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Abstract. LetAbe a ¢nite-dimensional k-algebra over algebraically closed ¢eld k and modA be
the categoryof¢nite-dimensional leftA-modules.We show that amoduleM inmodA degenerates
to another module N in modA if and only if there is an exact sequence 0! N !
M � Z! Z! 0 in modA for some A-module Z. Moreover, we give a description of minimal
degenerations of ¢nite-dimensional A-modules.
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1. Introduction and Main Results

Let A be a ¢nite-dimensional associative k-algebra with an identity over an
algebraically closed ¢eld k and modA be the category of ¢nite-dimensional left
A-modules. If a1 � 1; . . . ; aa is a basis of A over k, we have the structure constants
aijk de¢ned by aiaj �

P
aijkak. The af¢ne variety mod d

A�k� of d-dimensional unital
left A-modules consists of a-tuples m � �m1; . . . ;ma� of d � d-matrices with
coef¢cients in k such that m1 is the identity matrix and mimj �

P
aijkmk holds

for all indices i and j. Any such a-tuple m corresponds to a d-dimensional module
M 2 modA in the obvious way. The general linear group Gld�k� acts on
mod d

A�k� by conjugation, and the orbits correspond to the isomorphism classes
of d-dimensional modules in modA (see [7]). We denote by O�m� the Gld�k�-orbit
of a point m in mod d

A�k�. By abuse of notation, N is a degeneration ofM if n belongs
to the Zariski closure O�m� of O�m� in mod d

A�k�, and we denote this fact by
MWdegN. Thus, Wdeg is a partial order on the set of isomorphism classes of
A-modules of a given (¢nite) dimension. It was not clear how to characterize
Wdeg in terms of representation theory.
LetM,N, Z be modules in modA such that there is an exact sequence in modA of

one of the forms

0! N !M � Z! Z! 0 or 0! Z! Z �M! N ! 0:
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In [11] Riedtmann proved that thenMWdegN. We shall show that the reverse impli-
cation is also true.

THEOREM 1. Let m, n be points in mod d
A�k�, dX 1. Then the following conditions

are equivalent:

(1) MWdegN.
(2) There is a short exact sequence 0! N !M � Z! Z! 0 in modA for some

module Z in modA.
(3) There is a short exact sequence 0! Z! Z �M ! N ! 0 in modA for some

module Z in modA.

As a direct consequence of Theorem 1 and the proof of Proposition 3.4 in [11] we
get

COROLLARY 2. Let m, n be points in mod d
A�k� such that MWdegN. Then there is a

nonempty open subset C of k, a morphism m : C ! O�m� and a point c0 in C, such that
m�c0� � n and m�c� 2 O�m� for all c 6� c0.

Following Abeasis and del Fra [1] we may consider another partial order Wext

de¢ned as follows:

. MWextN: , there are modules Mi, Ui, Vi and short exact sequences
0! Ui !Mi ! Vi ! 0 in modA such that M �M1, Mi�1 � Ui � Vi,
1W iW s, and N �Ms�1 for some natural number s.

Then for modules M and N in modA the following implication holds:

MWextN �) MWdegN

(see [3], [11]). Observe that for any modules M, N in modA with M <ext N, the
module N is decomposable. Since there exist proper degenerations to
indecomposable modules even for very simple representation-¢nite algebras (see
[11]), the reverse implication is not true in general. Our next result concerns
degenerations M <deg N which are not given by a sequence of the form
0! N 0 !M! N 00 ! 0 with N � N 0 �N 00.

THEOREM 3. Let M, N, N 0, N 00 be modules in modA such that MWdegN and
N ' N 0 �N 00. If every exact sequence in modA of the form

0! N 0 !W ! N 00 ! 0 or 0! N 00 !W ! N 0 ! 0

withMWdegW is splittable �W ' N 0 �N 00�, then there are modules M0, M00 in modA
such that M0WdegN

0, M00WdegN
00 and M 'M0 �M00.

It will give us the following theorem about minimal degenerations.
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THEOREM 4. Let M, N be modules in modA such that N is a minimal degeneration
ofM. ThenM <ext N or there are modulesW,M,N inmodAsuch thatM 'W �M,
N 'W �N, M <deg N and the module N is indecomposable.

As a direct consequence of Theorem 4 we get the following fact.

COROLLARY 5. The orders Wext and Wdeg are equivalent for all modules in modA
if and only if for any modules M, N in modA with M <deg N, the module N is
decomposable.

It is known (see Corollary 2 in [15]) that, if A is an algebra and for any proper
degenerationM <deg N ofA-modules the moduleN is decomposable, thenA is tame,
that is, the indecomposableA-modules occur, in each dimension d, in a ¢nite number
of discrete and a ¢nite number of one-parameter families. Recall also that an algebra
A is called quasi-tilted ifA is of global dimension at most 2 and each indecomposable
¢nite dimensional A-module has projective dimension at most one or injective
dimension at most one. The structure of tame quasi-tilted algebras and their module
categories has been described by Skowron̈ski in [13]. Then, applying results of [14],
we proved in our joint paper ([15], Theorem 3) that for any proper degeneration
M <deg N of modules over a tame quasi-tilted algebra A, the module N is
decomposable. Applying Corollary 5 we may reformulate it now as follows.

COROLLARY 6. Let A be a tame quasi-tilted algebra. Then the orders W ext and
W deg are equivalent for all modules in modA.

The paper is organized as follows. In Section 2 we give characterisations of
splittable exact sequences and introduce the notion of an af¢ne scheme mod d

A, play-
ing a fundamental role in our proofs of Theorems 1 and 3. Sections 3, 4 and 5 are
devoted to the proofs of Theorems 1, 3 and 4, respectively.

For basic background on the topics considered here we refer to [3], [4], [7] and [12].
The author would like to thank C. M. Ringel and A. Skowron̈ski for helpful sugges-
tions and comments during the preparation of this paper. The author also gratefully
acknowledges support from the Polish Scienti¢c Grant KBNNo. 2 PO3A 012 14 and
Sonderforschungsbereich 343 (UniversitÌt Bielefeld).

2. Preliminary Results

2.1. Throughout the paper A denotes a ¢xed ¢nite dimensional associative k-algebra
with an identity over an algebraically closed ¢eld k. We denote by modA the cat-
egory of ¢nite-dimensional left A-modules.

Let R be a ring and d 0, d 00 be two natural numbers. We denote byMa
d 0�d 00 �R� the set

of all a-tuple of d 0 � d 00 matrices with coef¢cients in R (so mod d
A�k� � Ma

d�d�k�).
Clearly, Ma

d 0�d 00 is a functor from the category of rings to the category of sets.
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Let m � �m1; . . . ;ma� belongs to Ma
d 0�d 00 �R� and h0 (resp. h00) be any c0 � d 0 (resp.

d 00 � c00) matrix with coef¢cients inR, for some natural numbers c0, c00. Then we de¢ne

h0 ?m � �h0m1; . . . ; h0ma� 2 Ma
c0�d 00 �R�;

m ? h00 � �m1h00; . . . ;mah00� 2 Ma
d 0�c00 �R�:

In particular, if g 2 Gld�k� and m 2 mod d
A�k�, then g �m � g ?m ? gÿ1 de¢nes the

action of Gld �k� on mod d
A�k� that was mentioned in the introduction.

2.2. For an exact sequence S : 0! U !W ! V ! 0 in modA we de¢ne an addi-
tive function dS from modA to the set of integers as follows:

dS�X � � dimk HomA�U � V ;X � ÿ dimk HomA�W ;X �;

for any module X in modA. Then the following fact holds:

LEMMA. Let S : 0! U !W ! V ! 0 be an exact sequence in modA. Then
dS�X �X 0 for any module X in modA. Moreover, the following conditions are
equivalent:

(1) the sequence S is splittable,
(2) W ' U � V,
(3) dS�X � � 0 for any module X in modA.

Proof. The exact sequence S : 0! U ÿ!f W ÿ!g V ! 0 induces the following
exact sequence

0! HomA�V ;X � ÿ!
g?

HomA�W ;X � ÿ!f
?

HomA�U;X �;
what leads to dS�X �X 0, for any module X in modA. Clearly, the condition (1)
implies (2) and the condition (2) implies (3).

Assume that dS�X � � 0 for any module X in modA. In particular, dS�U� � 0 and
hence the sequence

0! HomA�V ;U� ÿ!
g?

HomA�W ;U� ÿ!f
?

HomA�U;U� ! 0

is exact. This implies that 1U � f ?�g� � g � f , for some homomorphism g in
HomA�W ;U�. Then the sequence S is splittable and the condition (1) holds.

2.3. Now we give another characterisation of splittable sequences. Let d, d 0, d 00 be
natural numbers with d � d 0 � d 00 and let u, w, v be points in mod d 0

A �k�,
mod d

A�k�, mod d 00
A �k�, respectively. Then the following lemma holds (see II.2.7 in [8]):

LEMMA. Assume that w � u z
0 v

� �
for some z 2 Ma

d 0�d 00 �k�. Then there is an exact

sequence S in modA of the form 0! U !W ! V ! 0. Moreover, the sequence S
is splittable if and only if z � u ? hÿ h ? v, for some d 0 � d 00 matrix h with coef¢cients
in k.
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2.4. The af¢ne variety mod d
A�k� extends to an af¢ne algebraic k-scheme mod d

A (see,
for example [2], [4], [10]). The scheme mod d

A may be described in the functorial point
of view as follows: for any commutative k-algebra R with an identity, the set
mod d

A�R� consists of a-tuples m � �m1;m2; . . . ;ma� in Ma
d�d�R�, such that m1 is

the identity matrix and mimj �
P

aijkmk holds for all indices i and j. Clearly,
any a-tuple m 2 mod d

A�R� gives the A-R-bimodule structure on Rd with the natural
action of R. The af¢ne algebraic group scheme Gld acts on mod d

A by conjugation.
Let u be a point in mod d

A�R� and U be the corresponding A-R-bimodule. Observe
that, for any homomorphism j : R! S of k-algebras, the A-S-bimodule corre-
sponding to the point mod d

A�j��u� in mod d
A�S� is isomorphic to U 
R S.

2.5. Since any two points on an irreducible variety can be connected by an irreducible
curve (see A.I.4.5 in [8]), then we get the following characterization of orbit closure
(see Theorem 1.2 in [5], also [9]).

PROPOSITION. Let m and n be any points in mod d
A�k�. ThenMWdegN if and only

if there is a discrete valuation k-algebra R with the maximal idealm and residue ¢eld
R=m � k, whose quotient ¢eld K is ¢nitely generated over k of transcendence degree
one, and an element y 2 mod d

A�R� such that

. mod d
A�t��y� � g � �mod d

A�tZ��m��, for some g 2 Gld �K�
. mod d

A�p��y� � n,

where Z, t and p are the canonical homomorphisms

k ÿ!Z R ÿ!t K?yp
R=m � k:

There is a geometric interpretation of this characterization. Such a k-algebra R and a
¢eld K correspond to the local ring of a point c0 of some nonsingular af¢ne curve C
and the ¢eld of rational function on C, respectively (see, for example, I.6 in [6]).
Hence, MWdegN if and only if there is a nonsingular af¢ne curve C, a point c0
in C and a morphism m : C ! O�m� such that m�c0� � n and m�c� 2 O�m� for c in
an open dense subset of C (compare with the proof of Theorem 1.2 in [5]).

3. The Proof of Theorem 1

3.1. (2) implies (1) and (3) implies (1), by Proposition 3.4 in [11]. Let m, n be points in
mod d

A�k�, dX 1. By transposing all matrices in m and n we get points m0 and n0,
respectively, in mod d

A0 �k�, where A0 denotes an opposite algebra of A. One sees that
the module M degenerates to N if and only if the same holds for dual modules
M0 and N 0 over A0. Hence, it remains to show that MWdegN implies that there
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is an exact sequence in modA of the form 0! N !M � Z! Z! 0, for some
A-module Z.

Thus assume thatMWdegN. We apply Proposition 2.5 and use the notation intro-
duced there. Let Y be an A-R-bimodule on Rd corresponding to y. Denote by finR
the category of ¢nite dimensional (over k) R-modules. Since YR is a free R-module
of ¢nite rank, we have the exact functor F � AY 
R �ÿ� : finR! modA. For
iX 1, let Ni � F�R=mi� � Y=Ymi 2 modA. Since Modd

A�p��y� � n, then

AN1 � A�Y=Ym� � A�Y 
R R=m� � AN:

We ¢x an element f 2 m nm2. Since R is a discrete valuation ring, then m � �f � and
consequently, mi � �f i�, for any iX 1. Since F is exact, the following exact
sequences:

0! R=m ÿ!�bi� R=mi�1 ÿ!gi R=mi ! 0; iX 1;

where bi�r�m� � f i � r�mi�1, gi�r�mi�1� � r�mi, for all r 2 R, gives the exact
sequence

0! N1 ÿ!
F�bi� Ni�1 ÿ!

F�gi� Ni ! 0; iX 1;

in modA. Since N1 � N, it remains to show that Ni�1 'M �Ni for some iX 1. The
remaining part of this section is devoted to the proof that, for suf¢ciently large h,
there is an A-module isomorphism Nh�1 'M �Nh.

3.2. The assumption that mod d
A�t��y� � g � �mod d

A�tZ��m��, for some g 2 Gld�K�,
means that the function g : M 
k K ! Y 
R K is an isomorphism of A-K-
bimodules. Let g � �gij�i;jW d , with gij 2 K . Since K is the quotient ¢eld of the discrete
valuation ringR, there is a number bX 0 such that f b � gij 2 R, for all 1W i; jW d. Let
~g � f b � g and observe that

~g � ��tZ���m�� � ~g ? ��tZ���m�� ? ~gÿ1 � g ? ��tZ���m�� ? gÿ1 � g � ��tZ���m��;

where �tZ�� � mod d
A�tZ�. Thus we may assume that b � 0, ~g � g, and consequently

gij 2 R, for all 1W i; jW d. Then we get the monomorphism

j � gjM
kR : M 
k R! Y

of A-R-bimodules.
We note that results in the remaining part of this section and their proofs extend

without any changes to an arbitrary ¢eld k.

3.3. Let Y be anA-R-bimodule which is, as anR-module, free of rank d. Assume that
there is a monomorphism j : M 
k R! Y of A-R-bimodules, for some d-
mensional A-module M. We set X � imj.
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LEMMA. There is a natural number t with Ymt � X. In particular, the module Y=X
is ¢nite-dimensional.

Proof. Since j is a monomorphism between free R-modules of rank d (and since R
is a principal ideal domain), then Y=X , as an R-module, is isomorphic to

R=mt1 � R=mt2 � . . .� R=mtd :

Thus, the R-module Y=X is annihilated by mt, where t is the maximum of
t1; t2; . . . ; td . Hence, Ymt � X .

LEMMA 3.4. There exists a natural number s such that Xms is a direct summand of
the A-module Y.

Proof.Given a subset C ofR, we denote by hCi the k-subspace generated by C. Let B
be a k-basis of R. For b 2 B, letMb � j�M 
k hbi�. This is an A-submodule of X and
is isomorphic to AM. Of course, X �Lb2BMb, and this is a direct decomposition of
A-modules.

We devide the proof into several steps.
(1) There exists an A-submodule Z of Y which satis¢es Z � X � Y and

Z \ X �Lb2VMb for some ¢nite subset V of B.
Take a projective cover x : P! Y=X of the A-module Y=X and lift this map to Y .

We obtain an A-module homomorphism x0 : P! Y , say with image Z0, and such
that Z0 � X � Y . By construction, Z0 is a ¢nite dimensional A-submodule of Y .
Consider Z0 \ X � Z0 \

L
b2BMb. Since Z0 is ¢nite dimensional, there is a ¢nite

subset V of B such that Z0 \
L

b2BMb � Z0 \
L

b2VMb. Let Z � Z0 �
L

b2VMb.
Then Z is ¢nite dimensional and Z \ X �Lb2VMb.

(1') As a consequence: Y � Z � C, where C �Lb2BnVMb.
We are going to replace the direct summand C by an A-submodule C 0 of Y which

contains Xms as a submodule. Actually, Xms will be required to be even a direct
summand of C 0. This exchange will be done inside X : both C and C0 will be
A-submodules of X , they will be direct complements of �Z \ X � in X . First, we deal
with the ring R itself.

(2) Let V be a ¢nite subset of B. Then there is a natural number s and a ¢nite subset
W of B such that ms � hWi � hVi � R: Since hVi is ¢nite dimensional andT

iX 1 m
i � 0, then hVi \ms � 0, for some natural number s. Consider the subspace

ms � hVi of R. Since B is a K-basis of R, we can ¢nd a subset W of B as required.
(3) Of course, we may tensor the above decomposition of R with M over k and

apply the monomorphism j. Note ¢rst that j�M 
k m
s� � Xms. Second, denote

j�M 
k hWi� �
L

b2WMb by W . Third, recall that j�M 
k hVi� �
L

b2VMb �
Z \ X . Altogether we get Xms �W � �Z \ X � � X :

As mentioned above we denote
L

b2BnVMb � C. Let C 0 � Xms �W . Then we see
that C � �Z \ X � � X � C 0 � �Z \ X �: Note that Y � C � Z, according to (1').

(4) It follows that Y � C0 � Z � Xms �W � Z; thus W � Z is a direct comp-
lement to Xms.

DEGENERATIONS OF MODULES 211

https://doi.org/10.1023/A:1001778532124 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001778532124


Namely, we have C 0 \ Z � C 0 \ Z \ X � 0, since C 0 � X . Also, C0 � Z �
C0 � Z � �Z \ X � � Z � X � Y , since Z \ X � Z. This completes the proof.

PROPOSITION 3.5. Let Y be an A-R-bimodule which is, as an R-module, free of
rank d. Assume that there is a monomorphism j : M 
k R! Y of A^Rbimodules,
for some d-dimensional A-module M. Then, for a suf¢ciently large h, there is an
A-module isomorphism Y=Ymh�1 ' Y=Ymh �M:

Proof.Recall that X � imj. It follows from Lemma 3.4 that there exists a natural
number s such that Xms is a direct summand of Y . Fix a direct complement Z0 of
Xms in Y . Next observe that, for each iX 0, Xmi�1 is a direct summand of
Xmi, with a direct complement isomorphic to M. Further, by Lemma 3.3 there
is a natural number t with Ymt � X . Write Z00 � X=Ymt. For any natural number
j, we have Ymt�j � Xmj. The multiplication by f j (recall that mj � �f j�) induces
an isomorphism Z00 ÿ! �Xmj=Ymt�j.

For any natural number i, consider now the following chain of inclusions:

Yms�t�i � Xms�i � Xms � Y :

It follows from the above remarks that the last two inclusions have direct
complements, namely Mi and Z0, while the ¢rst factor
Xms�i=Yms�t�i is isomorphic to Z00. Thus we get

Y=Yms�t�i ' Z00 �Mi � Z0:

Therefore,

Y=Yms�t�i ' Y=Yms�t �Mi:

In particular, for h � s� t and i � 1, we obtainY=Ymh�1 ' Y=Ymh �M. This com-
pletes the proof of Proposition 3.5 and also the proof of Theorem 1.

4. The Proof of Theorem 3

4.1. Let d, d 0, d 00 be natural numbers with d � d 0 � d 00. Let m, n be points in mod d
A�k�

such that MWdegN, and n0, n00 be points in mod d 0
A �k�, mod d 00

A �k�, respectively, such
that N ' N 0 �N 00. Assume that every exact sequence in modA of the form

0! N 0 !W ! N 00 ! 0 or 0! N 00 !W ! N 0 ! 0

with MWdegW , is splittable. We apply Proposition 2.5 for points m, n, and we use
the notation introduced there. Denote by pi : R! R=mi and ei : R=mi�1! R=mi,
iX 1, the natural epimorphisms of k-algebras. Clearly, then pi � eipi�1, for any
iX 1. As in (3.1), let Y be the A-R-bimodule on Rd corresponding to y, let F
be the exact functor AY 
R �ÿ� : finR! modA, and ¢nally let Ni � F�R=mi� 2
modA, for any iX 1. Then N1 � N and the module Ni corresponds to the point
mod d

A�pi��y�. Then the following fact holds.
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LEMMA 4.2. For any iX 1, there is a point yi 2 mod d
A�R� such that

(1) yi � gi � y, for some gi 2 Gld�R�,
(2) mod d

A�pi��yi� � n0i 0
0 n00i

� �
, for some elements n0i in mod d 0

A �R=mi� and n00i in
mod d 00

A �R=mi�,
(3) if i > 1, then mod d 0

A �eiÿ1��n0i� � n0iÿ1 and mod d 00
A �eiÿ1��n00i � � n00iÿ1.

Moreover, n01 � n0 and n001 � n00.
Proof. Since R=m � k, we may assume that pZ � 1k. The isomorphism

N ' N 0 �N 00 means that there is an element g 2 Gld �k� such that

g � n � n0 0
0 n00

� �
. Let g1 � Gld�Z��g� and y1 � g1 � y. Then

mod d
A�p1��y1� � mod d

A�p��Gld�Z��g� � y�
� Gld�p��Gld�Z��g�� �mod d

A�p��y�

� Gld�pZ��g� � n � g � n � n0 0
0 n00

� �
:

Assume now that there is a point yi 2 mod d
A�R� satisfying the conditions (1), (2) and

(3), for some iX 1. Then yi � y0i ~u
~v y00i

� �
, for some points y0i, ~u, ~v, y00i in Ma

d 0�d 0 �R�,
Ma

d 0�d 00 �R�, Ma
d 00�d 0 �R�, Ma

d 00�d 00 �R�, respectively. Applying (2) we get

Ma
d 0�d 0 �pi��y0i� � n0i and Ma

d 00�d 00 �pi��y00i � � n00i :

Moreover, since ker pi � mi � �f i�, then ~u � f i � u and ~v � f i � v, for some

u 2 Ma
d 0�d 00 �R� and v 2 Ma

d 00�d 0 �R�. Take

g0 � f i � 1d 0 0
0 1d 00

� �
2 Gld�K� and l � y0i u

f 2i � v y00i

� �
2 mod d

A�R�:

Then mod d
A�t��l� equals g0 �mod d

A�t��yi�. We set w � mod d
A�p��l�. Then w �

n0 û
0 n00

� �
2 mod d

A�k�, where û �Ma
d 0�d 00 �p��u�. Applying Lemma 2.3 we obtain an

exact sequence S in modA of the form 0! N 0 !W ! N 00 ! 0. Observe that
mod d

A�t��l� � �g0Gld �t��gi�� �mod d
A�t��y� � �g0Gld�t��gi�g� �mod d

A�tZ��m�, by (1).
Then MWdegW , by Proposition 2.5. Hence, by our assumptions, the sequence S
is splittable. Consequently, by Lemma 2.3, there is a d 0 � d 00 matrix ĥ0 with
coef¢cients in k, such that û � n0 ? ĥ0 ÿ ĥ0 ? n00. This implies that
uÿ y0i ? h

0 � h0 ? y00i � f � z0, for some z0 2 Ma
d 0�d 00 �R�, where h0 is a d 0 � d 00 matrix with

coef¢cients in R, and these coef¢cients are the images of the corresponding
coef¢cients of ĥ0 via the homomorphism Z. Dually, we conclude that there is a
d 00 � d 0 matrix h00 with coef¢cients in R such that vÿ y00i ? h

00 � h00 ? y0i � f � z00, for
some z00 2 Ma

d 00�d 0 �R�. Consider the d � d matrix

h � 1d 0 f i � h0
0 1d 00

� �
� 1d 0 0

f i � h00 1d 00

� �
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with coef¢cients in R. Then h 2 Gld�R�, since det h � 1R 2 R nm. We set yi�1 � h � yi
and gi�1 � h � gi. Then yi�1 � gi�1 � y and the condition (1) holds for i � 1. Observe
that yi�1 equals

1d 0 f i � h0
0 1d 00

� �
� 1d 0 0

f i � h00 1d 00

� �
?

y0i f i � u
f i � v y00i

" #
?

1d 0 0
ÿf i � h00 1d 00

� �
�

� 1d 0 ÿf i � h0
0 1d 00

� �
:

Multiplying these matrices we get

yi�1 � y0i f i�uÿ y0i ? h
0 � h0 ? y00i �

f i�vÿ y00i ? h
00 � h00 ? y0i� y00i

� �
� f 2i � z;

for some z 2 Ma
d�d�R�. Invoking the above equalities we obtain

yi�1 � y0i 0
0 y00i

� �
� f i�1 � 0 z0

z00 0

� �
� f 2i � z:

Consequently,

mod d
A�pi�1��yi�1� �

n0i�1 0
0 n00i�1

� �
;

where n0i�1 �Ma
d 0�d 0 �pi�1��y0i� and n00i�1 �Ma

d 00�d 00 �pi�1��y00i �. Clearly, n0i�1 and n00i�1 are
elements in mod d 0

A �R=mi�1� and mod d 00
A �R=mi�1�, respectively, and hence the con-

dition (2) for i � 1 holds. Moreover,

mod d 0
A �ei��n0i�1� � mod d 0

A �ei�Ma
d 0�d 0 �pi�1��y0i� � Ma

d 0�d 0 �eipi�1��y0i�
� Ma

d 0�d 0 �pi��y0i� � n0i:

Similarly, mod d 00
A �ei��n00i�1� � n00i . Hence, the condition (3) holds for i � 1. This ¢nishes

the proof.

LEMMA 4.3. For any iX 1, the A-modules Ni and N 0i �N 00i are isomorphic.
Proof. Applying the conditions (1) and (2) of Lemma 4.2, we get

n0i 0
0 n00i

� �
� mod d

A�pi��gi � y� � Gld�pi��gi� �mod d
A�pi��y�

� Gld �pi��gi� � ni;

for some gi 2 Gld�R�. But this implies that even as A-R=mi-bimodules Ni and
N 0i �N 00i are isomorphic.
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LEMMA 4.4. For any iX 1, there are in modA exact sequences

S0i : 0! N 0i�1! N 0i �N 0i�2! N 0i�1! 0;
S00i : 0! N 00i�1! N 00i �N 00i�2 ! N 00i�1! 0:

Proof.Take a natural number iX 1 and set j � i � 2. Since n0j 2 mod d 0
A �R=mj�, then

N 0j is an A-R=mj-bimodule, which as an R=mj-module is free of ¢nite rank. Then the
functor F0 � N 0j 
R=mj �ÿ� : fin �R=mj� ! modA is exact. Hence the exact
sequence

0! R=mi�1 ÿ!bi R=mi � R=mi�2 ÿ!gi R=mi�1 ! 0

in fin �R=mj�, where bi�r�mi�1� � �r�mi; f � r�mi�2�, gi�r�mi; r0 �mi�2� �
f � rÿ r0 �mi�1, for any r; r0 2 R, gives the exact sequence:

0! F0�R=mi�1� ÿ!F
0�bi� F 0�R=mi� � F 0�R=mi�2� ÿ!F�gi� F 0�R=mi�1� ! 0

in modA. Applying the condition (3) of Lemma 4.2, we obtain

mod d 0
A �ei�1��n0j� � n0i�1 and mod d 0

A �eiei�1��n0j� � n0i:

This implies that

F0�R=mi� � N 0j 
R=mj R=mi ' N 0i ;

F0�R=mi�1� � N 0j 
R=mj R=mi�1 ' N 0i�1;

F0�R=mi�2� � N 0j 
R=mj R=mj ' N 0j � N 0i�2:

Thus there exists an exact sequence S0i in modA of the form 0! N 0i�1!
N 0i �N 0i�2! N 0i�1! 0, and, by symmetry, also the exact sequence S00i : 0!
N 00i�1! N 00i �N 00i�2! N 00i�1! 0.

4.5. Applying Proposition 3.5 we get a number hX 1 such that Ni�2 �Ni '
Ni�1 �Ni�1 for any iX h. Moreover, we have the following lemma.

LEMMA. N 0i�2 �N 0i ' N 0i�1 �N 0i�1 and N 00i�2 �N 00i ' N 00i�1 �N 00i�1, for any iX h.
Proof. From Lemma 4.4, there are in modA exact sequences

S0i : 0! N 0i�1! N 0i �N 0i�2 ! N 0i�1! 0;
S00i : 0! N 00i�1! N 00i �N 00i�2 ! N 00i�1! 0:

Then dS0i �X �X 0 and dS00i �X �X 0, for any module X in modA, by Lemma 2.2.
Applying Lemma 4.3 we get

dS0i �X � � dS00i �X �
� dimk HomA�Ni�1 �Ni�1;X � ÿ dimk HomA�Ni�2 �Ni;X � � 0;
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and consequently dS0i �X � � 0 � dS00i �X �, for any module X in modA. Then the claim
follows from Lemma 2.2.

LEMMA 4.6. There are modules M 0 andM00 in modA such that N 0h�1 'M0 �N 0h and
N 00h�1 'M00 �N 00h .

Proof. Applying Lemma 4.5 several times we obtain thatM
0W i<l

�N 0h�i�2 �N 0h�i� '
M

0W i<l

�N 0h�i�1 �N 0h�i�1�;

for any lX 1. If we cancel the common direct summand
L

1W i<l�N 0h�i�1 �N 0h�i�, then
we get an isomorphism of A-modules N 0h�l�1 �N 0h ' N 0h�l �N 0h�1, for any lX 1.
Hence, there is an isomorphismM

1W l<j

�N 0h�l�1 �N 0h� '
M

1W l<j

�N 0h�l �N 0h�1�;

for any jX 2. After the cancellation of the common direct summand
L

2W l<j N
0
h�l ,

we get an isomorphism N 0h�j � �N 0h�jÿ1 ' �N 0h�1�j of A-modules, for any jX 2. This
implies that

m�N 0h�j;X � � �j ÿ 1� � m�N 0h;X � � j � m�N 0h�1;X �;

for any indecomposable module X in modA and jX 2, where m�Y ;X � denotes the
multiplicity of an indecomposable module X 2 modA as a direct summand of a
module Y 2 modA. Hence,

m�N 0h;X �W lim
j!1

j
j ÿ 1

� m�N 0h�1;X � � m�N 0h�1;X �;

for any indecomposable module X in modA. This implies that the module N 0h is a
direct summand of N 0h�1, so N 0h�1 'M0 �N 0h for some M0 2 modA. Similarly,
we conclude that there is a module M00 in modA such that N 00h�1 'M00 �N 00h .

4.7. The following lemma completes the proof of Theorem 3.

LEMMA. M0WdegN
0, M00WdegN

00 and M 'M0 �M00.
Proof. Applying Proposition 3.5 and Lemmas 4.3, 4.6 we get

M �Nh ' Nh�1 ' N 0h�1 �N 00h�1 'M0 �N 0h �M00 �N 00h 'M0 �M00 �Nh;

and consequently M 'M0 �M00. Up to symmetry, it remains to show that
M0WdegN

0. We set j � h� 1. As in (4.4) we may consider the exact functor
F0 � N 0j 
R=mj �ÿ� : fin �R=mj� ! modA. Then the exact sequence

0! R=m ÿ!bh R=mh�1 ÿ!gh R=mh ! 0
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(see (3.1)) induces the following exact sequence

0! F0�R=m� ÿ!F
0�bh� F 0�R=mh�1� ÿ!F

0�gh� F 0�R=mh� ! 0:

Applying the condition (3) of Lemma 4.2 several times, we obtain

mod d 0
A �eh��n0j� � n0h;

mod d 0
A �e1 . . . eh��n0j� � n01 � n0:

Together with Lemma 4.6 this implies that F0�R=mh� ' N 0h, F0�R=m� ' N 0 and
F0�R=mh�1� ' N 0h�1 'M0 �N 0h. Then we have an exact sequence

0! N 0 !M0 �N 0h ! N 0h ! 0

in modA, and so M0WdegN
0, by Proposition 3.4 in [11].

5. The Proof of Theorem 4

Let M, N be modules in modA such that N is a minimal degeneration of M and
M 6<ext N. We proceed by induction on the number of direct summands of a
decomposition of N into the direct sum of indecomposable modules. If N is
indecomposable, then the claim follows for M �M, N � N and W � 0. Assume
now that N ' N 0 �N 00 for some nonzero modules N 0, N 00 in modA. Suppose that
there is a nonsplittable exact sequence in modA of the form

0! N 0 !W ! N 00 ! 0 or 0! N 00 !W ! N 0 ! 0

with MWdegW . Then MWdegW < ext N and M 'W , because N is a minimal
degeneration of M. Therefore M < ext N what contradicts our assumptions. Hence,
by Theorem 3, there are modules M0, M00 in modA such that M0WdegN

0,
M00WdegN

00 and M 'M0 �M00. Observe that

M 'M0 �M00WdegN
0 �M00WdegN

0 �N 00 ' N:

Then either M0 ' N 0 or M00 ' N 00, since the degeneration M <deg N is minimal. We
may assume that M00 ' N 00. Then we have the minimal degeneration M0 <deg N 0

and M0 6<ext N 0. Hence, the claim follows from our inductive assumption, applied
to the minimal degeneration M0 <deg N 0. This ¢nishes the proof.

References

1. Abeasis, S. and del Fra, A.: Degenerations for the representations of a quiver of type
Ðm, J. Algebra 93 (1985), 376^412.

2. Bongartz, K.: A geometric version of the Morita equivalence, J. Algebra 139 (1991),
159^171.

3. Bongartz, K.: On degenerations and extensions of ¢nite dimensional modules, Adv.
Math. 121, 245^287.

DEGENERATIONS OF MODULES 217

https://doi.org/10.1023/A:1001778532124 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001778532124


4. Gabriel, P.: Finite representation type is open, In: Representations of Algebras, Lecture
Notes in Math. 488, Springer, New York, pp. 132^155.

5. Grunewald, F. and O'Halloran, J.: A characterization of orbit closure and applications
J. Algebra 116, 163^175.

6. Hartshorn, R., Algebraic Geometry, Springer, New York, 1977.
7. Kraft, H.: Geometric methods in representation theory, In: Representations of

Algebras, Lecture Notes in Math. 944, Springer, New York, 1982, pp. 180^258.
8. Kraft, H.: Geometrische Methoden in der Invariantentheorie, Vieweg, 1984.
9. Lubotsky, A. and Magid, A.: Varieties of representations of ¢nitely generated groups,

Mem. Amer. Math. Soc. 336 (1985).
10. Procesi, C.: Finite dimensional representations of algebras, Israel J. Math. 19 (1974),

169^182.
11. Riedtmann, C.: Degenerations for representations of quivers with relations, Ann. Sci.

Eè cole Norm. Sup. 4, (1986), 275^301.
12. Ringel, C. M.: Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math.

1099, Springer, New York, 1984.
13. Skowron̈ski, A.: Tame quasi-tilted algebras, J. Algebra 203 (1988), 470^490.
14. Skowron̈ski, A. and Zwara, G.: On degenerations of modules with nondirecting

indecomposable summands, Canad. J. Math. 48 (1996), 1091^1120.
15. Skowron̈ski, A. and Zwara, G.: Degenerations for indecomposable modules and tame

algebras, Ann. Sci. Eè cole Norm. Sup. 31 (1998), 153^180.

218 GRZEGORZ ZWARA

https://doi.org/10.1023/A:1001778532124 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001778532124

