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Abstract. Explicit examples of both hyperelliptic and non-hyperelliptic curves
which cannot be defined over their field of moduli are known in the literature. In this
paper, we construct a tower of explicit examples of such kind of curves. In that tower
there are both hyperelliptic curves and non-hyperelliptic curves.

2000 Mathematics Subject Classification. 30F10, 30F20, 30F40.

1. Introduction. The notion of field of moduli was first introduced by Matsusaka
in [17] for the case of polarized abelian varieties and generalized by Shimura in [18]
for polarized abelian varieties with further structure. Later, Koizumi in [12] gave a
more general definition of the field of moduli for general algebraic varieties (even
with extra structures) which coincides with Matsusaka’s and Shimura’s definitions for
polarized abelian varieties. In general, the field of moduli of a variety is not a field of
definition for it. Both the computation of the field of moduli and to determine if it
is a field of definition is a hard problem. Weil’s Galois descent theorem [20] provides
a sufficient condition for a variety X , defined over a finite Galois extension L/k , to
be definable over k . The sufficient condition is given by the existence of a birational
isomorphism fσ : X → Xσ , for each σ ∈ Gal(L/k ) (defined over L) satisfying some
co-cycle conditions (Weil’s datum). Weil’s theorem is still valid if we replace L with
the complex field �, k with the field of rationals � and X with a non-singular and
irreducible complex algebraic curve (that is, a closed Riemann surface) of genus at least
two. If the variety has no non- trivial birational automorphisms, then the existence of
a Weil’s datum is clear. Unfortunately, if the variety has non-trivial automorphisms, to
check the existence of a Weil’s datum is not an easy task.

The first examples of explicit curves which cannot be defined over their field of
moduli were provided by Earle [4,5] and by Shimura [18] around 1972; these examples
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are hyperelliptic curves of even genus. Other explicit examples were constructed
by Huggins [11] for genus at least three. In [2] Bujalance–Turbek have provided a
characterization of those hyperelliptic curves whose field of moduli is real but not a
field of definition. This characterization was completed by Huggins in [10]. In the case
of non-hyperelliptic curves, such kind of examples were obtained by the third author
in [7, 8] and by Kontogeorgis in [13].

In this paper, we produce a tower of examples of curves which cannot be defined
over their field of moduli. We start with the non-hyperelliptic curves as in [7, 8] and
construct quotients of it which turn out to be non-definable over their fields of moduli.
In such a tower, the lowest one is the hyperelliptic curve isomorphic to the one obtained
by Earle in [4, 5].

THEOREM 1.1. Let θ ∈ (0, π ), θ �= π/2, and let r ∈ (1,+∞), r /∈{√
1 + cos2θ ± cos θ

}
. Set

Cr,θ =

⎧⎪⎪⎨
⎪⎪⎩

x2
1 + x2

2 + x2
3 = 0

−r2x2
1 + x2

2 + x2
4 = 0

reiθx2
1 + x2

2 + x2
5 = 0

−reiθx2
1 + x2

2 + x2
6 = 0

⎫⎪⎪⎬
⎪⎪⎭ ⊂ �5.

Then the following hold.

(1) �5
2

∼= H = 〈a1, a2, a3, a4, a5〉 = Aut(Cr,θ ), where aj is multiplication by −1 of
the xj−coordinate. Furthermore Aut±Cr,θ = 〈H, τ 〉 where τ is an anti-conformal
automorphism of order 4 given by

τ ([x1 : x2 : x3 : x4 : x5 : x6]) = [x2 : ir x1 : x4 : ir x3 :
√

reiθ/2 x6 : i
√

reiθ/2 x5].

(2) The conjugacy action of τ on the elements of H is described in Table 1.
(3) Let N be a subgroup of H with the following conditions

(i) aj /∈ N,∀j = 1, . . . , 6 where a6 = a1a2a3a4a5

(ii) τNτ−1 = N
(iii) N ∩ QN = ∅
(iv) N ∩ QH = ∅

where QK = {(aτ )2 : a ∈ K} with K ≤ H. Then, N acts freely on Cr,θ and Cr,θ /N has
automorphism group isomorphic to H/N. Furthermore, Cr,θ /N cannot be defined
over its field of moduli. The collection of subgroups N < H, satisfying (i), (ii), (iii),
and (iv) as above, are listed in Table 2. We shall call these subgroups admissible
subgroups of H. The lattice of these admissible subgroups is shown in Figure 1.

The family of curves Cr,θ in Theorem 1.1 was obtained in [7,8] to obtain genus 17
non-hyperelliptic curves not definable over the field of moduli.

2. Preliminaries.

2.1. Some preliminaries on cross ratios. A generalized circle in the Riemann
sphere �̂ is either an Euclidian circle in � or the union of ∞ with an Euclidian line in �.
Given four different points a, b, c, d ∈ �̂, the cross-ratio is defined [a, b, c, d] = T(d),
where T is the unique Möbius transformation satisfying that T(a) = ∞, T(b) = 0 and
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Table 1. Conjugacy action by τ

a (aτ )2 τ−1aτ a (aτ )2 τ−1aτ

1 1 a1a3a5 1 2 a1 a2a3a5 a2

3 a2 a2a3a5 a1 4 a3 a1a4a5 a4

5 a4 a1a4a5 a3 6 a5 a2a4a5 a6

7 a6 a2a2a5 a5 8 a1a2 a1a3a5 a1a2

9 a1a3 a2a4a5 a2a4 10 a1a4 a2a4a5 a2a3

11 a1a5 a1a4a5 a2a6 12 a2a3 a2a4a5 a1a4

13 a2a4 a2a4a5 a1a3 14 a2a5 a1a4a5 a1a6

15 a3a4 a1a3a5 a3a4 16 a3a5 a2a3a5 a4a6

17 a4a5 a2a3a5 a3a6 18 a5a6 a1a3a5 a5a6

19 a4a6 a2a3a5 a3a5 20 a3a6 a2a3a5 a4a5

21 a2a5 a1a4a5 a1a5 22 a1a6 a1a4a5 a2a5

23 a1a2a3 a1a4a5 a1a2a4 24 a1a2a4 a1a4a5 a1a2a3

25 a1a2a5 a2a4a5 a3a4a5 26 a1a3a4 a2a3a5 a2a3a4

27 a1a3a5 a1a3a5 a1a3a5 28 a1a4a5 a1a3a5 a1a4a5

29 a2a3a4 a2a3a5 a1a3a4 30 a2a3a5 a1a3a5 a2a3a5

31 a2a4a5 a1a3a5 a2a4a5 32 a3a4a5 a2a4a5 a1a2a5

Table 2. Admissible subgroups of H

order N N order N N

16 U = 〈a1a2, a2a3, a3a4, a4a5〉 8 T8 = 〈a1a2, a3a5, a4a5〉
8 T9 = 〈a1a5, a2a5, a3a4〉 8 T10 = 〈a1a4, a2a4, a5a6〉
4 S7 = {1, a3a4, a1a2a3, a1a2a4} 4 S8 = {1, a1a2, a1a3a4, a2a3a4}
4 S9 = {1, a5a6, a1a2a5, a3a4a5} 4 S10 = {1, a1a2, a3a4, a5a6}
4 S11 = {1, a1a2, a3a5, a4a6} 4 S12 = {1, a1a2, a4a5, a3a6}
4 S13 = {1, a3a4, a1a5, a2a6} 4 S14 = {1, a3a4, a2a5, a1a6}
4 S15 = {1, a5a6, a1a3, a2a4} 4 S16 = {1, a5a6, a1a4, a2a3}
2 R1 = 〈a1a2〉 2 R2 = 〈a3a4〉
2 R3 = 〈a5a6〉

H

U

T9 T10T8

S 10S 11S 12 S 13 S 14 S 15 S 16S 9S 7S 8

R2R1 R3

{1}

Figure 1. Lattice of admissible subgroups.

T(c) = 1. By the definition, [a, b, c, d] ∈ � − {0, 1}. If S is any Möbius transformation,
then [S(a), S(b), S(c), S(d)] = [a, b, c, d]. The points a, b, c, d belong to a common
generalized circle if and only if [a, b, c, d] ∈ �. In particular, Möbius transformations
send generalized circles into generalized circles. Any permutation of the four points
changes the value of [a, b, c, d] to a value R([a, b, c, d]), were R ∈ � = 〈A(z) =
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1/z, B(z) = z/(z − 1)〉 ∼= S3. In particular, if [a, b, c, d] ∈ {−1, 1/2, 2} then the cross-
ratio of any permutation of these four points is still in the same set. If a �= 0,∞, then
[∞, 0, a,−a] = −1. The only cross-ratios, obtained by permutation of ∞, 0, a and −a,
producing the same value −1 are given by [∞, 0, a,−a], [∞, 0,−a, a], [0,∞, a,−a],
[0,∞,−a, a], [a,−a,∞, 0], [−a, a,∞, 0], [a,−a, 0,∞] and [−a, a, 0,∞].

2.2. An auxiliary lemma. Let θ ∈ (0, π ). If we consider the points r1(θ ) =√
1 + cos(θ )2 − cos(θ ) and r2(θ ) =

√
1 + cos(θ )2 + cos(θ ), then r1(θ )r2(θ ) = 1 and

none of them is equal to ±1. In particular, exactly one of these two points is bigger
than 1; we denote it by rθ .

LEMMA 2.1. Let θ ∈ (0, π ), θ �= π/2, and let r ∈ (1,+∞), r /∈{√
1 + cos2θ ± cos θ

}
. If T is a Möbius transformation so that

{∞, 0, 1,−r2, reiθ ,−reiθ } T�→ {∞, 0, 1,−r2, reiθ ,−reiθ },

then T = I.

Proof. Set μ = reiθ and λ = −r2. By direct inspection at the cross-ratios, with the
restrictions r > 1 and eiθ �= ±1, we may notice that the only subsets of cardinality 4 of
{∞, 0, 1, λ, μ,−μ} contained in a generalized circle are given by

{∞, 0, 1, λ}, {∞, 0, μ,−μ}, {1, λ, μ,−μ}.

The respective cross-ratios are given by

[∞, 0, 1, λ] = λ /∈ {−1, 1/2, 2}

[∞, 0, μ,−μ] = −1

[1, λ, μ,−μ] = − r4 + 2(2 sin(θ )2 − 1)r2 + 1)
(r2 + 2 cos(θ )r + 1)2

/∈ {−1, 1/2, 2}.

Let θ and R ∈ � be fixed. The equation [1, λ, μ,−μ] = R(λ) is equivalent to
a polynomial equation Pθ,R(r) = 0, where Pθ,R(x) ∈ �[x] is a non-constant real
polynomial of degree either 2 or 4. These polynomials Pθ,R(x) are given by the following
ones:

x2 + 2 cos(θ )x − 1; x2 − 2 cos(θ )x − 1; 2x4 + 3x2 − 2 cos(θ )x + 1;

2x4 + 3x2 + 2 cos(θ )x + 1; x4 + 2 cos(θ )x3 + 3x2 + 2; x4 − 2 cos(θ )x3 + 3x2 + 2.

The degree four polynomials have no real zeroes greater than 1. The degree two
polynomials have real zeroes greater than 1 only at rθ . It follows that if r �= rθ , then all
the above three cross-ratios are non-equivalent under the action of �. In particular, if
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T is a Möbius transformation so that

{∞, 0, 1, λ, μ,−μ} T�→ {∞, 0, 1, λ, μ,−μ},

then

{∞, 0, 1, λ} T�→ {∞, 0, 1, λ}, {∞, 0, μ,−μ} T�→ {∞, 0, μ,−μ}.

In this way,

{∞, 0} T�→ {∞, 0}, {1, λ} T�→ {1, λ}, {−μ,μ} T�→ {−μ,μ}.

If T �= I , then, from the above first two properties, we see that the only possibilities
for T are given by T(z) = λz or T(z) = 1/z or T(z) = λ/z. The possibility T(z) = λz
asserts that 1 = T(λ) = λ2 = r4, a contradiction. The possibility T(z) = 1/z asserts λ =
T(λ) = 1/λ, again a contradiction. The possibility T(z) = λ/z then asserts that ±μ =
T(μ) = λ/μ, from which one obtains that r2 = −λ = μ2 = r2e2iθ , a contradiction to
the assumption that eiθ /∈ {±1,±i}. �

2.3. Genus 17 non-hyperelliptic curves. Let θ ∈ (0, π ), θ �= π/2, r ∈ (1,+∞), r /∈{√
1 + cos2θ ± cos θ

}
. In [3, 6] it was noticed that

Cr,θ =

⎧⎪⎪⎨
⎪⎪⎩

x2
1 + x2

2 + x2
3 = 0

−r2x2
1 + x2

2 + x2
4 = 0

reiθx2
1 + x2

2 + x2
5 = 0

−reiθx2
1 + x2

2 + x2
6 = 0

⎫⎪⎪⎬
⎪⎪⎭ ⊂ �5

is an irreducible and non-singular projective algebraic curve of genus 17 so that

H = 〈a1, a2, a3, a4, a5〉 ∼= �5
2

is a normal subgroup of Aut(Cr,θ ), where aj is multiplication by −1 to the xj-coordinate.
The holomorphic map

π : Cr,θ → �̂; [x1 : · · · : x6] �→ −
(

x2

x1

)2

defines a branched regular covering with H as deck group of covering maps. The
branch values of π , each one of order two, are given by

∞, 0, 1,−r2, reiθ ,−reiθ .

It can be seen from [9] that Cr,θ is a non-hyperelliptic Riemann surface.
Moreover, the curve Cr,θ admits the anti-conformal automorphism of order 4

τ ([x1 : x2 : x3 : x4 : x5 : x6]) = [x2 : ir x1 : x4 : ir x3 :
√

reiθ/2 x6 : i
√

reiθ/2 x5].

So the field of moduli of Cr,θ is a subfield of �.
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Let us notice that

τ 2 = a1a3a5

τa1 = a2τ, τa2 = a1τ,

τa3 = a4τ, τa4 = a3τ,

τa5 = a6τ, τa6 = a5τ.

In [7], as a direct consequence of Lemma 2.1, the following result is obtained.

THEOREM 2.2 [7]. Let θ ∈ (0, π ), θ �= π/2, and let r ∈ (1,+∞), r /∈{√
1 + cos2θ ± cos θ

}
. Then Cr,θ is a non-hyperelliptic Riemann surface of genus 17

which cannot be defined over � but whose field of moduli is a subfield of �. In particular,
Cr,θ is not definable over its field of moduli. Moreover, Aut(Cr,θ ) = H.

It should be said that the statement provided in [7] is slightly different than the
one provided above and also in the same paper it is missing the restriction that r �= rθ

(see the correction provided in [8]).

2.4. Connection to Earle’s genus 2 example. Earle’s example in [5] may be written
as follows:

Er,θ : y2 = x(x − 1)(x + r2)(x − reiθ )(x + reiθ )

and it can be seen as the quotient of Cr,θ by the subgroup of H, isomorphic to
�4

2 and acting freely, generated by c1 = a1a2, c2 = a2a3, c3 = a3a4, c4 = a4a5. In
terms of Fuchsian groups, this covering may be seen as follows. Let j : Er,θ → Er,θ

be the hyperelliptic involution. The quotient orbifold O = Er,θ /〈j〉 has signature
(0; 2, 2, 2, 2, 2, 2). Let � be a Fuchsian group acting on the hyperbolic plane �2 so
that O = �2/�. If �′ denotes the derived subgroup of �, then it turns out that �′

is torsion free and Cr,θ = �2/�′. In this case, H = �/�′ ∼= �5
2. There is an index 2

torsion-free normal subgroup F of � so that Er,θ = �2/F . Clearly, �′ � F . It is not
difficult to see that �′ is exactly the subgroup of F generated by the squares of the
elements of F [1].

3. Proof of Theorem 1.1. Let θ ∈ (0, π ), θ �= π/2, and let r ∈ (1,+∞), r /∈{√
1 + cos2θ ± cos θ

}
. We keep the notations of the previous section. Part (1) was

already stated in [7,8] and Part (2) is a direct check. Next, we proceed to prove Part (3)
of the Theorem.

Let us consider the subgroup N �= {I} of H with the conditions

(i) aj /∈ N,∀j = 1, · · · , 6 where a6 = a1a2a3a4a5

(ii) τNτ−1 = N
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(iii) N ∩ QN = ∅
(iv) N ∩ QH = ∅.

By (i) there exist an unbranched regular covering f : Cr,θ → Cr,θ /N with N as
deck group and a branched regular covering P : Cr,θ /N → �̂ whose deck group is
HN = H/N.

Either HN is a 2-Sylow subgroup of Aut(Cr,θ /N) or there is a subgroup
K < Aut(Cr,θ /N) containing HN as an index 2 subgroup. In the last situation, K
will induce a Möbius transformation of order two keeping invariant the collection
{∞, 0, 1,−r2, reiθ ,−reiθ } which is not possible by Lemma 2.1. So, HN is a 2-Sylow’s
subgroup of Aut(Cr,θ /N).

Next we claim Aut(Cr,θ /N) = HN .
� |N| = 8: By Riemann–Hurwitz formula and condition (i) it follows that the genus

of Cr,θ /N is 3. Furthermore Cr,θ /N is hyperelliptic. Looking at the table of
automorphisms of hyperelliptic Riemann surfaces [15], we may see that in the
case that Aut(Cr,θ /N) is different from HN ∼= �2

2, there is some order two element
of Aut(Cr,θ /N) − HN keeping HN invariant. Such element will provide a non-
trivial Möbius transformation keeping the set {∞, 0, 1,−r2, reiθ ,−reiθ } invariant, a
contradiction. We have proved Aut(Cr,θ /N) = HN .

� |N| = 4: By Riemann–Hurwitz formula and condition (i) it follows that the genus
of Cr,θ /N is 5.
Checking at the list of automorphism groups of compact Riemann surfaces of
genus five [14], one can see that HN is contained in an abelian subgroup H ′

N with
index 2. Thus H ′

N induces a Möbius transformation of order two keeping the set
{∞, 0, 1,−r2, reiθ ,−reiθ } invariant, a contradiction. We have proved Aut(Cr,θ /N) =
HN .

� |N| = 2: By Riemann–Hurwitz formula and condition (i) it follows that the genus
of Cr,θ /N is 9.
In [16] there is a list of the automorphism groups of Riemann surfaces with
genus 9. These automorphism groups have order greater than 25. We proved HN

is a 2-Sylow subgroup. If Aut(Cr,θ /N)) �= HN it follows [Aut(Cr,θ /N) : HN ] > 2
hence |Aut(Cr,θ /N)| > 25. Next, by checking at the list of automorphism groups
of compact Riemann surfaces of genus nine [16], one can see that, they do not
contain a 2-Sylow subgroup isomorphic to HN . Therefore Aut(Cr,θ /N) = HN .

By (ii) τ induces an anti-conformal automorphism τN on Cr,θ /N. Further by (iii)
τN has order 4. As a consequence, the field of moduli of Cr,θ /N is a subfield of �.

Let us now assume that Cr,θ /N admits an anti-conformal involution �. Then
τ−1

N � ∈ HN , that is, � ∈ τNHN . This will ensure that some of (τan)2 (automorphism
of Cr,θ ) must belong to N for a ∈ H , n ∈ N. By condition (iv) we obtain a
contradiction.

4. Equations for curves.

4.1. Subgroup of order 8. First, we compute the equations for N = T8 =
〈a1a2, a3a5a4a5〉.

A generating set for the N−invariant algebra �[x1, x2, x3, x4, x5]N is given by

y1 = x2
1 , y2 = x2

2 , y3 = x2
3 , y4 = x2

4 , y5 = x2
5 , y6 = x1x2 , y7 = x3x4x5.
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So, if 	 = (y1, y2, y3, y4, y5, y6, y7), then

	 : C0
r,θ → 	

(
C0

r,θ

) ⊂ �7

is a regular unbranched covering with N as its deck group. In particular,
	

(
C0

r,θ

)
is an affine model for Cr,θ /N. This curve is given by the following

equations:

	
(
C0

r,θ

) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y1 + y2 + y3 = 0
−r2y1 + y2 + y4 = 0
reiθy1 + y2 + y5 = 0
−reiθ y1 + y2 + 1 = 0

y2
6 − y1y2 = 0

y2
7 − y3y4y5 = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⊂ �7.

The above equations imply that

y2 = −1 + reiθy1

y3 = 1 − (1 + reiθ )y1

y4 = 1 + (r2 − reiθ )y1

y5 = 1 − 2reiθ y1.

So, if we consider the projection


 : �7 → �3 : (y1, y2, y3, y4, y5, y6, y7) �→ (y1, y6, y7) = (w1, w2, w3),

then


 : 	
(
C0

r,θ

) → 

(
	

(
C0

r,θ

)) = Cr,θ /N

is an isomorphism. In particular,

f = 	 ◦ 
 : C0
r,θ → C0

r,θ /N

is an unbranched regular covering with N as deck group. The curve C0
r,θ /N is given by

the following equations:{
w2

2 = w1
(
reiθw1 − 1

)
w2

3 = (
1 − w1

(
1 + reiθ

)) (
1 − w1

(
reiθ − r2

)) (
1 − 2reiθw1

)}
⊂ �3.

In the following table, we resume these computations for each group in our
list.
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Subgroup N (y1, y2, y3, y4, y5, y6, y7) (w1, w2, w3)

T8 (x2
1, x2

2, x2
3, x2

4, x2
5, x1x2, x3x4x5) (y1, y6, y7)

y1 + y2 + y3 = 0
−r2y1 + y2 + y4 = 0
reiθy1 + y2 + y5 = 0

−reiθy1 + y2 + 1 = 0
y2

6 − y1y2 = 0
y2

7 − y3y4y5 = 0

y3 = 1 − y1(1 + reiθ )
y4 = 1 − y1(reiθ − r2)
y5 = 1 − 2reiθy1

y2 = reiθy1 − 1
w2

2 = w1(reiθw1 − 1)
w2

3 = (1 − w1(1 + reiθ ))(1 − w1(reiθ − r2))(1 − 2reiθw1)

T9 (x2
1, x2

2, x2
3, x2

4, x2
5, x3x4, x1x2x5) (y1, y6, y7)

y1 + y2 + y3 = 0
−r2y1 + y2 + y4 = 0
reiθy1 + y2 + y5 = 0

−reiθy1 + y2 + 1 = 0
y2

6 − y3y4 = 0
y2

7 − y1y2y5 = 0

y3 = 1 − y1(1 + reiθ )
y4 = 1 − y1(reiθ − r2)
y5 = 1 − 2reiθy1

y2 = reiθy1 − 1
w2

2 = (1 − w1(1 + reiθ ))(1 − w1(reiθ − r2))
w2

3 = w1(reiθw1 − 1)(1 − 2reiθw1)

T10 (x5, x2
1, x2

2, x2
3, x2

4, x1x2x3x4) (y2, y1, y6)

y2 + y3 + y4 = 0
−r2y2 + y3 + y5 = 0
reiθy2 + y3 + y2

1 = 0
−reiθy2 + y3 + 1 = 0

y2
6 − y2y3y4y5 = 0

y4 = 1 − y2(1 + reiθ )
y5 = 1 − y2(reiθ − r2)
y2

1 = 1 − 2reiθy2

y3 = reiθy2 − 1
w2

2 = (1 − 2reiθw1)

w2
3 = w1(reiθw1 − 1)(1 − w1(1 + reiθ ))(1 − w1(reiθ − r2))
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4. 2 Subgroup of order 4

Subgroup N (y1, y2, y3, y4, y5, y6, y7, y8) (w1, w2, w3, w4, w5)

S7 (x5, x2
1, x2

2, x2
3, x2

4, x1x2, x1x3x4, x2x3x4) (y2, y1, y6, y7, y8)

y2 + y3 + y4 = 0
−r2y2 + y3 + y5 = 0
reiθy2 + y3 + y2

1 = 0
−reiθy2 + y3 + 1 = 0

y2
6 − y2y3 = 0

y2
7 − y2y4y5 = 0

y2
8 − y3y4y5 = 0

y7y8 − y6y4y5 = 0

y4 = 1 − y2(1 + reiθ )
y5 = 1 − y2(reiθ − r2)
y2

1 = 1 − 2reiθ y2

y3 = reiθy2 − 1
w2

2 = 1 − 2reiθw1

w2
3 = w1(reiθw1 − 1)

w2
4 = w1(1 − w1(1 + reiθ ))(1 − w1(reiθ − r2))

w2
5 = (reiθw1 − 1)(1 − w1(1 + reiθ ))(1 − w1(reiθ − r2))

w4w5 = w3(1 − w1(1 + reiθ ))(1 − w1(reiθ − r2))

S8 (x5, x2
1, x2

2, x2
3, x2

4, x3x4, x1x2x3, x1x2x4) (y2, y1, y6, y7, y8)

y2 + y3 + y4 = 0
−r2y2 + y3 + y5 = 0
reiθy2 + y3 + y2

1 = 0
−reiθy2 + y3 + 1 = 0

y2
6 − y4y5 = 0

y2
7 − y2y3y4 = 0

y2
8 − y2y3y5 = 0

y7y8 − y2y3y6 = 0

y4 = 1 − y2(1 + reiθ )
y5 = 1 − y2(reiθ − r2)
y2

1 = 1 − 2reiθ y2

y3 = reiθy2 − 1
w2

2 = 1 − 2reiθw1

w2
3 = (1 + reiθ ))(1 − w1(reiθ − r2))

w2
4 = w1(reiθw1 − 1)(1 − w1(1 + reiθ ))

w2
5 = w1(reiθw1 − 1)(1 − w1(reiθ − r2))

w4w5 = w1(reiθw1 − 1)w3
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(x2
1, x2

2, x2
3, x2

4, x2
5, x1x2, x3x4,

S9 x1x3x5, x1x4x5, x2x3x5, x2x4x5) (y1, y6, y7, y8, y9, y10, y11)

y1 + y2 + y3 = 0
−r2y1 + y2 + y4 = 0
reiθy1 + y2 + y5 = 0

−reiθy1 + y2 + 1 = 0
y2

6 − y1y2 = 0
y2

7 − y3y4 = 0
y2

8 − y1y3y5 = 0
y2

9 − y1y4y5 = 0
y2

10 − y2y3y5 = 0
y2

11 − y2y4y5 = 0

y3 = 1 − y1(1 + reiθ )
y4 = 1 − y1(reiθ − r2)
y5 = 1 − 2reiθy1

y2 = reiθy1 − 1
w2

2 = w1(reiθw1 − 1)
w2

3 = (1 − w1(1 + reiθ ))(1 − w1(reiθ − r2))
w2

4 = w1(1 − w1(1 + reiθ ))(1 − 2reiθw1)
w2

5 = w1(1 − w1(reiθ − r2))(1 − 2reiθw1)
w2

6 = (reiθw1 − 1)(1 − w1(1 + reiθ ))(1 − 2reiθw1)
w2

7 = (reiθw1 − 1)(1 − w1(reiθ − r2))(1 − 2reiθw1)

S10 (x5, x2
1, x2

2, x2
3, x2

4, x1x2, x3x4) (y2, y1, y6, y7)

y2 + y3 + y4 = 0
−r2y2 + y3 + y5 = 0
reiθy2 + y3 + y2

1 = 0
−reiθy2 + y3 + 1 = 0

y2
6 − y2y3 = 0

y2
7 − y4y5 = 0

y4 = 1 − y2(1 + reiθ )
y5 = 1 − y2(reiθ − r2)
y2

1 = 1 − 2reiθy2

y3 = reiθy2 − 1
w2

2 = 1 − 2reiθw1

w2
3 = w1(reiθw1 − 1)

w2
4 = (1 − w1(1 + reiθ ))(1 − w1(reiθ − r2))

S11 (x4, x2
1, x2

2, x2
3, x2

5, x1x2, x3x5) (y2, y1, y6, y7)

y2 + y3 + y4 = 0
−r2y2 + y3 + y2

1 = 0
reiθy2 + y3 + y5 = 0

−reiθy2 + y3 + 1 = 0
y2

6 − y2y3 = 0
y2

7 − y4y5 = 0

y4 = 1 − y2(1 + reiθ )
y2

1 = 1 − y2(reiθ − r2)
y5 = 1 − 2reiθy2

y3 = reiθy2 − 1

w2
2 = 1 − w1(reiθ − r2)

w2
3 = w1(reiθw1 − 1)

w2
4 = (1 − w1(1 + reiθ ))(1 − 2reiθy2)
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S12 (x3, x2
1, x2

2, x2
4, x2

5, x1x2, x4x5) (y2, y1, y6, y7)

y2 + y3 + y2
1 = 0

−r2y2 + y3 + y4 = 0
reiθy2 + y3 + y5 = 0

−reiθy2 + y3 + 1 = 0
y2

6 − y2y3 = 0
y2

7 − y4y5 = 0

y2
1 = 1 − y2(1 + reiθ )

y4 = 1 − y2(reiθ − r2)
y5 = 1 − 2reiθ y2

y3 = reiθy2 − 1

w2
2 = 1 − w1(1 + reiθ )

w2
3 = w1(reiθw1 − 1)

w2
4 = (1 − w1(reiθ − r2))(1 − 2reiθ y2)

S13 (x2, x2
1, x2

3, x2
4, x2

5, x1x5, x3x4) (y2, y1, y6, y7)

y2 + y2
1 + y3 = 0

−r2y2 + y2
1 + y4 = 0

reiθy2 + y2
1 + y5 = 0

−reiθy2 + y2
1 + 1 = 0

y2
6 − y2y5 = 0

y2
7 − y3y4 = 0

y3 = 1 − y2(1 + reiθ )
y4 = 1 − y2(reiθ − r2)
y5 = 1 − 2reiθ y2

y2
1 = reiθy2 − 1

w2
2 = (reiθw1 − 1)

w2
3 = w1(1 − 2reiθy2)

w2
4 = (1 − w1(1 + reiθ ))(1 − w1(reiθ − r2))

S14 (x1, x2
2, x2

3, x2
4, x2

5, x2x5, x3x4) (y2, y1, y6, y7)

y2
1 + y2 + y3 = 0

−r2y2
1 + y2 + y4 = 0

reiθy2
1 + y2 + y5 = 0

−reiθy2
1 + y2 + 1 = 0
y2

6 − y2y5 = 0
y2

7 − y3y4 = 0

y3 = −r−1e−iθ − y2(1 + r−1e−iθ )
y4 = re−iθ + y2(re−iθ − 1)
y5 = 1 − 2y2

y2
1 = r−1e−iθ (1 + y2)

w2
2 = r−1e−iθ (1 + w1)

w2
3 = w1(1 − 2w1)

w2
4 = (−r−1e−iθ − w1(1 + r−1e−iθ ))(re−iθ + w1(re−iθ − 1))

https://doi.org/10.1017/S0017089516000227 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0017089516000227


T
O

W
E

R
O

F
R

IE
M

A
N

N
SU

R
FA

C
E

S
391

S15 (x5, x2
1, x2

2, x2
3, x2

4, x1x3, x2x4) (y2, y1, y6, y7)

y2 + y3 + y4 = 0
−r2y2 + y3 + y5 = 0
reiθy2 + y3 + y2

1 = 0
−reiθy2 + y3 + 1 = 0

y2
6 − y2y4 = 0

y2
7 − y3y5 = 0

y4 = 1 − y2(1 + reiθ )
y5 = 1 − y2(reiθ − r2)
y2

1 = 1 − 2reiθy2

y3 = reiθy2 − 1
w2

2 = 1 − 2reiθw1

w2
3 = w1(1 − w1(1 + reiθ ))

w2
4 = (reiθw1 − 1)(1 − w1(reiθ − r2))

S16 (x5, x2
1, x2

2, x2
3, x2

4, x1x4, x2x3) (y2, y1, y6, y7)

y2 + y3 + y4 = 0
−r2y2 + y3 + y5 = 0
reiθy2 + y3 + y2

1 = 0
−reiθy2 + y3 + 1 = 0

y2
6 − y2y5 = 0

y2
7 − y3y4 = 0

y4 = 1 − y2(1 + reiθ )
y5 = 1 − y2(reiθ − r2)
y2

1 = 1 − 2reiθy2

y3 = reiθy2 − 1
w2

2 = 1 − 2reiθw1

w2
3 = w1(1 − w1(reiθ − r2))

w2
4 = (reiθw1 − 1)(1 − w1(1 + reiθ ))
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4. 3 Subgroup of order 2

Subgroup N (y1, y2, y3, y4, y5, y6) (w1, w2, w3, w4, w5)

R1 (x3, x4, x5, x2
1, x2

2, x1x2) (y4, y1, y2, y3, y6)

y4 + y5 + y2
1 = 0

−r2y4 + y5 + y2
2 = 0

reiθy4 + y5 + y2
3 = 0

−reiθy4 + y5 + 1 = 0
y2

6 − y4y5 = 0

y2
1 = 1 − y4(1 + reiθ )

y2
2 = 1 − y4(reiθ − r2)

y2
3 = 1 − 2reiθ y2

y5 = reiθy4 − 1

w2
2 = 1 − w1(1 + reiθ )

w2
3 = 1 − w1(reiθ − r2)

w2
4 = 1 − 2reiθw1

w2
5 = w1(reiθw1 − 1)

R2 (x1, x2, x5, x2
3, x2

4, x3x4) (y4, y1, y3, y2, y6)

y2
1 + y2

2 + y4 = 0
−r2y2

1 + y2
2 + y5 = 0

reiθy2
1 + y2

2 + y2
3 = 0

−reiθy2
1 + y2

2 + 1 = 0
y2

6 − y4y5 = 0

y4 = 1 − y2
1(1 + reiθ )

y5 = 1 − y2
1(reiθ − r2)

y2
3 = 1 − 2reiθ y2

1
y2

2 = reiθy2
1 − 1

w2
2 = (1 + reiθ )−1(1 + w1)

w2
3 = 1 − 2reiθ (1 + reiθ )−1(w1 − 1)

w2
4 = reiθ (1 + reiθ )−1(w1 − 1) − 1

w2
5 = w1(1 − (reiθ − r2)(1 + reiθ )−1(1 + w1))

(x5, x2
1, x2

2, x2
3, x2

4, x1x2, x1x3,

R3 x1x4, x2x3, x2x4, x3x4) (y2, y1, y6, y7, y8, y9, y10, y11)

y2 + y3 + y4 = 0
−r2y2 + y3 + y5 = 0
reiθy2 + y3 + y2

1 = 0
−reiθy2 + y3 + 1 = 0

y2
6 − y2y3 = 0

y2
7 − y2y4 = 0

y2
8 − y2y5 = 0

y2
9 − y3y4 = 0

y2
10 − y3y5 = 0

y2
11 − y4y5 = 0

y4 = 1 − y2(1 + reiθ )
y5 = 1 − y2(reiθ − r2)
y2

1 = 1 − 2reiθ y2

y3 = reiθy2 − 1
w2

2 = 1 − 2reiθw1

w2
3 = w1(reiθy2 − 1)

w2
4 = w1(1 − w1(1 + reiθ ))

w2
5 = w1(1 − w1(reiθ − r2))

w2
6 = (reiθw1 − 1)(1 − w1(1 + reiθ ))

w2
7 = (reiθw1 − 1)(1 − w1(reiθ − r2))

w2
8 = (1 − w1(1 + reiθ ))(1 − w1(reiθ − r2))
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