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A relation between the ensemble average and the nearest particle statistics is derived. The
relation accounts for interactions among all the particles, not only the nearest one, and
can be used to study long-range particle interactions without the difficulty of a divergent
integral. As an example, this relation is applied to calculate the particle sedimentation
velocity to the first order of the particle volume fraction. Using the relation, an important
particle–fluid–particle stress is introduced for general multiphase flows.
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1. Introduction

Particulate systems involving long-range interactions are difficult to study, especially
with the presence of inhomogeneity. In the field of multiphase flows, numerical
simulations have been performed by many researchers (e.g. Patankar & Joseph 2001;
Zhang & Prosperetti 2005; Wang et al. 2016; Subramanian & Balachandar 2017;
Theofanous & Chang 2018; Yao & Capecelatro 2018). Most, if not all, of them are limited
to homogeneous systems. The assumption of statistical homogeneity is needed in many
numerical calculations not only for convenience in the post-processing of the numerical
results, but for the validity of the numerical methods in dealing with the long-range
interactions among the particles. For instance, the use of periodic boundary conditions in
numerical simulations and the treatment (O’Brien 1979) of the surface integral at infinity
in Stokesian dynamics (Brady & Bossis 1988) all require the absence of volume fraction
gradient because of the long-range hydrodynamic interactions. Similar situations also exist
in other fields of physics. For instance, numerical simulations of charged particles often
rely on the Ewald sum (Nestler, Pippig & Pott 2015; Rackers et al. 2018; Yao & Capecelatro
2018) in a periodic domain and the assumption of charge neutrality to avoid divergent
integrals caused by Coulomb forces among the particles. To study an inhomogeneous
particulate system, one inevitably needs to consider interactions between the macroscopic
length scale at which the mean fields change and the scale of mean particle separation.
The long-range interactions cannot be categorized into either of the scales. This
difficulty is reflected in the calculation of mean properties, where divergent integrals are
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often encountered. It will be useful to have a method capable of calculating averages
without the difficulties of the divergent integrals.

The main objective of this work is to rigorously establish a relation between the
ensemble average and the nearest particle statistics. Because of the rapid far-field decay
of the nearest particle probability density function, the integral relating the ensemble
average and the average conditional on the nearest particle converges absolutely; therefore
it is potentially a powerful method to study long-range particle interactions without the
difficulty of a divergent integral, especially in processing data from numerical simulations.

The nearest particle probability is an old concept (Hertz 1909; Chandrasekhar 1943).
Its use to study effective properties in multiphase flows has also been proposed (Drew
& Mandyam 1997). Without a rigorously derived relation between the ensemble average
and the nearest particle statistics, there are many questions regarding the legitimacy of
its use. These questions include the effect of other nearby particles and the order of the
asymptotes of the average quantities at the limit of a small particle volume fraction θp. For
instance, the typical distance between particles scales as θ−1/3

p . For a method based on the
interparticle distance, does this imply that the primary effect of the volume fraction to an
average quantity, such as the drag force, is of order θ 1/3

p ? For a particle, between the typical
distance to its nearest particle and the distance twice of that, often there are ten or more
particles. How can one account for the effects of these particles?

These questions will be answered at the end of the next section after deriving the
relation between the ensemble phase average and the nearest particle statistics and by the
example in § 3. As an application of the relation, in § 3, the Stokes drag and the particle
sedimentation velocity are calculated following the steps of Batchelor (1972) for a flow
with a dilute particle phase, but without using the renormalization techniques. In this way
the new method is compared with the renormalization method.

Although the particle sedimentation velocity is a half-century-old problem, and the
theory of multiphase flows has progressed considerably beyond the work of Batchelor
(1972). For instance, it is now known that the relative motion between the particle and
the fluid phases results in microstructures of the particles affecting the sedimentation
velocity (Ham & Homsy 1988; Cichocki & Sadlej 2005; Felderhof 2008). The divergent
nature associated with long-range particle interactions and their treatments is still a subject
of modern research (Piazza 2014; Rackers et al. 2018). The work of Batchelor (1972)
is still viewed as a significant reference point because of the physical insights, despite
the simplification assumptions used. We revisit this sedimentation problem with the new
relation to understand the physics contained in the quantities conditionally averaged on
the nearest particle. In the process, we also learn how the new relation avoids the need
for the difficult renormalizations, and how the effects of the particles other than the
nearest one are included. For this purpose, before applying the relation to more complex
realistic systems (Fiore, Wang & Swan 2018), we choose to start with the simplified system
studied by Batchelor (1972), assuming a statistically homogeneous and isotropic particle
distribution.

In § 4, we show that the correlation product of the nearest particle distance and the
fluid force on a particle is a stress tensor containing information of particle interactions
at the interparticle length scale. This stress is similar to the potential part of the virial
stress in a molecular system. Its divergence is a force density important for statistically
inhomogeneous flows. This application shows that the nearest particle statistics cannot
only recover classical results, but can also be used to study new physics. Furthermore, the
renormalization technique is limited to linear problems, while the new relation is rather
general. Without the divergence difficulty, the nearest particle statistics can be used to
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study a large variety of long-range particle interactions, such as charged particles in plasma
and colloidal systems (Allen & Tildesley 2017) and gravitational effects on galaxies.

2. Ensemble phase average and nearest particle statistics

2.1. Average for the continuous phase
Let P be the probability measure (Ash 1972) defined on subsets of a collection (ensemble,
or sample space) of disperse multiphase flows, and F be a multiphase flow in the
sample space, which is often represented by a list of variables, including the fields of
particle positions, shapes, velocities, boundary values, etc., that uniquely and completely
describes the multiphase flow. To allow for generality while simplifying our notation,
here we use the abstract concept (Ash 1972) of probability P . If flow F can be
represented by a finite set of parameters (λ), then F = {λ1, λ2, . . . , λn} and dP =
P(λ1, λ2, . . . , λn) dλ1 dλ2 . . . dλn , with P(λ1, λ2, . . . , λn) being the probability density in
the n-dimensional phase space formed by the parameters. Unfortunately, most multiphase
flows cannot be described simply by a finite number of parameters because of the degrees
of freedom associated with the continuous phase. The only exceptions are the Stokes and
potential flows with boundary conditions specified without uncertainties.

The indicator function χc(x, t,F ) for the continuous phase is defined such that
χc(x, t,F ) = 1, if at time t position x is occupied by the continuous phase in flow F ,
and χc(x, t,F ) = 0, otherwise. The volume fraction of the continuous phase is defined
as (Zhang & Prosperetti 1994, 1997; Zhang et al. 2007)

θc(x, t) =
∫

χc(x, t,F ) dP. (2.1)

For a generic continuous phase quantity qc(x, t,F ) in flow F at position x and time t, its
ensemble phase average is defined as

〈qc〉(x, t) = 1
θc(x, t)

∫
χc(x, t,F )qc(x, t,F ) dP. (2.2)

These definitions are extensions of the ensemble average of Batchelor (1972). For Stokes
flows containing N identical particles, we can write dP = P(CN) dCN/N! if the notation
of Batchelor (1972) is used, where CN is the particle configuration. Besides the advantage
of simplified notations, direct use of the probability P implies that our results are
independent of the description for the physical system.

To consider the nearest particle statistics, we introduce a function,

hi(x, t,F ) = 1
Nx(x, t,F )

∏
j

H(|ξ j(t,F ) − x| − |ξ i(t,F ) − x|), (2.3)

where ξ i(t,F ) is the location of the i-th particle centre in flow F at time t, H(·) is the
Heaviside function (H(x) = 0 for x < 0; H(x) = 1 for x � 0) and

Nx(x, t,F ) =
∑

i

∏
j

H(|ξ j(t,F ) − x| − |ξ i(t,F ) − x|) � 1. (2.4)

Indices i and j in both (2.3) and (2.4) run through all the particles in flow F . The products
of the Heaviside functions in (2.3) and (2.4) are unity if and only if particle i is the
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nearest (from the particle centre ξ i) to spatial position x, and are zero otherwise. Function
hi(x, t,F ) is non-zero if and only if particle i is one of the nearest particles to x. In
(2.4), Nx is the number of the nearest particles to a spatial point x at time t in flow F .
Here Nx(x, t,F ) � 1, because for a given position x in a disperse multiphase flow, there
is always at least one the nearest particle. For a dispersion of randomly placed particles,
Nx = 1 in almost all flows and all x and t. With a probability of zero, a position x has
two or more nearest particles at the same distance away. For ordered systems, Nx can be
greater than 1. One example is a simple cubic array of particles. If x is the centre of the
cube, Nx = 8.

For a spatial point y using the property
∫

δ[ξ i(t,F ) − y] d3 y = 1 of the δ-function,
and then exchanging the order of the integral and the summation over i, we have∫ ∑

i

hi(x, t,F )δ[ξ i(t,F ) − y] d3 y =
∑

i

hi(x, t,F ) = Nx(x, t,F )

Nx(x, t,F )
= 1. (2.5)

The mathematical steps in (2.5) may appear trivial, but the left-hand side provides a useful
way of performing the integral. For a given position x and flow F , one can choose any
position y, surround it with an infinitesimal differential volume (with the value of the
volume) d3 y, and calculate

∑
i hi(x, t,F )δ[ξ i(t,F ) − y] d3 y. For most of the choices

of y, the value is zero. The non-zero value appears only when the differential volume
around y contains one of the nearest particle centres (ξ i) to x in the flow F , otherwise
hi(x, t,F ) = 0. There are only Nx(x, t,F ) of them. The key point here is that one can
freely choose a position y first and then ask whether this position is the centre of the
nearest particle to x in the flow. Relation (2.5) states that after integrating contributions
from all y in the entire space, every flow is accounted for 100 % and only 100 %. This
property ensures that the nearest statistics developed in the following does not miscount
or overcount any flow in the ensemble.

Multiplying the left-hand side of (2.5) with the right-hand side of (2.2) and then
exchanging the order of the integrations, one finds a major conclusion of this work, the
relation between the ensemble phase average and the nearest particle statistics,

〈qc〉(x, t) =
∫

〈qc〉nst(x, y, t)Pc
nst( y|x, t) d3 y, (2.6)

where

〈qc〉nst(x, y, t) = 1
θc(x, t)Pc

nst( y|x, t)

∫
qc(x, t,F )χc(x, t,F )

∑
i

hi(x, t,F )δ[ξ i(t,F ) − y] dP (2.7)

and

Pc
nst( y|x, t) = 1

θc(x, t)

∫
χc(x, t,F )

∑
i=1

hi(x, t,F )δ[ξ i(t,F ) − y] dP, (2.8)

defined such that when qc(x, t,F ) = 1, 〈qc〉nst(x, y, t) = 1.
Similar to the discussion above, in (2.7) and (2.8) for a chosen y, the δ-function

δ[ξ i(t,F ) − y] restricts that the contributions are only from the flows in which there
is a particle centred at position y at time t. Function hi(x, t,F ) in the integrals then
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ensures that the particle at y, which is particle i, is the nearest to spatial point x at time t.
Finally, the indicator functions χc(x, t,F ) restrict that the contributions to the integrals
only come from the flows in which position x is occupied by the continuous phase at time
t. Since in the sense of ensemble average, the volume fraction θc(x, t) defined in (2.1) is
the probability of finding position x being occupied by the continuous phase, the quantity
defined in (2.8) is then the probability density of finding the nearest particle to x at position
y, conditional on position x being occupied by the continuous phase at time t. Similarly,
the quantity defined in (2.7) is the continuous phase quantity qc at position x and time t
averaged conditionally on the particle at y being the nearest particle to x. It is important
to note that qc(x, t,F ) in definition (2.7) is the quantity at position x in flow F at time t,
containing effects from all the particles, including, but not only, the nearest one centred at
y. Furthermore, using (2.1) and (2.5) in (2.8), one finds∫

Pc
nst( y|x, t) d3 y = 1, (2.9)

as required for a probability density. This normalization property of Pc
nst implies that for

any bounded function 〈qc〉nst, the ensemble phase average calculated from integral (2.6)
converges absolutely since Pc

nst( y|x, t) � 0 as defined in (2.8). We are then free of the
difficulties of divergent integrals, even for long-range particle interactions.

Relation (2.6) states that the ensemble average of a continuous phase quantity at position
x and time t can be calculated in two steps. The first step is to average over all the flows in
which the nearest particle is centred at position y. This average is 〈qc〉nst defined in (2.7),
containing effects from all the particles in the flow. The second step is to average over
all possible positions of the nearest particle centres ( y). The ensemble phase average is
then the expected value of 〈qc〉nst calculated using (2.6) based on the probability density
Pc

nst( y|x, t) of the nearest particle.

2.2. Average for the particle phase
The simple derivation above can also be performed for quantities associated with particles.
We now list the steps in this subsection. In an ensemble average, the particle number
density is defined as (Irving & Kirkwood 1950; Zhang & Prosperetti 1994; Zhang, Ma &
Rauenzahn 2006)

np(x, t) =
∫ ∑

i

δ[ξ i(t,F ) − x] dP. (2.10)

The ensemble average for a particle quantity qi(t,F ) is defined as

q̄p(x) = 1
np(x)

∫ ∑
i

qi(t,F )δ[ξ i(t,F ) − x] dP. (2.11)

Similar to the procedures for the continuous phase above, to relate the ensemble average
to the nearest particle statistics, we introduce a function

hij(t,F ) = 1
Ni(t,F )

∏
k /=i,k /=j

H
[|ξ k(t,F ) − ξ i(t,F )| − |ξ j(t,F ) − ξ i(t,F )|] , (2.12)

where

Ni(t,F ) =
∑
j /=i

∏
k /=i,k /=j

H
[|ξ k(t,F ) − ξ i(t,F )| − |ξ j(t,F ) − ξ i(t,F )|] � 1, (2.13)
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910 A16-6 D. Z. Zhang

is the number of the nearest particles to particle i. The products in (2.12) and (2.13) are
unity if and only if particle j is one of the nearest particles to particle i. Otherwise the
products are zero. Similar to (2.5), using the property of δ-function, for any flow F and
particle i we have∫ ∑

j /=i

δ[ y − ξ j(t,F )]hij(t,F ) d3 y =
∑
j /=i

hij(t,F ) = Ni

Ni
= 1. (2.14)

Multiplying the left-hand side of (2.14), with the right-hand side of (2.11) and then
exchanging the order of the integrations, similar to (2.6) one finds

q̄p(x, t) =
∫

q̄p,nst(x, y, t)Pp
nst( y|x, t) d3 y, (2.15)

where

Pp
nst( y|x, t) = 1

np(x, t)

∫ ∑
i

δ[ξ i(t,F ) − x]
∑
j /=i

δ[ξ j(t,F ) − y]hij(t,F ) dP, (2.16)

is the probability density of finding the nearest particle at y given a particle already in x,
and

q̄p,nst(x, y, t) = 1
np(x, t)Pp

nst( y|x, t)

∫ ∑
i

qi(t,F )δ[ξ i(t,F ) − x]

∑
j /=i

hij(t,F )δ[ξ j(t,F ) − y] dP (2.17)

is the particle value q on the particle at x averaged conditionally on the particle at y being
the nearest to the particle at x. Again, this conditionally averaged quantity includes effects
from all particles in the flow, not only the pair interaction between the nearest neighbours.
Similar to (2.9), integrating (2.16) over y, and noting (2.14) and (2.10), we have∫

Pp
nst( y|x, t) d3 y = 1, (2.18)

as required for a probability density function. Similar to the ensemble average for the
continuous phase, this relation implies the absolute convergence of integral (2.15) for any
bounded q̄p,nst.

In an ensemble average, the pair distribution function P2(x, y, t) can be expressed as

P2(x, y, t) =
∫ ∑

i

δ[ξ i(t,F ) − x]
∑
j /=i

δ[ξ j(t,F ) − y] dP. (2.19)

Let qij(t,F ) be a quantity pertaining to a pair of particles i and j. For pairs located at x
and y, the average of the pair quantity can be defined as

q̄2(x, y, t) = 1
P2(x, y, t)

∫ ∑
i

δ[ξ i(t,F ) − x]
∑
j /=i

δ[ξ j(t,F ) − y]qij(t,F ) dP.

(2.20)

This is an average conditional on a pair of particles located at x and y. Letting the pair
quantity qij = hij, denoting the corresponding average q̄2 as h̄2 in (2.20), and comparing
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the relation with (2.16) we find

h̄2(x, y, t) = Pp
nst( y|x, t)np(x, t)

P2(x, y, t)
. (2.21)

For qij = hij in (2.20), the integrand is non-zero if and only if x is occupied by a particle (i),
y is occupied by another ( j), and particle j is the nearest neighbour to particle i, otherwise
hij = 0. Such calculated h̄2 is the probability of finding the particle at y being the nearest
neighbour to the particle at x, conditional on knowing a pair of particles at x and y. In
other words, under the condition that a particle pair locates at positions x and y, h̄2(x, y, t)
is the probability that no particle, other than the one at x, is inside the spherical region
centred at x with radius | y − x|.

The relations and equations shown so far are exact. They only rely on the assumptions
that the probability P exists and that the related functions are well-behaved, so that the
order of integrations can be exchanged freely. There is no assumption about the volume
fraction or the nature of the particle interactions; therefore, the relations are applicable in
general particulate systems.

Probability densities Pc
nst( y|x, t) and Pp

nst( y|x, t) are different. In the former, the position
x is occupied by the continuous phase, and in the latter, the position x is occupied by a
particle centre. In the rest of this work, we mainly focus on the spatial part of the particle
distributions. For simplicity, we now drop the variable t for time in the rest of the text.

2.3. Dilute particle phase
We now use (2.21) to calculate Pp

nst( y|x). In a dilute dispersion of randomly distributed
hard spheres of radii a, correct to the leading order of the particle number density np,
P2(x, y) = 0, if r = | y − x| < 2a, and P2(x, y) = n2

p, if r = | y − x| > 2a (Batchelor
1972). The probability h̄2(x, y) of no particle centre other than x inside the spherical
region |z − x| < r can be calculated as the follows. For hard spheres, the probability is the
same as the probability of no particle centre in the spherical shell 2a < |z − x| < r, since
no particle centre other than x can be inside of the spherical region |z − x| < 2a as shown
in figure 1. The volume of the shell is V = 4π[r3 − (2a)3]/3. We now divide this volume
into N equal small volumes. Each of them has a volume v = V/N. The probability of
finding a particle centre in such a small volume is npv, and the probability of no particle
centre in it is 1 − npv. For suspensions of randomly distributed particles with a small
particle volume fraction θp, the probability of particle overlap is of O(θ 2

p ) and can be
neglected. Under this assumption, the probability of no particle in all the N small volumes
(i.e. the entire shell) is (1 − npv)N . As the number N of the small volumes increases, we
have

h̄2 = lim
N→∞

(1 − npv)N = lim
N→∞

(
1 − npV

N

)N

= e−npV . (2.22)

Substituting this relation into (2.21) we find

Pp
nst( y|x) =

{
np exp(−4πnp[r3 − (2a)3]/3) if r = | y − x| � 2a;
0 if r = | y − x| < 2a.

(2.23)

The nearest-neighbour distribution function H(r) of Torquato, Lu & Rubinstein (1990b)
can be expressed as 4πr2Pp

nst( y|x). With (2.23), such calculated H(r) agrees with (7) of
Torquato et al. (1990b) at the limit of a small particle volume fraction.
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y

z
x

r

2a

v

FIGURE 1. Calculation of h̄2(x, y). Black dots are particle centres.

In cases where position x is occupied by the continuous phase instead of a particle,
particle centres are allowed to be as close as one radius a away from x. The radius of the
inner spherical region in figure 1 becomes a, and the shell volume becomes 4π(r3 − a3)/3.
Similar to (2.23), we then have

Pc
nst( y|x) =

{
np exp(−4πnp(r3 − a3)/3) if r = | y − x| � a;
0 if r = | y − x| < a.

(2.24)

It is easy to verify that probability densities (2.23) and (2.24) satisfy the normalization
conditions (2.18) and (2.9).

A relation similar to (2.6) is (2.10) of Batchelor (1972), which can be written in our
notations as

〈qc〉(x) =
∫

| y−x|>a
q1

c(x, y)np( y) d3 y + O(θ 2
p ), (2.25)

where q1
c is the contribution from a single particle at y to quantity qc at position x.

This equation is valid if q1
c(x, y) decays faster than 1/r3+ε (ε > 0). There are conceptual

differences between this relation and relation (2.6). In (2.25), np( y) d3 y is the probable
number of particles in the volume element d3 y. The integral sums over individual
contributions from all the particles in the flow. An implied assumption in the relation is
that the average 〈qc〉 can be calculated by adding contributions from all the particles in the
flow; therefore, relation (2.25) is only valid for linear problems, if the integral converges.
Since in (2.25) q1

c is the contribution from a single particle, to calculate the ensemble
average, one cannot only account for the contribution from the nearest particle by simply
replacing np( y) with the nearest particle probability density Pc

nst( y|x). In contrast, the
starting point of the nearest particle statistics is that the quantity qc is well-defined in
all the flows, including effects from all the particles and possible boundary and initial
conditions. In (2.6) 〈qc〉nst(x, y) is the value of qc conditionally averaged on y being the
nearest particle to x, as defined in (2.7). In (2.6), Pc

nstd
3 y is the probability of having a

nearest particle to x in the volume element d3 y around y. The integral sums over all such
probabilities, instead of over the individual particle contributions as in (2.25).

In the case of a dilute particle phase, particles are far apart. If qc is the particle
contribution to a continuous phase quantity, such as the fluid velocity caused by particle
sedimentation, intuitively we have 〈qc〉nst ≈ q1

c , but the order of this approximation cannot
be determined easily from the intuition. More rigorously, one can obtain 〈qc〉nst by solving
the equation conditionally averaged on the nearest particle as done by Hinch (1977) for the
equation conditionally averaged on a particle, (not necessarily the nearest one), fixed at a
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given position. It is shown in the following section that the solution to the conditionally
averaged equation for the fluid velocity can indeed be approximated this way, resulting an
error of O(θ 1/3

p ) in the ensemble average, because of the long-range hydrodynamic effect
of the particles.

For short-range interactions, using 〈qc〉nst = q1
c + O(n2

p) in (2.6) and using (2.24), we
find

〈qc〉(x) =
∫

| y−x|>a
q1

c(x, y)np( y) exp(−4πnp(r3 − a3)/3) d3 y + O(θ 2
p ). (2.26)

For cases of small particle volume fractions, np is also small and exp(−4πnp(r3 − a3)/3) ≈
1. This relation reduces to (2.25), which is the result of Batchelor (1972). In other words,
for short-range particle interactions, the new relation (2.6) yields the same first order
(in θp) result as that from relation (2.10) of Batchelor (1972). For long-range particle
interactions, the exponential decay in (2.26) becomes important to ensure the convergence
of the integral, while the error from (2.26) is not necessarily O(θ 2

p ). The calculation of the
Stokes drag in the next section encounters such an example.

3. Drag in dilute Stokes suspension

Let us consider a dispersion of rigid spherical particles with radii a in a Stokes flow
with the fluid viscosity μ. We assume the flow is statistically homogeneous with constant
average fluid and particle velocities and with a random particle distribution. This system
is studied by Batchelor (1972) using the renormalization technique.

Using the Faxén theorem, following the notation of Batchelor (1972), the drag on a
sphere at x moving at velocity vp in flow F can be calculated as

f p(x,F ) = −6πaμ[vp − V ′(x,F ) − V ′′(x,F ) − W (x,F )], (3.1)

where V ′(x,F ) is the fluid velocity vc(x,F ′) in flow F ′ with the particle at x replaced
by the fluid while keeping locations of other particles unaltered compared with flow F ,

V ′(x,F ) = vc(x,F ′), (3.2)

V ′′(x,F ) = 1
6 a2∇2V ′(x,F ′) = 1

6 a2∇2vc(x,F ′) (3.3)

and W accounts the reflection from the surrounding particles caused by the Stokeslet of
the particle at x.

The particle drag f p and velocities in (3.1) can be considered as quantities pertaining
to the particle at x. By definition (2.11) the ensemble average force on the particle is
calculated by averaging over all other particle positions given one of them at x as follows:

f̄ p(x) = −6πaμ(v̄p − V ′ − V ′′ − W̄ ). (3.4)

Using relation (2.15) between the ensemble phase average and the nearest particle
statistics, we have

V ′ =
∫

V ′
nst(x, y)Pp

nst( y|x) d3 y (3.5)

and similar relations for velocities V ′′ and W̄ .
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FIGURE 2. Effective medium formed by particles outside the particle-free region.

Let y be the centre of the nearest particle to x in both F and F ′, then | y − x| � 2a
because x is occupied by a particle in flow F . Under the assumption (Batchelor 1972)
that for flows containing a large number of particles the difference by one particle has
little effect on their averages, after averaging over positions of all other particles, we have

V ′
nst(x, y) = 〈vc〉nst(x, y), V ′′

nst(x, y) = a2

6
〈∇2vc〉nst(x, y), | y − x| � 2a.

(3.6a−c)

Here, we write 〈∇2vc〉nst instead of ∇2〈vc〉nst because the Laplacian is taken in (3.3)
before the average. Generally for an ensemble phase average, the differentiation and the
average operators do not commutate (Zhang & Prosperetti 1994; Zhang et al. 2007). The
same is also true for quantities conditionally averaged on the nearest particle as (A 7) in
appendix A.

The velocity 〈vc〉nst(x, y) can be obtained by averaging over all the configurations as
shown in figure 2, in which position x is occupied by the fluid, the nearest particle to x is
centred at y. After averaging over all such configurations, one finds an effective medium
as shown on the right-hand side of the figure. In the effective medium, there is no particle
inside the spherical region of radius r = | y − x| centred at x. To study the particle drag,
an external force field is needed to drive the motion. We now assume the force is gravity.
Other forces can be considered similarly. The density of the particle-free region is the fluid
density ρc. Outside of the particle-free region, the mixture density becomes θpρp + (1 −
θp)ρc, where ρp is the particle density. This is similar to the problem of a lighter viscous
droplet, the particle-free region, immersed in a heavier fluid outside (assuming ρp > ρc).
Far away from the particle-free region, the gravity [θpρp + (1 − θp)ρc]g is balanced by
the pressure gradient. With the lighter particle-free region, the buoyancy causes a back
(against the gravity) flow velocity vb. The total buoyancy is proportional to 4

3πr3θpΔρg,
where Δρ = ρp − ρc; while the total drag on the surface of the particle-free region is
proportional to μrvb. The resulting back flow velocity is vb = O(θpr2Δρg/μ). This back
flow velocity can also be obtained by the more rigorous averaged equation approach in
appendix B.

Let v0 be the velocity of the mixture far away from the spherical particle-free region.
Correct to the zeroth order of the particle volume fraction θp, the presence of the nearest
particle at y induces a fluid velocity

v1
c(x, y) = (v̄p − v0 − v′

b)

(
3a
4r

+ a3

4r3

)
+ r

r

[ r
r

· (v̄p − v0 − v′
b)

] (
3a
4r

− 3a3

4r3

)
, (3.7)
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at x, where r = x − y, and v′
b = O(θpr2) is the back flow velocity at y, similar to vb.

Velocity (3.7) is the solution of a sphere in the Stokes flow with the background velocity
v0 + v′

b without consideration of other particles. The fluid velocity at the centre of the
particle-free region is then

V ′
nst(x, y) = 〈vc〉nst(x, y) = v0 + v1

c(x, y) + vb(x, y). (3.8)

Since v′
b appears with the factor a/r in (3.7), it causes an O(θpar) effect on the velocity

V ′
nst, which is small compared with vb = O(θpr2), and hence negligible as shown below.
A divergent integral is encountered if (3.7) (without v′

b) is used in (2.25) to calculate V ′.
The first renormalization method is then used by Batchelor (1972). In the present method,
instead of using (2.25), we substitute (3.8) into (2.15) or (3.5) and then use (2.23) to find

V ′ = v0 + θ 1/3
p Γinc

(
2
3 , 8θp

)
[v̄p − v0 + O(θ 1/3

p )] +
∫

vb(x, y)Pp
nst( y|x) d3 y, (3.9)

where Γinc is the incomplete Γ -function, defined as

Γinc(s, η) =
∫ ∞

η

ts−1 e−t dt, (3.10)

and the O(θ 1/3
p ) term results from v′

b. By noting vb = O(θpr2), and
∫

θpr2Pp
nst d3 y =

O(θ 1/3
p ), the last term in (3.9) is of O(θ 1/3

p ). At this point, it might seem that θ 1/3
p is the

leading-order effect on the drag if the nearest particle statistics is used, in contradiction to
the result of Batchelor (1972). This issue is resolved by noting that v0 is not the average
fluid velocity. Using (3.8) and (2.24) in (2.6) one finds the average fluid velocity

〈vc〉 = v0 + θ 1/3
p Γinc

(
2
3 , θp

)
[v̄p − v0 + O(θ 1/3

p )] +
∫

vb(x, y)Pc
nst( y|x) d3 y. (3.11)

Similar to (3.9), the O(θ 1/3
p ) term comes from v′

b, and the last term above is of O(θ 1/3
p ).

Subtracting (3.11) from (3.9), we find

V ′ = 〈vc〉 − θ 1/3
p

[
Γinc

(
2
3 , θp

) − Γinc
(

2
3 , 8θp

)]
[v̄p − v0 + O(θ 1/3

p )]

+
∫

vb(Pp
nst − Pc

nst) d3 y

= 〈vc〉 − 9
2θp(v̄p − 〈vc〉) + O(θ 4/3

p ). (3.12)

The last identity holds because Γinc(
2
3 , θp) − Γinc(

2
3 , 8θp) ≈ 9

2θ
2/3
p , and v0 can be replaced

by 〈vc〉 after using (3.11). The integral can be calculated in regions with r = | y − x| < 2a
and r > 2a. In the finite region (r < 2a) using (2.24) and (2.23) Pp

nst = 0 and Pc
nst = O(θp).

The integral in this region is then of O(θ 2
p a2), since vb = O(npr2). In the infinite region

(r > 2a) with (2.24) and (2.23), we find Pp
nst − Pc

nst = (e7θp − 1)Pc
nst, and then the integral

is of O(θ 4/3
p ), after noting

∫ ∞
r>2a npr2Pc

nst d3 y = O(θ 1/3
p ).

This calculation of V ′ avoids the need for the first renormalization of Batchelor (1972).
The leading-order effect of the particle phase is θ 1/3

p relative to the reference velocity v0.
This also explains the reason for the divergence difficulty in using (2.25). Had the integral
converged, the effect of the particle phase relative to v0 would be of O(θp). The particle
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phase also causes an O(θ 1/3
p ) change in the average fluid velocity 〈vc〉. These two O(θ 1/3

p )

changes cancel each other when the velocity V ′ is expressed in terms of the physically
more meaningful average velocity 〈vc〉 of the fluid phase, instead of v0. The effect of a
particle at y to the particle at x is either considered explicitly through velocity v1

c , if the
particle is the nearest to x, or considered as a part contributing to the background field
vb. As the distance to the nearest particle increases, the probability for the particle at y
needing the explicit consideration is reduced because of the rapid decay of the nearest
particle density. This shields the calculation from the slow decay of the Stokes interaction
and avoids the need for renormalization.

To calculate V ′′, Batchelor (1972) used

∇2v1
c = (v̄p − v0)

3a
2r3

− (v̄p − v0) · r
r

r
r

9a
2r3

. (3.13)

The integral converges only conditionally by using this in (2.25). The second
renormalization is then used. Without the renormalization in the present method, V ′′ is
calculated by using the new relation between the ensemble average and the nearest particle
statistics. Using (3.6b) in (3.5) (with V ′ replaced by V ′′), one finds

V ′′ = a2

6

∫
〈∇2vc〉nst(x, y)Pp

nst( y|x) d3 y. (3.14)

With this relation, there is not convergence difficulty, but we cannot calculate 〈∇2vc〉nst by
directly taking the Laplacian of (3.8) and then using (3.13) because 〈∇2vc〉nst /= ∇2〈vc〉nst.
To calculate V ′′, we note the similarity of the V ′′ and the corresponding average 〈∇2vc〉
for the continuous phase. By adding and subtracting a2/6〈∇2vc〉 to (3.14) and then using
(2.6) with qc = ∇2vc we have

V
′′ = a2

6

∫
〈∇2vc〉nst(x, y)[Pp

nst( y|x) − Pc
nst( y|x)] d3 y + a2

6
〈∇2vc〉(x). (3.15)

Similar to the discussion after (3.12) we have Pp
nst( y|x) − Pc

nst( y|x) = (e7θp − 1)Pc
nst for

| y − x| > 2a. The integral in (3.15) converges absolutely and can be integrated in any
order over the solid angle or radial direction. Applying (A 7) in appendix A twice for the
Laplacian and then using (3.8) and (3.7), we have

〈∇2vc〉nst = ∇2〈vc〉nst + O(npr2) = (v̄p − v0)
3a
2r3

− (v̄p − v0) · r
r

r
r

9a
2r3

+ O(npr2).

(3.16)

After integrating (3.16) over the solid angle we find that the first two terms integrate to
zero. Relation (3.15) then becomes

V
′′ = 1

6 a2〈∇2vc〉 + O(θ 4/3
p ), (3.17)

where the O(θ 4/3
p ) term comes from the last term of (3.16) after its integration in (3.15).

Using relation (2.13) of Zhang & Prosperetti (1997) with fc = ∇vc, one finds

V ′′ = 1
6

a2∇ · 〈∇vc〉 − npa2

6θc

∫
|x−z|=a

[〈∇vc〉1(z|x) − 〈∇vc〉(z)] · n dSz + O(θ 4/3
p ), (3.18)

where 〈∇vc〉1(z|x) is the average of ∇vc at z on the surface of the particle centred at x.
The last term of (2.13) of Zhang & Prosperetti (1997) vanishes because the field is uniform.
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For the same reason, the first term of (3.18) is also zero, and the last term in the square
bracket, 〈∇vc〉(z), is a constant (independent of z) and integrates to zero. We then have

V ′′ = −npa2

6θc

∫
|x− y|=a

〈∇vc〉1( y|x) · n dSy + O(θ 4/3
p ). (3.19)

Noting that 〈∇vc〉1 = ∇〈vc〉1 + O(θp) (Zhang & Prosperetti 1997) and that 〈vc〉1 can be
approximated by v1

c + v0 with v′
b set to zero and r = y − x in (3.7), with an error of

O(θ 4/3
p ), one can then calculate the integral directly to find

V ′′ = −npa2

6θc

∫
|x− y|=a

∇v1
c · n dSy = −npa2

6θc

∫
r=a

∂v1
c

∂r
dSy = θp

2
(v̄p − v0). (3.20)

This calculation of V ′′ shows again that the ensemble average calculated using the nearest
particle statistic includes the effects from particles other than the nearest one; otherwise,
we would have 〈∇2v〉nst = ∇2v1

c , the Laplacian of the velocity around a single particle,
and erroneously find V ′′ = 0 by directly using (3.14).

To calculate W̄ , Batchelor (1972) linearly superposed the solution of Stimson & Jeffery
(1926) for two spheres aligned in the flow direction and the solution of Goldman, Cox
& Breebber (1966) for two spheres aligned perpendicular to the flow. It is found that
W̄ nst(x, y) decays as 1/| y − x|4 in the far field, and can be calculated using (2.25) without
the convergence difficulty. In our new method, using (3.5) (with V ′ replaced by W ) and
(2.23) we have

W̄ =
∫

W̄ nst(x, y)Pp
nst( y|x) d3 y = np

∫
r>2a

W̄ nst(x, x +r) exp(−4πnp[r3− (2a)3]/3) d3r.

(3.21)

As mentioned in § 2.3, for a fast-decaying W̄ nst, the exponential function can be
approximated as one. The integral can then be calculated using (2.25), which is (5.7)
of Batchelor (1972). The integration is performed by dividing the region into a near-field
(lubrication) part with 2 � r/a � 8 and a far-field part with r/a > 8. The result is

W̄ = −1.55θp(v̄p − v0) + O(θ 2
p ). (3.22)

With (3.4), (3.12), (3.20) and (3.22), the average Stokes drag can be expressed in terms
of relative velocity between the phases as follows:

f̄ p = −6πaμ(1 + 5.55θp)(v̄p − 〈vc〉) + O(θ 4/3
p ). (3.23)

In the calculation above, the procedures of Batchelor (1972) are followed to compare
our new method with the renormalization method. Since the renormalization technique
is based on the zero mixture velocity in the particle sedimentation problem, the use of the
mixture velocity is avoided intentionally here to show no renormalization is needed in this
new calculation. To calculate the average particle sedimentation velocity in the frame of
reference in which the mixture velocity θc〈vc〉 + θpv̄p = 0, we set f̄ p = 4πa3(ρp − ρc)g/3,
the difference between the gravity and buoyancy in (3.23) and find the same result as
Batchelor (1972), namely

v̄p = (1 − 6.55θp)
2a2

9μ
(ρp − ρc)g. (3.24)

In this calculation, it is assumed (Batchelor 1972) that the particle distribution is random
and uniform. Experiments of Ham & Homsy (1988) suggest that at the stationary state
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particles form microstructures. This subject is further studied by Cichocki & Sadlej
(2005) and Felderhof (2008). The presence of particle microstructures affects the nearest
particle probability densities. Relations (2.23) and (2.24) need to be modified to consider
them. Since the main objective of this work is not to calculate the sedimentation
velocity, but to study the average method using the nearest particle statistics and
to compare it with the renormalization technique, Batchelor’s assumption is adapted
above. Since the time is absent in the momentum and continuity equations for an
incompressible Stokes flow, the instantaneous average particle sedimentation velocity can
only depend on the particle distribution and the boundary conditions. Despite the transient
nature of a uniform and random particle distribution in the sedimentation process, the
average sedimentation velocity under this particle distribution calculated by Batchelor
(1972) is a well-defined and important quantity. It could be interesting to study the
average velocity change caused by the microstructure evolution during the sedimentation
process.

4. Particle–fluid–particle stress

In addition to obtaining the classical result of sedimentation velocity in the last section,
we now show that the nearest particle statistics introduces a new method to explore
particle–fluid and particle–fluid–particle (PFP), or three-way, interactions (Fox 2012), in a
multiphase flow. A new PFP stress is introduced.

Let qp,nst(x, y) in (2.15) be the fluid force f̄ nst(x, y), such as the drag, or the added mass
force, etc., acting on the particle at x conditional on the nearest particle at y. Using (2.15)
and (2.21), we can calculate the ensemble average of the fluid force f p on the particle at x
as

np(x) f̄ p(x) =
∫

f̄ nst(x, y)h̄2(x, y)P2(x, y) d3 y =
∫

F (x, r) d3r, (4.1)

where r = y − x, and F (x, r) = f̄ nst(x, x + r)h2(x, x + r)P2(x, x + r) is the force
density in the six-dimensional space (x, r). In this form, x is the centre of the particle
on which the fluid force is applied, while its nearest neighbour is at distance r away. To
explore the statistical effect of the nearest particle on the force, it is natural to study the
Pearson correlation between the nearest particle distance r and the force. It turns out that
the Pearson product moment

Σpfp(x) = 1
2

∫
rF (x, r) d3r = np(x)

2

∫
( y − x) f̄ nst(x, y)Pp

nst( y|x) d3 y, (4.2)

has a significant meaning. In this definition the factor 1/2 is for convenience that will
be soon clear. In cases where f̄ nst is independent of the nearest particle position y, for
an isotropic particle distribution this quantity is zero. This quantity contains information
about particle interaction and distribution around x. According to Torquato, Lu &
Rubinstein (1990a) and Torquato et al. (1990b), for systems with finite particle volume
fractions, the nearest particle probability density Pp

nst( y|x) also decays as exp(−4πnpr3/3)
in the far field; the integral in (4.2) then converges absolutely. If the nearest probability
density Pp

nst in (4.2) is replaced with P( y|x), the probability density of having a particle
(not necessarily the nearest) at y conditional on a particle at x, the integral diverges
strongly for long-range interaction forces; therefore, a similar quantity cannot be defined
using the classical kinetic theory for multiphase flows. The quantity defined in (4.2) has
the dimension of stress, and the second identity is similar to the definition of the potential
part of the virial stress in molecular systems (Irving & Kirkwood 1950). We now call it

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

97
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.974


Nearest particle statistics 910 A16-15

the PFP stress. These observations motivate the following Taylor expansion of the force
density F (x, r):

F
(

x − r
2
, r

)
= F (x, r) − r

2
· ∇x F (x, r) + O(
2

p/L2), (4.3)

where 
p is the typical particle separation and L is the length scale of the physical problem.
The subscript x in ∇ above emphasizes that gradient is taken on the first variable x, not
on the second variable r. Using this in (4.1), we have

np(x)f̄ p(x) =
∫

F
(

x − r
2
, r

)
d3r + ∇ · Σpfp(x) + O(
2

p/L2), (4.4)

after exchanging the integration and the gradient operator in the second term. This
exchange is legitimate because the integration variable is r, while the gradient is on x.
By changing integration variables r → −r′, the integral in (4.4) can also be calculated
as

∫
F (x + r′/2,−r′) d3r′. Noting that the integral is independent of the integration

variables, we can rewrite the first term in (4.4) as

np(x)f pm(x) =
∫ F

(
x − r

2
, r

)
+ F

(
x + r

2
,−r

)
2

d3r (4.5)

and then write (4.4) as

np(x)f̄ p(x) = np(x)f pm(x) + ∇ · Σpfp(x) + O(
2
p/L2). (4.6)

In the first term of the numerator in (4.5), the fluid force is on the particle centred at
x − r/2 with the nearest particle at x + r/2, while in the second term, the roles of these
two particles are reversed. The integrand of (4.5) represents the pair-mean field interaction
for a pair of particles on the both sides (±r/2) of x. The force f pm in (4.5) is then the
average particle-mean field interaction force. The forces resulting from PFP interactions,
such as the repulsion and attraction forces between the pair, (e.g. Bernoulli effects), have
no contribution to this particle-mean field interaction force. These types of forces are
antisymmetric (equal in magnitude and opposite in direction on the particles) and are
the only contribution in the PFP stress. By decomposing F (x, r) into the symmetric part
F s(x, r), satisfying F s(x,−r) = F s(x, r), and the antisymmetric part, F a(x, r), satisfying
F a(x,−r) = −F a(x, r), from definition (4.2), one can see that only the antisymmetric
part contributes to the stress Σpfp.

Since the stress appears in (4.6) under the divergence operator, these types of PFP
interactions only contribute to the particle–fluid force in statistically inhomogeneous
systems. In statistically homogeneous systems, f pm = f̄ p. The force has been studied
extensively (e.g. Patankar & Joseph 2001; Zhang & Prosperetti 2005; Wang et al.
2016; Subramanian & Balachandar 2017). Since most current numerical simulations are
performed in homogeneous flows, this new PFP stress has not been studied. Clearly, more
work is needed.

If we introduce a concept similar to the local thermal dynamic equilibrium in a
molecular system, for cases where L 	 
p, the PFP stress can be calculated in statistically
homogeneous systems as a good approximation to a statistically inhomogeneous system.
In other words, models for this stress can be developed using the studies of homogeneous
systems. By adding the divergence of this stress to the well-studied phase interaction force
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f pm, the force density calculated using (4.6) could be a good approximation to multiphase
flows with gradients of mean fields.

Suppose we have results from particle-scale-resolved numerical simulations for a
homogeneous system. Let Np be the number of particles in the system and f i be the force
on particle i. The volume average of the PFP stress can be calculated as

Σpfp = 1
2V

Np∑
i=1

1
Ni

Ni∑
j=1

rij f i, (4.7)

where V is the volume of the computational domain, Ni is the number of the nearest
neighbours of particle i, and rij is the vector distance from particle i to its j-th nearest
neighbour. In most of the cases with moving (or randomly placed) particles, each particle
has only one nearest neighbour (Ni = 1). Time average can also be performed for this
stress if the system is statistically steady.

A decomposition of the particle–fluid force similar to (4.6) and a particle phase stress
has been found by Nott, Guazzelli & Pouliquen (2011) for Stokesian suspensions using
the volume averaging method. Both the particle phase stress of Nott et al. (2011) and the
PFP stress defined here describe the particle interactions at the interparticle length scale.
In the definition of the particle phase stress, the effect of multi-particle interactions is
expressed explicitly by the summation over particle pairs as in (66) of Nott et al. (2011),
taking advantage of the linearity of the Stokes flow. In the PFP stress definition (4.2),
the multi-particle interactions are considered in the force f̄ nst(x, y), which is the average
force acting on the particle at x conditional on the nearest particle at y. This force includes
nonlinear effects and contributions from all particles, including, but not only the nearest
pair. This important point is also contained in (4.7) for the volume average of the PFP
stress. The force f i on particle i is a function of all particles. In the case of a Stokesian
suspension, f i can be calculated using (58) and (59) of Nott et al. (2011). However, the
force decomposition ((58) of Nott et al. (2011)) is generally not available for nonlinear
cases as pointed out by the authors. Clearly, the PFP stress defined here and the particle
phase stress are closely related, at least for Stokesian suspensions. Their relations need to
be studied more carefully.

5. Conclusion

A new relation between the ensemble average and the average conditional on the
nearest particle is derived rigorously. This relation is exact and is valid for linear and
nonlinear problems with finite particle volume fractions. Because of the rapid far-field
decay of the nearest particle probability density function, the integral for calculating
the ensemble average converges absolutely and can be used to study long-range particle
interactions.

As an example of its application, the Stokes drag in a dilute particle dispersion
is calculated following the steps of Batchelor (1972), but without using the
difficult renormalizations. The first renormalization is avoided by using the new relation to
directly calculate the would-be fluid velocity at the particle centre if the particle is replaced
by the same volume fluid. The difference between this velocity and the average fluid
velocity is found to be of the first order in the particle volume fraction and is proportional
to the relative velocity between the two phases, after noting that the motion of the particles
causes a change in the average fluid velocity. The second renormalization is bypassed
because the average of the velocity Laplacian is not the same as the Laplacian of the
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average velocity due to the effects from other particles. The commutator of the ensemble
phase average operator and the differentiation operator from Zhang & Prosperetti (1997)
is used to calculate the average of the velocity Laplacian. The Stokes drag from these
calculations is then used to calculate the particle sedimentation velocity. The result agrees
with that of Batchelor (1972). This example shows that the nearest particle statistics
considers multi-particle effects correctly.

As an application of the nearest particle statistics, a new concept of PFP stress
is developed for general multiphase flows. With the stress, results from numerical
simulations with particle-scale resolved can be further interrogated to extract physics
other than traditional particle–fluid interaction forces. This stress could have an interesting
implication for hyperbolicity of the averaged equations fundamentally important for
multiphase flow theories (Ndjinga 2007; Fox 2012; Theofanous & Chang 2018; Fox 2019).
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Appendix A

We calculate the gradient of an average conditional on the nearest particle.

A.1. For a continuous phase quantity
Let ri = ξ i(F ) − x, ri = |ξ i − x|, then ∇ri = −r̂i, where r̂i = ri/ri. We calculate

∇
∏

j

H(|ξ j − x| − |ξ i − x|)

=
∑

k

δ(rk − ri)(r̂i − r̂k)
∏
j /=k

H(rj − ri)

=
∑

k

δ(rk − ri)(r̂i − r̂k)
∏
j /=k

H(rj − ri)
∏
j /=i

H(rj − rk), (A 1)

where the last identity comes from the fact that
∏

j /=i H(rj − rk) and
∏

j /=i H(rj − ri) are
either 0 or 1, and

∏
j /=i H(rj − rk) = ∏

j /=k H(rj − ri) for given i and k, since ri = rk as
required by the δ-function. Using (2.4), we have

∇Nx(x,F ) =
∑

i

∑
k

(r̂i − r̂k)δ(rk − ri)
∏
j /=k

H(rj − ri)
∏
j /=i

H(rj − rk) = 0, (A 2)

the last identity comes from the exchange of indices i and k. This relation is in
confirmation that Nx(x,F ) = 1 almost everywhere (with the exception only in a set of
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zero probability). Using the first line of (A 1), the gradient of hi defined in (2.3) is

∇hi(x,F ) =
∑

k

δ(rk − ri)(r̂i − r̂k) ·
∏
j /=k

H(rj − ri). (A 3)

Using (2.8) we have

∇[θc(x)Pc
nst( y|x)] =

∫
∇

{
χc(x,F )

∑
i

hi(x,F )δ[ξ i(F ) − y]

}
dP. (A 4)

Using (2.7) we have

〈qc〉nst(x, y)∇[θc(x)Pc
nst( y|x)] + θc(x)Pc

nst( y|x)∇〈qc〉nst(x, y)

=
∫

∇qc(x,F )χc(x,F )
∑

i

hi(x,F )δ(ξ i − y) dP

+
∫

qc(x,F )∇
[
χc(x,F )

∑
i

hi(x,F )δ(ξ i − y)

]
dP. (A 5)

Using (A 3), (A 4) and definition (2.7), one finds

θc(x)Pc
nst( y|x)∇〈qc〉nst(x, y) = θc(x)Pc

nst( y|x)〈∇qc〉nst(x, y)

+
∫

[qc(x,F ) − 〈qc〉nst(x, y)]
∑

i

hi(x,F )δ(ξ i − y)∇χc(x,F ) dP

+
∫

[qc(x,F ) − 〈qc〉nst(x, y)]χc(x,F )
∑

i

δ(ξ i − y)

∑
k

(r̂i − r̂k)δ(rk − ri)
∏
j /=k

H(rj − ri) dP. (A 6)

For the last term to be non-zero, a particle (k) other than the one at y has to be at the
same distance ri = | y − x| away from x. The last term is then caused by multi-particle
interactions. For randomly distributed particles with a small particle volume fraction,
the particle locations are independent of each other. The probability density of having
both particles i and k as the nearest particles to x at distance rk = ri is proportional to
4πr2

k Pc
nst( y|x)np(x + rk). Furthermore, for a dispersion of identical spherical particles

with radii a, when | y − x| > a, χc(x,F ) = 1, ∇χc(x,F ) = 0, since y is the nearest
particle centre to position x. The second term on the right-hand side then vanishes. Under
these conditions, using (2.24) we have

∇〈qc〉nst = 〈∇qc〉nst + O(q′
c4πr2np), when r = | y − x| > a, (A 7)

where q′
c = qc(x,F ) − 〈qc〉nst(x, y) is the fluctuation component of qc.
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A.2. For a particle quantity
Using (2.17) and noting that probability P is a function of ξ i as mentioned in § 2.1, one
finds

∇[np(x)Pp
nst( y|x)q̄p,nst(x, y)]

=
∫ ∑

i

qi(F )∇δ[ξ i(F ) − x]
∑
j /=i

hij(F )δ[ξ j(F ) − y] dP

= −
∫ ∑

i

qi(F )∇ξiδ[ξ i(F ) − x]
∑
j /=i

hij(F )δ[ξ j(F ) − y] dP

=
∫ ∑

i

[∇ξi qi(F )]δ[ξ i(F ) − x]
∑
j /=i

hij(F )δ[ξ j(F ) − y] dP

+
∫ ∑

i

qi(F )δ[ξ i(F ) − x]∇ξi

{∑
j /=i

hij(F )δ[ξ j(F ) − y] dP

}
. (A 8)

Setting qi = 1, then q̄p,nst(x, y) = 1, we have

∇[np(x)Pp
nst( y|x)] =

∫ ∑
i

δ(ξ i − x)∇ξi

{∑
j /=i

hij(F )δ(ξ j − y) dP

}
. (A 9)

Multiplying this equation by q̄p,nst(x, y) and subtracting the result from (A 8), after using
(2.17) we find

np(x)Pp
nst( y|x)∇q̄p,nst(x, y) = np(x)Pp

nst( y|x)∇ξi qi(x, y)

+
∫ ∑

i

[qi(F ) − q̄p,nst(x, y)]δ(ξ i − x)
∑
j /=i

hij(F )δ(ξ j − y)∇ξi dP

+
∫ ∑

i

[qi(F ) − q̄p,nst(x, y)]δ(ξ i − x)δ(ξ j − y)∇ξi

∑
j /=i

hij(F ) dP. (A 10)

For finite size particles, the second term δ(ξ j − y)∇ξi dP represents the effect of particle
i position on particle j position. For a dilute particle dispersion this terms is of order n2

p.
Similar to (A 8) the last term represents multi-particle effects, and is also of order n2

p in
a dilute particle dispersion. Noting that on the left-hand side npPp

nst is also of order n2
p;

therefore, for a particle quantity, we have ∇q̄p,nst − ∇ξi qi = O(1), in contrast to (A 7) for a
continuous phase quantity.

Appendix B

In this appendix, we consider Stokes flows in particle suspensions driven by body forces
acting on the particles and the fluid. Since Stokes flow equations are linear, different types
of forces can be considered separately. Their combined effect can be obtained easily by
superposition. Without loss of generality, we can only consider the gravity.

We calculate the conditionally averaged velocity 〈vc〉nst(x, y) in the effective medium
shown on the right-hand side of figure 2. According to definition (2.7), 〈vc〉nst(x, y) is
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the velocity of the continuous phase at x averaged under the condition that x is in the
fluid phase and that y is the nearest particle centre to x. To calculate the velocity, we now
introduce the pressure 〈p〉nst(z|x, y) and the mixture velocity 〈vm〉nst(z|x, y) at a generic
point z, as shown on the right-hand side of figure 2, averaged under the condition that
x is occupied by the fluid and that y is the centre of the nearest particle to x. Clearly,
〈vc〉nst(x, y) = 〈vm〉nst(x|x, y), because x is in the particle-free region.

Let ρp and ρc be densities of the particle and the fluid. Outside the particle-free region
(|z − x| > R = | y − x|), the medium has an effective density θpρp + (1 − θp)ρc. In this
medium, particle velocity fluctuations (Guazzelli & Hinch 2011) are not restricted by
external mechanisms. The Stokes equation for the mixture becomes

− ∇〈p〉nst(z|x, y) + μ∇2〈vm〉nst(z|x, y)

= H(R − |z − x|)θp(ρp − ρc)g − [θpρp + (1 − θp)ρc]g, (B 1)

where g is the acceleration due to gravity. In this equation, we have only considered force
monopoles and neglected other O(θp) terms because these force monopoles are the leading
contributors of the long-range effects. This equation is (7.4) of Hinch (1977) with only the
first three terms on the left-hand side kept, and 3a in the fourth terms replaced by R. This
difference in terms only cause an O(θp) correction to the velocity solution (Hinch 1977),
while for our purpose, as shown in the main text, only the velocity correct to O(1) is
needed. We consider these O(θp) terms in (B 1) to ensure they do not cause a larger O(1)

effect on the averaged velocities V ′ and 〈vc〉, since an O(θp) term in the equation does not
necessarily result in the same order contributions to the average velocities. As shown in
the main text, the contributions to the velocities from these terms are O(θ 1/3

p ).
The last term on the right-hand side of (B 1) can be accommodated by a constant

pressure gradient without a consequence for the velocity. The velocity contribution from
the first term on the right-hand side of (B 1) can be calculated as

vb(z|x, y) = θpΔρg ·
∫

|x′−x|<| y−x|
S(r′) d3x ′, r′ = x ′ − z, (B 2)

where Δρ = ρp − ρc, the integration volume is the particle-free region centred at x as
shown in figure 2, and S(r) is the Stokeslet,

S(r) = − 1
8πμ

(
I
r

+ rr
r3

)
. (B 3)

For a specified y at a large r = |z − x| 	 R = | y − x|, vb(z|x, y) decays as O(npR3/r).
At the centre of the particle free region, with z = x, vb(x, y) = vb(x|x, y) =
−(R2/3μ)θpΔρg.

With solution (B 2), the approximation of the conditionally averaged velocity for a
generic position z can be constructed as

〈vm〉nst(z|x, y) = v0 + [
v̄p − v0 − vb( y|x, y)

] (
3a
4r

+ a3

4r3

)

+ r
r

{ r
r

· [
v̄p − v0 − vb( y|x, y)

]} (
3a
4r

− 3a3

4r3

)
+ vb(z|x, y), r = z − y, (B 4)

since the first three terms with the corresponding solution for the pressure satisfy the
Stokes equation, ((B 1) with the right-hand side set to zero), and vb(z|x, y) is obtained
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from (B 2) satisfying (B 1) because of the Stokeslet. At the centre of the particle free
region, z = x, this relation becomes (3.8) with vb(x, y) = vb(x|x, y) and v′

b = vb( y|x, y)
in (3.7).

This approximation implies the nearest particle at y experiences the background fluid
velocity v0 + vb( y|x, y) while satisfying the boundary condition 〈vm〉nst(∞|x, y) = v0.
On the surface z = y + an of the particle at y, where n is the unit outward normal, there is
an error vb( y + an|x, y) − vb( y|x, y) = O(a∇vb( y|x, y)) = O(npaR) in satisfying the
no-slip boundary condition, since ∇ is of O(1/R). This error is small compared with
vb( y|x, y) = O(npR2), since a < R.

Although only the gravity is considered above, the calculation can be generalized
if other uniform external force fields are used to maintain a specified average particle
velocity. For instance, for electric fields, densities ρp and ρc above can be regarded as the
charge densities, and g can be replaced with the electric field E. In this case, solution (B 4)
remains valid; therefore, the force (3.23) in the main text is independent of the external
force acting on the dilute dispersion.
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