are (20) and (21), respectively. This completes our proof.
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Again we have to look at examples, when the conditions on Y are satisfied.

Example. (Compound Poisson process.) The same arguments as for Theorem 1 together with
max(r, s) < β/2 yield that (18) to (21) are satisfied.

Example. (Infinite activity jumps.) We take a pure jump process Y with Blumenthal–Getoor
index γ , γ < β and β ≥ 1. Condition (18) and (19) are satisfied as (4) and (5), noting that
now max(r, s) < β/2.

For (20) and (21), we use the same technique as before, splitting the process in a part with
small jumps and a compound Poisson part, for which the result is clear. Hence, it remains to
look at the part with jumps smaller than ε. Using Hölder’s inequality with 1/a+1/b+1/c = 1,
we can bound the part with small jumps of (20) by

(n−1∑
i=1

�n

)1/a(
(2ε)1−b/4−br/β+br−d

n−1∑
i=1

|Y ε
n,i+1|rb

)1/b

×
(

(2ε)1−c/4−cs/β+cs−e
n−1∑
i=1

|Y ε
n,i |cs

)1/c

,

where d ∈ (γ, br) and e ∈ (γ, cs). The second term of the upper bound tends to zero if br > γ

and 1 − b/4 − br/β + br − γ > 0, which leads to

r >
γ

4(1 − γ /β)
,

and similarly for the third term. Analogous considerations for (21) lead to

r, s >
γ

2(1 − γ /β)
.

Summarizing the result Y is negligible if it is a pure jump process with Blumenthal–Getoor
index γ , γ < β, β ≥ 1, and the exponents satisfy max(r, s) < β/2 and

min(r, s) >
γ

2(1 − γ /β)
. (24)

Finally we have to look at condition (16). Obviously it is satisfied if σ is Hölder continuous of
the order γ ∈ ( 1

2 , 1], i.e. satisfied by a fractional Brownian motion with Hurst exponent H > 1
2 .

Fortunately the conditions are not as restrictive as they look at first glance. Using Barndorff-
Nielsen et al. (2006a) for the special case that σ is independent of the driving Brownian motion,
their equations (7.2) and (7.1) reduce to

n∑
i=1

�
1/2
n

∫ i�

(i−1)�n
(σ

p
u − σ

p

(i−1)�n
) du

�n

→ 0,

n−1∑
i=1

�
1/2
n

(∣∣∣∣
∫ (i+1)�

i�n
σ 2

u du

�n

∣∣∣∣
r/2∣∣∣∣

∫ i�

(i−1)�n
σ 2

u du

�n

∣∣∣∣
s/2

− σ r+s
(i−1)�n

)
→ 0,

respectively for some p, r, s > 0. This implies condition (16) by inserting plus and minus
σ

r+s/β

(i−1)�n
and using triangular inequality. Hence, condition (16) is satisfied if σ and σ 2 are
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semimartingales of the form

σt = σ0 +
∫ t

0
bs ds +

∫ t

0
cs− dWs +

∫ t

0

∫
E

h ◦ w(s, x)(µ − ν)(ds, dx)

+
∫ t

0

∫
E

(w − h ◦ w(s, x))µ(ds, dx),

where W is a Brownian motion and µ a Poisson random independent of W , for more details
cf. Barndorff-Nielsen et al. (2006a). This condition especially holds for the cases of diffusion
processes, e.g. the Cox–Ingersoll–Ross process, or jump processes, e.g. Ornstein–Uhlenbeck-
type processes.

As for consistency we get an analogous distributional result for the multipower variation
case, which makes it possible to estimate even higher powers of the volatility.

Theorem 4. Let
Xt = L∫ t

0 σs ds
.

Assume the same conditions on L and σ as in Theorem 1. Furthermore, we assume that σ

satisfies

n−k+1∑
i=1

�
1/2
n

( k∏
j=1

(∫ (i+j)�n

(i−1+j)�n
σu du

�n

)rj /β

−
∫ i�n

(i−1)�n
σ

∑k
j=1 rj /β

u du

�n

)
→ 0.

Then, for any t > 0 and max1≤j≤k(rj ) < β/2, we obtain

�
1−∑k

j=1 rj /β

n Vr1,...,rk (X, Sn) − ∏k
j=1 µrj ,β(c0/β)

∑k
j=1 rj /β

∫ t

0 σ

∑k
j=1 rj /β

u du√∏k
j=1 µ−1

2rj ,βC�
2−2

∑k
j=1 rj /β

n V2r1,...,2rk (X, Sn)

d−→ N(0, 1),

as n → ∞, where µp,β = E(|S|p) with S a symmetrical β-stable random variable and

C =
k∏

l=1

µ2rl ,β − (2k − 1)

k∏
l=1

µ2
rl ,β

+ 2
k−1∑
i=1

i∏
l=1

µrl,β

k∏
l=k−i+1

µrl,β

k−i∏
l=1

µrl+rl+i ,β . (25)

Proof. The proof follows the same lines as the proof of Theorem 3. The formula for C may
be derived analogously as in Barndorff-Nielsen et al. (2006a).

4. Applications to different models

In the following we will study how we can apply the general result to some specific Lévy-type
stochastic volatility models, most of which were introduced in Carr et al. (2003). As driving
Lévy processes we consider the three most popular Lévy processes in finance: the NIG, the
hyperbolic Lévy process, and the CGMY process, whereas as volatility process we consider
a mean-reverting process, e.g. a Cox–Ingersoll–Ross process or an Ornstein–Uhlenbeck-type
process driven by a jump process or a fractional Brownian motion with Hurst exponent H > 1

2 .
The latter case was studied in the framework of classical stochastic volatility models by Comte
and Renault (1998) introducing long memory.
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We state only the results for the most popular cases,
∫ t

0 σ
p
u du for p = 1 or p = 2. However,

general p can be treated analogously. Furthermore, we will choose the estimators with equal
power coefficients. As before we always have to assume that the volatility process and the
driving Lévy process are independent, which is the same setting as in Carr et al. (2003).

4.1. NIG based models

First of all we look at models of the form Xt = L∫ t
0 σu du

where L is NIG. Clearly, the
Blumenthal–Getoor index is β = 1 and the constant c0 = δ/π by (15). Hence, we obtain

V1/2,1/2(X, Sn)

(µ1/2,1)2δ/π

p−→
∫ t

0
σu du, (26)

V2/3,2/3,2/3(X, Sn)

�n(µ2/3,1)3(δ/π)2
p−→

∫ t

0
σ 2

u du. (27)

These results hold for all three types of volatility processes. For the distributional theory we
need a higher order of the multipower, namely

V1/3,1/3,1/3(X, Sn) − (µ1/3,1)
3δ/π

∫ t

0 σu du√
(µ2/3,1)−3C1V2/3,2/3,2/3(X, Sn)

d−→ N(0, 1), (28)

�−1
n V2/5,2/5,2/5,2/5,2/5(X, Sn) − (µ2/5,1)

5(δ/π)2
∫ t

0 σ 2
u du

�−1
n

√
(µ4/5,1)−5C2V4/5,4/5,4/5,4/5,4/5(X, Sn)

d−→ N(0, 1), (29)

where

C1 = (µ2/3,1)
3 − 5(µ1/3,1)

6 + 2(µ1/3,1)
2(µ2/3,1)

2 + 2(µ1/3,1)
4µ2/3,1,

and

C2 = (µ4/5,1)
5 − 9(µ2/5,1)

10 + 2
4∑

i=1

(µ2/5,1)
2i (µ4/5,1)

5−i .

Changing the model to include leverage, our method works when the volatility process is an
OU-type process. Looking at

Xt = ρZt + L∫ t
0 σu du

,

dσt = −κσtds + dZt ,

we get (26) and (27) independent of which one-sided Lévy process drives the volatility process.
For the distributional theory we have to take into account that by (24) we also get a lower bound
on the possible power exponents. Hence, (28) still holds if Z is a Gamma process or a compound
Poisson process, which both have Blumenthal–Getoor index zero. For (29), our result holds in
addition for Z being an inverse Gaussian (IG) process, which has Blumenthal–Getoor index 1

2 .

4.2. Hyperbolic Lévy motion based models

In this case we get exactly the same results as for the NIG case. In fact the same result holds
for all processes of the class of generalized hyperbolic processes, as by (15) they have all the
same fine structure which determines the behaviour of the integrated volatility.
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4.3. CGMY based models

In this class of models the estimators depend on the size of Y, which is the Blumenthal–
Getoor index. Furthermore, the constant is c0 = C. Again we will look at the model
Xt = L∫ t

0 σu du
first, where L is now a CGMY process. We have to distinguish between

the cases Y > 1 and Y ≤ 1.
For the consistency we obtain, for 1 < Y < 2,

VY(X, Sn)

µY,Y(C/Y)

p−→
∫ t

0
σu du,

VY,Y(X, Sn)

�n(µY,Y)2(C/Y)2
p−→

∫ t

0
σ 2

u du,

and, for 0 < Y ≤ 1,

VY/2,Y/2(X, Sn)

(µY/2,Y)2(C/Y)

p−→
∫ t

0
σu du,

V2Y/3,2Y/3,2Y/3(X, Sn)

�n(µ2Y/3,Y)3(C/Y)2
p−→

∫ t

0
σ 2

u du,

and for the distributional theory, for 1 < Y < 2,

VY/2,Y/2(X, Sn) − (µY/2,Y)2(C/Y)
∫ t

0 σu du√
(µY, Y)−2K1VY, Y(X, Sn)

d−→ N(0, 1),

�−1
n V2Y/3,2Y/3,2Y/3(X, Sn) − (µ2Y/3,Y)3(C/Y)2

∫ t

0 σ 2
u du

�−1
n

√
(µ4Y/3,Y)−3K2V4Y/3,4Y/3,4Y/3(X, Sn)

d−→ N(0, 1),

and, for 0 < Y ≤ 1,

VY/3,Y/3,Y/3(X, Sn) − (µY/3,Y)3(C/Y)
∫ t

0 σu du√
(µ2Y/3,Y)−3K3V2Y/3,2Y/3,2Y/3(X, Sn)

d−→ N(0, 1),

�−1
n V2Y/5,2Y/5,2Y/5,2Y/5,2Y/5(X, Sn) − (µ2Y/5,Y)5(C/Y)2

∫ t

0 σ 2
u du

�−1
n

√
(µ4Y/5,Y)−5K4V4Y/5,4Y/5,4Y/5,4Y/5,4Y/5(X, Sn)

d−→ N(0, 1),

where K1 to K4 are calculated according to (25). This result holds for all three types of volatility
processes.

The model with leverage may be treated as in the NIG case, only we have to take into account
the fact that for infinite activity mean processes we need a Blumenthal–Getoor index of β ≥ 1.
Our result holds for Y ≥ 1 if the driving process Z is a Gamma or a compound Poisson process.
Furthermore the IG process may be used as a driving process for the estimate of

∫ t

0 σu du if
Y > 1 and for the estimate of

∫ t

0 σ 2
u du if Y ≥ 1.

5. Conclusion

We have introduced the class of multipower variation estimators for Lévy-type stochastic
volatility models. They lead to easily computable consistent estimators possessing a feasible
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distributional theory. We have shown that these estimators may be used to obtain estimates
for the integrated volatility, especially absolute value and squares, based on high-frequency
data. This method works for a large variety of models based on Lévy processes, such as NIG,
CGMY, and hyperbolic ones, including models with leverage and allowing for market friction
with lower activity than the driving process.
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