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ON A DUAL RELATION FOR ADDITION FORMULAS

OF ADDITIVE GROUPS, I

TOSHIHIRO WATANABE

Introduction

This is the first in a series of papers concerned with a relation between

a representation in the polynomial ring of additive groups and its trans-

lation invariant operators. The present study is to observe several proper-

ties of a polynomial sequence pa(x) satisfying the binomial identity:

( i ) Pa(χ + y)= Σ Pβ(χ)pr(y),

by means of some translation invariant operators. For example, to take

the very simple case, that is, xa/al, the set of translation invariant opera-

tors is {d/dxu , djdxn}. This technique is the so called "umbral calculus"

or "symbol calculus" widely used in the past century (cf. [2], [7]). This

gives an effective technique for expressing a set of polynomials in terms

of another.

In this series, we call it the dual relation for addition formulas of

the additive groups. In the case of a polynomial sequence of one variable,

G.C. Rota etc. [9] deals with the dual relation. In this series, we investi-

gate the case of generic n variables.

Let us give a brief description of the contents of this paper.

Section 1 deals with one to one correspondence between a polynomial

sequence with the binomial identity (1) and a set of n translation invariant

operators.

Section 2 deals with the expansion theorem by a polynomial sequence

with the binomial identity (1). Then as corollaries of this theorem, we

obtain a characterization of the polynomial sequence by a numerical

sequence, and a generating function of the polynomial sequence.

Section 3, that is a main result, deals with an analogy of the classical
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172 TOSHIHIRO WATANABE

Rodrigues' formula. Also, we obtain the so called "transfer formula" to

connect xa\a\ with the other polynomial.

Section 4 gives some nontrivial examples.

Let us enumerate symbols and notations used in this paper. The

symbol Z\ is the subset in the n dimensional integral lattice Zn, in which

each point has all nonnegative entries. Let the Greek letters a, β,

be vectors in Zn and, for example, the components of a be written in the

form

a = (al9 - , an) .

Let {el9 , en} be a unit coordinate system, that is,

e1 = (l,0, .-.,0), •• ,e n = (0, •••,0,1).

For ae Zn+ and the variable x = (xί9 , xn)9 the length ax + + an of

a is denoted by \a\9 and the polynomial xa/a\ is x^/cc^. xa

n

n\an\. Instead

of the partial differential operators d/dxu , djdxn, we use the symbol

dl9 , dn. Also the vector (d/dxl9 , d/dxn) is denoted by the symbol 3.

Let Pj, - , Pn be translation invariant operators. Then the multiple

P"1- 'Pnn is denoted by P α . The notation δa

β is a generalization of the

Kronecker's delta symbol δυ such that

Π if α = 0 ,

if α ^ /3 .

Chapter 1. Basic Polynomials

§1. Fundamental properties

We shall be concerned with the algebra (over a field K of character-

istic zero) of all polynomials p(x) in n variables to be denoted P.

By a polynomial sequence we shall denote a sequence of polynomials

pa(x), where the parameter a is always in Z+. A polynomial sequence p«(x)

is called to be of binomial type if it satisfies the followings:

( i ) the degree of pa(x) is \a\;

(ii) setting pe.(x) = Σ*=i αuxfc + 6,, i = 1, , n,

the determinant |α i :/ | ΐ f i==li... ϊTO does not vanish;

(iii) (Binomial Identity) pa(x + y) = Σa=β+rPβ(x)Pr(y)

The simplest sequence of binomial type is, of course, xa/a\, but we give

some nontrivial examples in Section 4.
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PROPOSITION 1.1.1. The polynomial sequence pa(x) of binomial type has

the following properties:

( i ) po(x) = 1, 0 = (0, • , 0);

(i i) pa(0) = 0 whenever ae Z\ — 0;

(iii) the sequence pa(x) generates the set of all polynomials.

Proof. Setting y = 0 in (iii) of the binomial properties, we obtain

Pet(x) = Pe£x)PθΦ) + PeXfyPo(x), £ = 1, " ', Π .

Since each pei(x) is exactly of degree 1, it follows that

po(O) = 1 and ,hence, pQ(x) = 1 and pe£G) = 0, for ί = 1, , n .

Hence, using (ii) of the binomial properties, and changing the coordinate,

we get

(1.1.1) Pet(x) = x» i = l, -,n.

Fix the coordinate to satisfy (1.1.1). Let pa(x) be written in the form

Iterating (iii) of the binomial properties, we obtain for β = βx + + βk7

a(a; β) = Σ a(a,; β,)- a(ak; βk) .

Hence, by (1.1.1), a(a; β) in the highest degree \a\ of pa(x) is equal to δaβ.

So, we obtain (iii). Also, setting y = 0 in (iii) of the binomial properties,

and comparing the monomial of the highest degree of pβ(x), we have (ii).

Q.E.D.

We introduce the another algebra 2 to be the algebra of translation

invariant operators. All operators we consider, are assumed to be linear

and act the algebra of polynomials. Setting the translation operators Eay

that is,

(1.1.2) Eap(x) = p(χ + a) ,

an operator T to commute with Ea is said to be translation invariant.

The following proposition gives an isomorphism between the algebra

of translation invariant operators and the algebra of all formal power

series in the partial derivation dt, i = 1, , n.

PROPOSITION 1.1.2. If T is a translation invariant operator, then T is
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written in the form of a formal power series in the partial derivation di9

i = 1, , n.

Proof. Set the operator T in the following:

Since T is translation invariant, we have

TEyx
a/al = EvTχ lal .

By the linearity of T and the binomial property of xa/al9

TEvxΊal = T(x + y)*la\ = Σ
a = β + δ

On the other hand, we have

EvTx lal = EyΣaμβlβl = Σ a
β β=r+s

Hence, comparing the coefficients of the both sides, we get

aγ — ar+δ .

Setting ϊ = 0, we have

Here, we note that if a — δ does not belong to Z+,

o? = 0 .

Hence we obtain

TxΊa\ - Σ ai~βxβlβ\ = Σ a>d*χ la\ .
β β

Q.E.D.

Let P1 ? , Pn be translation invariant operators. Proposition 1.1.2

gives differential expressions p0) of Pi9 i = 1, , n, respectively. A set

of the translation invariant operators [Pl9 , Pn] is called the delta set

if

( i ) pt(0) = 0, / = 1, ...9n;

(ii) the Jacobian at the origin

•• ,3p«(0)/3f1 !

: : |
dPl(O)ldξn, •• ,9pn(0)/3fn

!
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Remark. The symbol {p^ξ), ,pn(f)} of the delta set {Pl9 ,Pn} is

a regular homeomorphism fixing the origin. Hence, there exists the unique

delta set {Qu , Qn} such that the symbol {qι(ξ), , #„(<?)} satisfies

Qi(Pi(ξ)> '' ',Pn(ξ)) = fi , * = 1, , n .

The delta set {Pu , P J to satisfy

3p*(0)/3f, = δtj

is said to be normal.

Let {P1? , Pn) be a delta set. A polynomial sequence pa(x) is called

the sequence of the basic polynomials for {Pί9 , Pn) if:

( i ) po(*) = l, 0 = (0, .-•,(»;

( i i) pα(0) = 0 whenever aeZn

+ — 0;

(iii) for each i — 1, , τi

e_e<(x) , if α - β , e Z ^ ,

0 i f α - β f f i ! Z .

PROPOSITION 1.1.3. The followings are equivalent:

( i ) the delta set {Pl9 , Pn) is normal;

(ii) ί/ie basic polynomials pa(x) for {Pl9 , Pn} satisfy

pe.(x) = xi9 i = 1, , 7i

(iii) ίΛβ coefficients a(a; β) of the highest degree of the basic polynomial

pa(x) for {Pu , Pn) is equal to δaβ.

Proof. We shall prove (i) => (iii). Inducing on the degree of pa(x),

we assume that (iii) holds for pa(x) of the degree less than I. Set pa(x)

in the form

Pa(x) = Σ a(a; β)xβlβl ,
\β\θ

and the differential expression {Pi(d), -,pn(d)} for {Pl5 , Pn) as the fol-

lowing

Pϊ(d) = dt + Σ c<>β3
β .

! « I > 1

Hence, by (iii) of the basic polynomials, a(a; β) of the highest degree

satisfy

a(a; β) = a(a - et; β - et) , i = 1, , n ,
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if a — et and β — et belong to Z+. But the right side of the above rela-

tion is a coefficient of the highest degree of pa-ei(x). Therefore we obtain

(iii). It is clear (iii) => (ii). Also, (i) and (iii) of the basic polynomial give

(ii) =Φ (i). Q.E.D.

COROLLARY. The monomial of the highest degree of the basic polynomial

pa(x) for the normal delta set is equal to xa\a\.

The basic polynomial pa(x) for the normal delta set {Pl9 , Pn} is

called the normal basic polynomial.

PROPOSITION 1.1.4. Every delta set has a unique sequence of basic

polynomials.

Proof. By a change of the coordinate, we may consider the normal

delta set. Inducing on the degree of polynomials, we assume that, for

<x\< I, pa(x) satisfies the conditions of the basic polynomial. We show

that, for \a\ = I, pa(x) also exists and is unique. Let pa(x) (\a\ = I) be

written in the form

pa(x) = xa\a\ + Σ
\β\<ι

Now, for i = 1, , n, we have

Pi(β)Pa(x) =Pi(d)xalal + Σ
\β\<ι

where, for β — et§,Z\, pβ-ei(x) is regarded as vanishing. Each Pi(d)x"lal

is at most of degree I — 1. Hence, Proposition 1.1.3 and (iii) of the basic

polynomial give a unique choice of the constants cβ. Q.E.D.

The typical example of a basic polynomial sequence is xaja\, basic

for {3j, , dn). Several properties of the polynomial sequence xaja\ can

be generalized to an arbitrary sequence of basic polynomials. A basic

property of xa/a\ is of binomial type. This turns out to be true for every

sequence of basic polynomials.

THEOREM 1.1.5. ( i ) If pa(x) is a basic sequence for some delta set

{Pu , Pn), then it is a sequence of polynomials of binomial type.

(ii) If pa(x) is a sequence of polynomials of binomial type, then it is

a basic sequence for some delta set.

Proof, ( i ) By Proposition 1.1.3, the proof of (i) and (ii) of the
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binomial property is clear. We prove the binomial identity (iii). Iterating

the property (iii) of basic polynomials, we see that

Pfp.(x)=pa-Jx),

where for a — β £ Z+, we regard it as vanishing. Hence, for a = β,

[P'Pa(x)h.o = 1

while, for, a φ β,

[P>P.(χ)L_o = 0 .

Thus, we may trivially express pa(x) in the form

By Corollary of Proposition 1.1.3, this expression also holds for all poly-

nomials p(x), that is,

Now suppose p(x) is the polynomial pa(x + y) for fixed y. Then

Σ
β

But by the translation invariant property of Pβ, we see

pa(χ + y) = Σ pβ(Φr(y)
a = β+γ

Hence, the sequence pa(x) is of binomial type.

(ii) Suppose now pa(x) is a sequence of binomial type. By Propo-

sition 1.1.1, we have only to define a delta set for which such a sequence

pa(x) is the sequence of basic polynomials. Let P z , i = 1, , n, be the

operator defined by the following:

We may trivially write (iii) of binomial type in the form

and, using (iii) in Proposition 1.1.1, this may be extended to all poly-

nomials :
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Now replace p by Ptp, and we obtain

(PiP)(x + y) = ΣPβ(*)Pβ+eiP(y) , i

But

(PiPXx + y) = Ex(PίP){y) ,

and

= Pt(p(x + y)) = PJ

Therefore each Pt is a translation invariant operator. Using Proposition

1.1.2 and PiPQ(x) = 0, we obtain (i) of the delta set. Hence, each differ-

ential expression pt(d) of Pt is expressed by

Pi(3) = Σ c4Λ + Σ ctj
β

9 i = 1, , n .
1 I 8 | l

By (ii) of binomial type, the determinant \Cij\ίJ=h...,n does not vanish.

Hence, (ii) of the delta set holds. Q.E.D.

§2. The expansion theorem

We study next the expansion of a translation invariant operator in

terms of a delta set and its multiple powers. The difficulties caused by

convergence questions are minimal, and we refuse to discuss them in this

paper.

The following theorem generalizes the Taylor expansion formula to

delta sets and their basic polynomials.

THEOREM 1.2.1. (First Expansion Formula). Let T be a translation

invariant operator, and {Pl9 , Pn) be a delta operator with a basic set

p£x). Then

with

Proof. Since pa(x) are of binomial type, we may write the binomial

identity as
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where, for a — β £ Z+, we regard Pβpa(x) as vanishing. Apply T to the

both sides regarding x as the variable and y as a parameter and get

By Proposition 1.1.3, this expansion can be extended to all polynomials.

Setting x equal to zero, we obtain the expansion formula. Q.E.D.

This theorem gives an explicit interpretation to the generating func-

tion of a sequence of basic polynomials.

COROLLARY 1.2.2. Let {Pu , Pn} be a delta set with basic polynomials

pa(x), and set Pt = p<(3), ί = 1, , n. Let {q^ξ), , qn(ξ)} be the inverse

formal power series. Then

Proof. Expand the translation operator Ea in terms of {Pu , Pn}

by the first expansion formula. Then, we have

a formula which can be considered as a generalization of Taylor's formula.

By Proposition 1.1.2, we get

n

Σ Pa(ά)Pa(ζ) = exp Σ «iCi ,
a i = l

whence the conclusion, upon setting ξt = Pi(ζ), ί = 1, , n, and a = x.

Q.E.D.

Next, we obtain a useful characterization of basic polynomials as the

following:

COROLLARY 1.2.3. Given any sequence of constants c^a), ί = 1, , n,

(aeZn

+ —0) with the determinant \ci(ej)\iJ=h.,.in Φ 0, there exists a unique

sequence of basic polynomials pa(x) such that

Proof. Set

The above corollary gives a unique sequence of basic polynomials pa(x)
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to satisfy

exp Σ xt Σ ct(a)ξ* = ΣPa(x)ξa

1 = 1 α a

Operating dt to the both sides and setting x equal to zero, we get the

relation of this corollary. Q.E.D.

§3. Closed forms

For the first time we introduce operators that are not translation

invariant. Let p(x) be a polynomial. Multiplying each term of p(x) by

the variables xi9 i = 1, , n, we obtain a new polynomial xtp(x). Call

this multiplication operator and we denote it by xi9 ί = 1, , n.

LEMMA 1.3.1. Let the symbol of f(d) be /(£). Then its commutator

[f(β)> Xi] = f(β)x< - xtΛ(3) , i = 1, , n ,

corresponds to a translation invariant operator with the symbol (

The proof is a straightforward verification.

In this section, let (dj)(d) be the differential operator corresponding

to the symbol (3i/)(£).

As well known, the delta set {dl9 , dn} and the multiplication opera-

tors xu ί = 1, , n, satisfy the Heίsenberg Weyl relation, that is,

\βu 3jl = [*ί, ^J] = 0 ,

and

[du Xj] = 5<y, i, = 1, , n .

Now we construct another operators for generic delta set to satisfy the

Heisenberg Weyl relation.

THEOREM 1.3.2. Let {Pi(f), —-9pn(ξ)} be a symbol of the differential

expression of the delta set {Pl9 -,Pn). Setting the inverse Jacobί matrix:

Wn(f),

w e Λαi e ίΛe following relations for ί, j = 1,

( i ) IA(3), P,(3)] = 0;
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(iii)

Proof. By Proposition 1.1.2, the proof of (i) is trivial. We can show

(iii) immediately. Indeed, by Lemma 1.3.1,

, Σ
k = l

= Pt(d) Σ *A/3) - Σ xAi(β)Pt(3)

n

= Σ (3*P*)(3)&«0)

= a«

Lastly we prove (ii). The left side of (ii) is the following:

ΓΣ *Ai(3), Σ xΛA
\_k = l k = l

n

n

Therefore we have only to prove the following:

(1.3.1) Σ (3A*)(f)&n(£) - (dιbkl)(ξ)bH(ξ) = 0 .

Setting the inverse functions of {p^ξ), , pn(f)} by {g^ζ), , gΛ(ζ)}, we

have

Hence, setting

( f i , •• , £ n )

we have

(1.3.2) Σ (dkpi)(ξχdjgk)(ζ)

and so, for ί, j = 1, , n,

Using (1.3.2) and
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t
k = l

we can replace the left side of (1.3.1) as the following:

= Σ (9ι

= Σ ^»(
m = l

- 0 .

Hence, we obtain (1.3.1). Q.E.D.

Now, we obtain a creation operator for a sequence of basic poly-

nomials. In the theory of classical polynomials [11], it is well known as

Rodrigues' formula.

COROLLARY 1.3.3 (Rodrigues' Formula). Using the notation of Theorem

1.3.2, we have for the basic polynomial pa(x) of {Pl9 , Pn)

pa+ei(x) = (a, + l ) - 1 ^ *Ai(3)) Pa(x) , i = 1, * , n .

PROPOSITION 1.3.4. Let {Pl9 -—,Pn} be a normal delta set and pa(x)

be the normal basic polynomials for {Pu , Pn}. Then the differential ex-

pression {px(β)9 • ,pΛ(9)} of {Pl9 , Pn} satisfies the following conditions:

(1.3.3) Pi(β) = diQi(d) ,

and

( 1 . 3 . 4 ) g i ( 0 ) = l , i - 1 , .- , n

i/ and only if the constants [diPa(x)]x=0 = a^ά), ί = 1, , n, in Corollary

1.2.3 satisfy the following

(1.3.5) at(a) = 0 whenever a — et & Z+ .

Proo/. Set

Σ c < ( α ) 9 β , i = 1 , ••-, 71

and
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pa(x) = Σ α(«; β)x*lβ] •
β

The property (iii) of the basic polynomial gives

(1.3.6) ΣΦyaia; β + 7) = a(a-eί;r), i = l,-- ,n.

Setting 7 = 0 in (1.3.6) and using Proposition 1.1.3.

(1.3.7) Ci(a) + Σ ^ β f o βXiβ) = δa,ei .

Iterating (1.3.7), we obtain

Ci(a) = Σ ( - 1 ) * Σ Φ c ; βd ••• a ( β t - ΰ β*)δβk,ei ,
n 3 g\ k=o ki>ii8ii> >i(9fci

i = 1, , n .

Also the binomial identity (iii) gives, for β = β1 + + βL ?

(1.3.9) a(a; β) = Σ afa; βd - a(at; βt) .

Suppose that (1.3.5) holds. Note that a(a; e<) = at{a). By (1.3.9), if

β — et is contained in Z+, α(αr; /3) vanishes except the case of a — et e Z+.

Hence, by (1.3.8), we see that if a — et is not contained in Z+, c^α;) is

equal to zero. So, (1.3.3) and (1.3.4) hold.

Conversely, suppose that (1.3.3) and (1.3.4) hold. For \a\ = 1, it is

trivial to prove (1.3.5). Inducing for the length of a, that is, \a\, we

assume that for \a\ < t - 1, (1.3.5) holds. By using (1.3.8) and (1.3.9), we

easily prove (1.3.5) similar to the proof of the sufficient condition. Q.E.D.

To prove the transfer formula, we need a property of a determinant

with noncommutative entries.

Let Aίj9 ί, j — 1, , 7i, be linear operators. We define the determinant

with the noncommutative entries Aυ such that

A1U " ,Aln

An\9 , Ann

where σ runs in the permutation group of order n, and ε(σ) is the signa-

ture of σ.

Let © be an algebra generated by operators Ai9 Bj, i, j = 1, , n and

the identity operator J. Then we define the operators Ai9 Bt and Bf>

i, j = 1, , n, on © such that for X e ©,

a n I Λ \ / Γ V / I V D V Ϊ 3 V

and
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BfX =

L E M M A 1.3.5. Suppose that Bt commutes B} for ί,j = l, ,n. Then

we have following

Aβ* - [Alt BJ, - [Au BJ, , - [Au B J

(1.3.12)

- [At, BJ, A2B* - [At, BJ, [A, Bn]

- [An, JBJ, , AnB* - [An Bn]

- [A2, BJ, A2Bf - [A2, BJ, , - [A2) B J

- [A,, BJ,

where [A^Bj] is the commutator:

Proof. From the definition of the determinant, we have only to prove

the identity:

(1.3.13)

Using

f - Bσω)(δ2σ{2)A2Bt - [A2,BH2)])

• (δnβin)AnB* - [An, Bσ(n)])I - 0 .

we have

(1.3.14) Σ̂
- [A,, B,(s)]) (3nσ(n)AnB* - [4n, Bff(n)])I = 0 .

Hence, adding the left side of (1.3.13) to (1.3.14), we obtain

Σ

v {X if R* Γ/ϊ R Ά ^ iί R* \ A R Ί\ Γ

Going on the similar method, we obtain

r(l))(y2σ (2)^-2^2 1/̂ 2? -^<τ(2)J)

• (δn,MAπB* - [An, B.(n)])ί

*1 — ^σ(l)/^i2V\0lσ(2)-Dl ~Γ O2σ{z)r>2) ~ &σ(2))

] δkσ(n)B* — Bσin)jl .

(1.3.16)
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Using

= 0

we obtain (1.3.13). Q.E.D.

Now, we obtain a useful formula, that is, "Transfer Formula".

THEOREM 1.3.6. (Transfer Formula). Let pa(x) be a normal basic poly-

nomial for the normal delta set {Pu , Pn}. Then for some differential

operators P(a; d) with constant coefficients depending on a parameter a, pa(x)

is represented by

(1.3.17) pa(x) =

if and only if the ί-th component of the differential expression {Pi(3),

pn(d)} is divided by dt: for some differential operators {qx(d), 9qn(d)}9

( 1 . 3 . 1 8 ) P * ( 3 ) = 3*<Z<(3), i = l, •• , n .

So, we have the followings:

(i)

(ii) in the algebra © generated by the operators Qi(d)~ai and xJf i,j =

1, , n, setting At = qi(d)~aι and Bj = xj9 and using the notation in Lemma

1.3.5, we have

(dtqϊ' Xd), • • , qn0)-"x*

(iii) by using notations of (ii),

X

,g»(3)—x*-(3B9n—

https://doi.org/10.1017/S0027763000020894 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020894


186 TOSHIHIRO WATANABE

Proof, First, we shall prove the necessary condition. Set the fol-

lowings

and

By (1.3.17), we have

(1.3.19) α(α; β) = b(cc; a - β) if a - β e Z\ .

(1.3.20) α(α: j8) = 0 if a - β & Zn

+ .

Therefore setting β — ek in (1.3.20), Proposition 1.3.4 gives (1.3.18).

Next, we show that the right sides of (i) and (ii) define the same

sequence. Indeed,

Σ <σ)(δum

-"-V/α!V/α!

= Σ

Σ
• qJβ)-'X—'*~—»la\

Here the permutation σ of the last equation is an element in the permu-

tation group of order k. By using the notations of (ii), the last equation

is equal to (ii). The proof of (ii) =̂> (iii) is straightforward verification in

virtue of Lemma 1.3.5. Lastly we prove the sufficient condition. Replace

the right side of (i) by pα(x). Then it is easy to see

By (iii), we have

Pi(d)Pa(x) = Pa-et(x), i = 1,

pβ(0) = 0 for a € Zl - 0 .
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For a = 0, (i) and the conditions of the normal delta set give

po(x) = 1 .

Therefore we see that pa(x) is a basic polynomial for {Px Pn], and by

Proposition 1.1.4, pa(x) is equal to pa(x). Q.E.D.

§ 4. Examples

In this section, we discuss a generalization of typical nontrivial

examples to appear in the theory of combinatorics and stochastic proc-

esses, that is, the Abel polynomials and the Gould polynomials (cf. [3],

[4], [5], [6], [8], [10]). In the case of one variable, it is known in Rota,

etc. [9] that the Abel polynomial x(x — nd)n~ι\n\ is the basic polynomial

for the delta operator d/dx exp (ad/dx), and the Gould polynomial

x(x + bή)~\x + bή)Jn\ is the basic polynomial for the delta operator

(exp (djdx) — 1) exp (—6 djdx). Here the symbol (x)n is equal to the lower

factorial x(x — 1) (x — n + 1). We generalize the delta operator and,

by using the transfer formula, give the basic polynomial for the delta set.

In this section we use, for convenience, e{x) in stead of exp x.

( i ) A generalization of the Abel polynomials.

We consider the following normal delta set:

Pt(d) = dte((au 3» = i = 1, , n,

where <αί? 3} is equal to Σl=iaίkdk. Then by the transfer formula (iii),

the basic polynomial pa(x) is calculated as follows:

2, xn]

χLxa~ei en\a\

ne(-(Xi(au 3»

a2a21e(—a2(κa2, 3}), (xf + a2a22)e(—a2(a2, 3», , a2a2ne(—a2(a2, 3 »

ananίe(-an(anf 3», , ( ί * + anann)e(-an(an, 3 »
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a2a2U xf + aλa21, , a2a2n

•, ί* + anann

Replacing the above equation by the determinant of commutative entries,

we have

Z _ J Z_j
& = 0 l = JQ<"'<jk

' 9 Xjk

n-1

= Σ Σ
A 0 l j <

'9 XJk

ι-διJl δtjk

Hence, we obtain the Abel polynomials with n variables:

P.(x) -

Π
7 = 1

,xn — 2 akakn
kφn

/

Let us give some properties of the Abel polynomials with n variables.

(a) A generalization of the Abel's identity (cf. [1]).

In virtue of Theorem 1.2.1, the Abel's identity is stated as

(x + y)"/a\ =

(b) A generalization of the first Abel inverse relation ([8], p. 93).

Using Corollary 1.2.2, we obtain
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αβ = Σ Pβ(Φr >
α = i9 4-r

a = β+r

(c) The orthogonal relation is the following:

The other properties of the Abel polynomials with n variables will

be taken in the following papers.

(ii) A generalization of the Gould polynomials.

We consider the following normal delta set:

pt(d) = (*(3<) - l)e(- <α<, 3» , i = 1, , n ,

where <α<, d) is equal to Σ*=i α*A

As well known, the lower factorial (x)Jn\ is the basic polynomial

for the delta operator e(d[dx) — 1. Hence, by the transfer formula (i) in

the case of one variable, we see

(1.4.1) (dldx(e(dldx) - l)-1Y+1e(dldx)xn = (x)n .

In virtue of the transfer formula (i) and (1.4.1), the basic polynomial pa(x)

is calculated as follows:

- 1),

- anl(e(dn) -1),

Π ^ < ^ 5 » Π (3<

,) - 1) + βO

- 1), - α2

dd - 1),

, - ann(e(βn) - e(dj

O - 1), d - 1)

- anl(e(dn) - 1), , - ann(e(dn) - 1) +

fί (*, - 1 + Σ cCiOij) /a\.
j = l \ i = l /«y/

Here, we note that

( - aιι{e{dι) - 1) + ^ , ) ) ( ^ - 1 + Σ ctjaΔ

= (Xι + Σ ^^ΛίΛί + Σ α^α^) (x, + Σ ^ αj7) .
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Hence, we obtain the Gould polynomials with n variables:

1 \ '

(1.4.2)

' > *^w ~ Γ
kφn

Π *I + Σ « Λ I *i + Σ « i ^ /«!-
1 = 1 \ 3=1 / \ 3=1 J «ιl

Let us give some properties of the Gould polynomials with n vari-

ables.

(a) A generalization of Gould's inversion formula (cf. [5] (3.1) and

(3.2)).

Since

β, 9> - Σ cct{aup*(3) = β Σ + r ( - i )

by Theorem 1.2.1, we find that

F(a)= Σ (-

a = β+γ

is the inverse of

fix) = ΣsPa(x)F{a) ,
α

where the notation ί ^ ) is equal to ( β1)* * '( β /> a i χ d the vector {a, α*>

is ( Σ L i otkakl9 , Σ L i <xkakn).

(b) Setting pa(x)=pa(x; a) in (1.4.2), we give the connection constants

of pa(x; a) in terms of p(x; a — b) (cf. [5], (5.5)).

Now,
e((bi - au d})ieidt) - ΐ)pa(x; a)

= Pa-ei(x+ b,; a) ,

and, therefore

Π (*OJ) - l)"PJ<x > a)

= Pa-P(x + ΣβA ά),
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whence, by Theorem 1.2.1,

(1.4.3) pa(x + y;a)= Σ pβ(x; a - b)pγ(y + Σ βAl a) .
a = β+γ ί=l

By a change of parameters, we also obtain

(1.4.4) pa(x + y;a-b) = £ pβ(x; a)piy - Σ βA; a - b) .

(c) A generalization of Gould's main theorem (cf. [5] (5.3) and (5.4)).

Using (1.4.3) and (1.4.4), we obtain the inversion formula:

/ . ( * + y) = Σ Fβ(χ)pr(y - Σ βA; a - b ) ,
a=β+γ \ i=l )

Fa(χ + y)= Σ fβ(χ)
a=β+T

The other properties of the Gould polynomials with n variables will

be taken in the following papers.
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