
Can. J. Math., Vol. XXXI, No. 2, 1979, pp. 274-281 

ON CERTAIN POLYNOMIALS OF GAUSSIAN TYPE 

DANIEL REICH 

Introduction. We shall consider functions of the form 

/(o = nti r - D/r - D, 
where {rt} and {s^} are sets of positive integers. Such functions were studied 
by E. Grosswald in [2], who took {s^ to be pairwise relatively prime, and asked 
the following two questions: 

(a) When is/( /) a polynomial? 
(b) When does/(/) have positive coefficients? 

These questions arise naturally from the work of Allday and Halperin, who 
show in [1] that under suitable circumstance f(t) will be the Poincare poly­
nomial of the orbit space of a certain Lie group action. Grosswald gives a 
complete answer to (a), but (b) is a much harder question, and a complete 
answer is provided only for the case m = 2. His treatment involves the rep­
resentation of the coefficients oif(t) by partition functions, and uses a classical 
description by Sylvester of the semigroup generated by {s^. 

In a more general vein, Halperin has shown the following: let X = 
HZ,iK(Q, 2s 0, Y= n?=i K (Q, 2r t), and let F be the homotopy theoretic fibre 
of a continuous map X —> Y. Suppose F has finite cohomological dimension ; then 
(denoting the Poincare polynomial by P{ )), 

P{F) =P(X)/P(Y) =/(**) 

is a polynomial with positive coefficients. It is not known which polynomials/ 
so occur. 

In this connection, Halperin now asks if the following hold: 
(1) degf è m 
( 2 ) / ( l ) ^ 2m. 

With the above interpretation, these would be lower bounds on the cohomo­
logical dimension and the Euler characteristic of F, respectively. 

The present paper is in effect a sequel to [2]. In section (1) we give an 
affirmative answer to Halperin's first question. The proof is based on a slightly 
strengthened version of Grosswald's polynomial criterion, and does not require 
the coefficients of/ to be positive. Moreover, it is shown that, usually, the degree 
of/ is actually of order m2. 

In section (2) we show that estimate (2) is valid in some special cases. 
Again, the proof depends on slightly strengthened results of Grosswald on 
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positivity. We also give an elementary proof of the result for m = 2, using the 
approach taken by Nijenhuis and Wilf in their paper on representation of 
integers by linear forms [3]. A general answer to (2) must await a more 
inclusive result on positivity. 

I would like to thank Steve Halperin for asking these questions, and Emil 
Grosswald and Jim Stasheff for discussing them. 

1. Gaussian polynomials . For any pair of sequences of positive integers 

of length m 

E = {ri, . . . , rm], S = {su . . . , sm} 

define a rational function 

h*® = n?=i r -1) / riî.1 r -1). 
(We will write/(/) when there is no danger of ambiguity.) 

The first proposition gives a necessary and sufficient condition for /(/) to be 
a polynomial (thus generalizing the result in [2]). For any positive integer/, 
and any set T of positive integers, let N\{T) be the number of multiples of 
/ in T. 

PROPOSITION l.f(t) is a polynomial if and only if Nt(S) ^ Nt(E) for all I. 

Proof. Let J" be a primitive Ith root of unity, f is a root of tk — 1 precisely 
when / | k, and has multiplicity one. Thus the order of /( /) at f is N t(E) 
— Ni(S). Since the only possible poles of /are roots of uni ty , / is a polynomial 
if and only if Nt(R) - N^S) ^ 0 for all /. 

Examples. 
1) The case treated by Grosswald is S pairwise relatively prime ;ie, N t(S) ^ 1 

for all /. Here the polynomial condition reduces to: 

for all /, i\ I | st =» / | rjt for some j . 

This can be simply restated as: 

for all i; Si | r;- for some j . 

2) The case treated by Franklin (see [4]) is 

S = ( l w U = (i + l , . . . , H w ) . 
Here the polynomial condition is satisfied: 

N,(S) = [m/l] 

N,(R) = [(* + m)/l] - [k/l] ^ [m/l] 

3) An interesting case (suggested by J. Stasheff in the context of homo­
geneous spaces of Lie groups) is that of consecutive odd numbers, 

S = {1, 3, . . . , 2m - 1} 

R = {2k + 1, 2k + 3, . . . , 2(ft + m) - 1} 
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For a fixed / Ç 5, let Xr denote r/l — [r/l], the fractional part of r/l. 
Note that 

[(a + b)/l] = [a/l] + [b/l] + [Xfl + X6]. 

Thus, 

Ï2[a/l] if X« < 1/2 
[ 2 a / / ] " [2[a/l] + 1 if Xa ^ 1/2. 

That is, the parity of [2a//] corresponds to the size of X„. So, for example, 

Ï[m/J] ifXm < 1/2 
Nl(S)^[2m/l]-[m/l]=[[m/l] + l .f ^ 1 / 2 

We also have 

Nl{R) = [2{k + m)//] - [(k + m)/] - {[2k/l] - [k/l]}. 

According to the proposition,/(/) is a polynomial if and only if for all / £ 5, 

0 £ #,(22) - # , (S) 

= {[2(k + m)/l] - [2k/l] - [2m//]} - { [ ( * + m)/l] - [k/l) - [m/l]} 

= [Mk + A2m] — [Xyfc + Am] 

Here AhBx = 0 or 1, depending only on the values of Xm, \k and Xw+yfc, and we 
see t h a t / is a polynomial unless for some / Ç 5, At = 0 and 5/ = 1. By con­
structing a table of the eight possibilities Xm, X*, Xm+A; < 1/2 or g: 1/2, and the 
corresponding values of At and Bh we find that At = 0, Bt = 1 only in the case 
X„ Xm ^ 1/2 and \k+m < 1/2; ie, [2m//], [2fe/Z] odd and [2(k + m)//] even. 

Thus the result is: 

f{t) is a polynomial <=> for all odd I < 2m, 

[2m//]-[2&//] odd => [2{k + m)/l] odd. 

This leaves open the question as to whether there is a relevant "nice" condition 
on k and m alone. 

When/ /^ 5 is a polynomial, there is a lower bound on its degree (as suggested 
by Halperin): 

PROPOSITION 2. Letf(t) = Nl.i(tr< - l)/n7= 1(/ s< - 1). 
Suppose (1) / is a polynomial 

(2) r i y£ Sj all i, j . 

Then deg / ^ m. 

Proof. The result is trivial if all 5̂  = 1 ; thus we may assume, after applying 
proposition 1 and renumbering R and 5, the following: 

Si > 1, 5i | rly ri = ri/si > 1 and 

Ï\ = Max {rjsj\ Sj \ rt and Sj ^ 1}. 
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If Yx = 2, we see (after renumbering) that rt = etsiy where et = 2 if st ^ 1, 
and so the result follows. Thus we may assume r / ^ 3. 

Now consider f'(t) =fR>,s>(t), where i?' = {r/, r2, . . . , rm), S' = 
{1, s2, . . . , sm]. Note that for It Si, 

Nt(R') = Nl(R) ^ Nt(S) = Nl(S') 

while for / | si, 

Nl(R
/) ^ Nl(R) - 1 ^ Nt(S) - 1 = Nt(S'). 

Thus, according to Proposition l,f'(t) is a polynomial. We have 

(A) degf = degf + {r\- 1 ) ^ - 1). 

After cancellation of the new terms t — 1, tTl' — 1 in/ '(/) if they are duplicated, 
/ ' satisfies condition (2) of the proposition, and so by induction on J2su 

degf ^ m — 2. 

Now apply (A), r / ^ 3 and Si > 1 to obtain the result. 

This estimate can be considerably improved when there are no repetitions 
among the factors. 

PROPOSITION 3. With hypotheses (1), (2) of Proposition 2, suppose also 
(3): {r*}, {sf} all distinct. 

Then (a) degf ^ X) st ~ 3 
(b) If st * 2 alii, degf ^ E ^ - l 
(c) If st * 2, 3 alii, degf ^ E *<• 

Proof. Proceeding as in the proof of Proposition 2, if r / = 2, the current 
strongest estimate is easily seen to hold. Consider now r / ^ 3. 

Proof of (c): After cancelling t — 1 and rTl> — 1 in f (t) (if duplicated), we 
have by induction 

(B) deg / ' è £ *, - *i - n ' . 

Combining (̂ 4) and (£) we obtain 

(C) degf è E ^ (n' - 2)(Sl - 2) - 3. 

Thus the result holds if (r / - 2)($i - 2) ^ 3. But in case (c), sx - 2 ^ 2, so 
we are done if r / ^ 4. Now if r / = 3, st ^ r / for all i, so T1' — 1 will not be 
duplicated in the denominator of/', and will not be cancelled. The induction 
assumption (B) may then be replaced by the stronger 

(BO deg / ' è £ ** - *i 

and combining (Bi) with (A), 

deg/ è £ s( - Sl + 2(si - 1) > E «*• 
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Proof of (b): According to (B) we are done if r / ^ 4 and si ^ 4. Suppose 
Si = 3, Y\ ^ 4 or 5i ^ 4, Ï\ = 3. Since the {r*}, {ŝ } are all distinct, after the 
cancelling s tep / ' will fall under case (c), and so we may use the inductive step 
(B). Since then 0 / - 2) (^ - 2) - 3 ^ - 1 , application of (C) yields the 
result. 

The remaining possibility is si = r / = 3. In this case we may similarly use 
(Bi) of case (c). This concludes the proof of (b). 

Note that if no rt = 1, then t — 1 does not disappear from / ' , and the 
estimate becomes again deg / ^ J^ st. 

Proof of (a): We may assume some st = 2. Suppose Si = 2. After cancelling, 
t — 1 does not occur in the numerator of / ' , and we may apply the above note 
t o / ' , and thus may use (C): 

deg/ ^ E ^ - 3 . 
Now suppose Si > 2; then (say) s2 = 2. By (A) and induction, we are done if 
(ri — 2)(si — 2) ^ 3. Now consider the remaining possibilities. Both 
Si = 3, Y\ = 4 and Si = 4, r / = 3 are impossible by the maximality of r / , 
since then Y^/S2 = 6. The case Si = r / = 3 is disposed of as in the proof of 
(b) above. 

2. Positive coefficients. Let p, q > 1 be positive integers, and denote by 
T(p, q) the additive semigroup generated by p, q. The elements of T(p, q) are 
said to be representable. If (p, q) = d, then T(p, q) = dT(p/d, q/d), so one 
need consider only the case p, q relatively prime. This semigroup was first 
studied by Sylvester, who showed in [5] that T(p, q) is a cofinite set, and that 
if we denote by fl(£, q) the complement of T(p, q) (ie, the set of non-represen-
table integers) and by K(P, q) — 1 the largest element of fi, then K = 
(p — 1) (g — 1) and #12 = K/2. Here the notation is that of [3]. In that paper, 
Nijenhuis and Wilf reprove this result in the more general setting of represen­
tation of integers by linear forms, using a * 'reversal map" x <-> (K — 1 — x) 
between representable and non-representable integers. Grosswald (in [2]) has 
shown how Sylvester's result can be applied, via a partition theoretic argument, 
to the determination of when fRtS has positive coefficients, in the case m = 2. 
The result is as follows: 

PROPOSITION 4. (Halperin, Grosswald) Suppose f{t) = (tTl — l ) ( / r 2 - 1) / 
(£51 — 1)(/*2 — 1) is a polynomial. Then f(t) has positive coefficients <=> 
Yi, Y2 G T(SU S2). 

The following is a quite elementary proof, avoiding the use of partition 
functions, based on Nijenhuis and Wilf s reversal map. 

LEMMA 1. Let (p, g) = 1, 12 = Q(p, g), K = K(P, g). Then 

(tpq - l)t(f - \){f - 1) = Y, t"+ l/(* - 1). 
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Proof. Let g{t) = (?* - \)/{V - 1) {tq - 1). For any n è m we may write 

[n/m] 

tn/(tm-i) = 1] r M + P ( o / ( r - 1 ) 

where deg p < m. 
Apply this repeatedly to g(t), with m = p, q, to obtain 

(D) g(0 = Z f5-(a6+6s) + « r^ /^ - 1)0* - 1), 

where the sum is over {(a, b); a, b ^ I, ap -{- bq S Pq) and deg a < p + q. 
On the other hand, we know that /( / ) = (/ — l)g(t) is a polynomial (accord­

ing to Proposition 1) a n d / ( l ) = 1. Thus 

*(t)/(p-i)(p-u = i / o - i ) . 

Now in (D) substitute r = a — 1, s = b — 1 and we have 

s(0 = E f*-^-^^ + i/(* - i), 
where the sum is over {(r, s)\ r, s ^ 0y rp + sq ^ pq — p — q}. But pq — 
p — q = K — 1, and r£ + sq represents distinct elements of T(p, q), and thus 
K — 1 — (r£ + sg) represents each element of 12 exactly once (this is the 
reversal map of [3]). This completes the proof of Lemma 1. 

Proof of Proposition 4: Since f(t) is a polynomial, according to Proposition 1 
either si | ri, s2 \ r2 or Si, s2 \ r\ (with suitable numbering). In the former case, 
both conditions of the conclusion of the proposition clearly hold. In the latter 
case, let d = (si, s2). Then Nd(S) = 2 so we must have Nd(R) = 2;i.e.,d \ r2. 
T h u s / is a polynomial in td; replacing td with t p u t s / into the following form: 

f(t) = (?*<- l)(ty - l ) / ( P - l ) ( * « - l) 

where (p, q) = (s\/d, s2/d) = 1. Clearly, it is sufficient to consider only the 
case a = 1. Applying Lemma 1 to this expression, we obtain 

(E) f(t) = E l * - I f + 2 **. 
«CO wÇfi A;=0 

Suppose 7 (? T; i.e., 7 (: 12. The term — P occurs in the second sum in (E), and 
no other term of degree 7 occurs. Thus/(J) does not have positive coefficients. 
In fact, the negative terms of/are precisely { — /"; co £ 12, co — 7 £ T}. 

Now suppose 7 £ T; then each term — t" of the second sum in (E) is can­
celled by another term. For, if co ^ 7, then co — 7 Ç 12 and thus £" occurs in the 
first sum; if co :g 7 — 1, then t" occurs in the third sum. This completes the 
proof. 

Here one can see that the terms which do not occur in f(t) are precisely all 
ta where a £ 12 or a — 7 G T; the latter condition can be restated (by reversal) 
as a = K - 1 + 7 — c o with co £ 12. Noting that K — 1 + 7 = deg / , we see 
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that the terms which do not occur i n / are those of non-representable degree or 
codegree. This remark appears in [2] in this form. 

Proposition 4 provides an easy answer to Halperin's second question for 
m = 2; that is, if f(t) is a polynomial with positive coefficients t h e n / ( l ) ^ 4. 
For larger values of m, we can use the following rather weak necessary condi­
tion for positivity (stated and proved in [2] in special cases) : 

L e t / ( 0 = fR,s(t), and let T be the semigroup generated by S. 

LEMMA 2. / / / has positive coefficients, then rt £ T for all i. 

Proof. Write 

m = n d - n / n a -n 
= ( l - E ?" + E tri+Ti - • • • ) ( 2J cf) , where c, = 1 

Let Tj be the least non-representable element of R. Then — tTi occurs as a term 
in/(/) unless 

2n 

rj = To + Z hi, 

with 7o G r and rki £ i?. But then rki < /^, so each rki would be representable, 
and consequently rj would be representable. 

To apply Lemma 2, we call /R ts elementary if (11 st) | ri. 

PROPOSITION 5. Let f be an elementary polynomial such that ri ^ Sj all i, j 
and Sj T^ 1 all j . If f has positive coefficients, thenf() ) ^ 2m. 

Proof. / ( I ) = I I Ti/U st ^ r2 . . . rm, since / is elementary. Let Si = 
Min {SJ} ; by Lemma 2, r* ^ 2si, all i. Since Si > 1, the result follows. 

Clearly a much stronger bound o n / ( l ) holds for elementary polynomials, 
but the example YL(t2Si — l)/YL(tSi — 1) shows that the given estimate is the 
best we can hope for in general. 

Finally, we note that in [2], Grosswald considers only the case of 5 pairwise 
relatively prime. Under this assumption, Halperin's bound is valid. 

PROPOSITION 6. Let f = fRjs with ri ^ Sj all i, j and Sj ^ 1 all j , and with 
{SJ} pairwise relatively prime. If f is a polynomial with positive coefficients, then 
/ ( l ) ^ 2-. 

Proof. According to Proposition 1, each Sj divides some rt. Grouping to­
gether all Sj dividing the same rt (in arbitrary fashion, so as to account for all 
the Sj), we write (after renumbering) 

m = n 
/ 1 a+b 

r -1)/ n (*"' -1) • n w - i)/r - DI 
1 sj\ri J i=a+l 

n r-i). 
i=a+b+l 
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Here the first a factors are all those with more than one term in the denomin­
ator. Now for i S a, rt ^ Y[s.\r.Sj, so we have 

a+b m 

/(l) è I I (rt/Si) • I I rt. 
i==a+l i=a+b+l 

As before, by Lemma 2, rt ^ 2-Min {st} ^ 4 and r Jsi ^ 2, so 

f(l) > 26«4m—a~6 = 22w—(2a+6) 

Now since each factor for i ^ a involves at least two of the sjy we know 

2a + b S m. 

Putting these two inequalities together, we are done. 
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