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We provide experimental measurements for the effective scaling of the Taylor–
Reynolds number within the bulk Reλ,bulk, based on local flow quantities as a
function of the driving strength (expressed as the Taylor number Ta), in the ultimate
regime of Taylor–Couette flow. We define Reλ,bulk = (σbulk(uθ))2(15/(νεbulk))

1/2, where
σbulk(uθ) is the bulk-averaged standard deviation of the azimuthal velocity, εbulk is
the bulk-averaged local dissipation rate and ν is the liquid kinematic viscosity. The
data are obtained through flow velocity field measurements using particle image
velocimetry. We estimate the value of the local dissipation rate ε(r) using the scaling
of the second-order velocity structure functions in the longitudinal and transverse
directions within the inertial range – without invoking Taylor’s hypothesis. We find
an effective scaling of εbulk/(ν

3d−4)∼ Ta1.40, (corresponding to Nuω,bulk ∼ Ta0.40 for the
dimensionless local angular velocity transfer), which is nearly the same as for the
global energy dissipation rate obtained from both torque measurements (Nuω ∼ Ta0.40)
and direct numerical simulations (Nuω ∼ Ta0.38). The resulting Kolmogorov length
scale is then found to scale as ηbulk/d ∼ Ta−0.35 and the turbulence intensity as
Iθ,bulk∼Ta−0.061. With both the local dissipation rate and the local fluctuations available
we finally find that the Taylor–Reynolds number effectively scales as Reλ,bulk ∼ Ta0.18

in the present parameter regime of 4.0× 108 < Ta< 9.0× 1010.

Key words: rotating turbulence, Taylor–Couette flow, turbulent convection

1. Introduction

Taylor–Couette (TC) flow, the flow between two coaxial co- or counter-rotating
cylinders, is one of the idealized systems in which turbulent flows can be paradigmat-
ically studied due to its simple geometry and its resulting accessibility through
experiments, numerics and theory. In its rich and vast parameter space, various
different flow structures can be observed (Taylor 1923; Chandrasekhar 1981; Andereck,
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Liu & Swinney 1986; van Gils et al. 2011; Huisman et al. 2014; Ostilla-Mónico et al.
2014; van der Veen et al. 2016a). For recent reviews, we refer the reader to Fardin,
Perge & Taberlet (2014) for the low Ta range and Grossmann, Lohse & Sun (2016)
for large Ta.

The driving strength of the system is expressed through the Taylor number defined
as

Ta= 1
4σTCd2(ri + ro)

2(ωi −ωo)
2/ν2, (1.1)

where ri,o are the inner and outer radii, d = ro − ri the gap width, ωi,o the angular
velocities of the inner and outer cylinders, ν the kinematic viscosity of the fluid,
σTC = (1 + ρ)4/(4ρ)2 ≈ 1.06 a pseudo-Prandtl number employing the analogy with
Rayleigh–Bénard (RB) flow (Eckhardt, Grossmann & Lohse 2007) and ρ = ri/ro the
radius ratio. The response of the system is generally described by the two response
parameters Nuω and Rew. The first is the Nusselt number Nuω = Jω/Jω,lam, with the
angular velocity transfer Jω = r3

〈(urω− ν∂rω)〉A,t, where 〈 〉A,t denotes averaging over
a cylindrical surfaces of constant radius and over time. ω=uθ/r is the angular velocity
and Jω,lam= 2ν(riro)

2(ωi−ωo)/(r2
o − r2

i ) is the angular velocity transfer from the inner
to the outer cylinder for laminar flow. Nuω describes the flux of angular velocity in
the system, and is directly linked to the torque through the Navier–Stokes equations.
The second response parameter of the flow is the so-called wind Reynolds number
Rew = σbulk(ur)d/ν, where σbulk(ur) is the standard deviation of the radial component
of the velocity inside the bulk. Rew quantifies the strength of the secondary flows. In
the ultimate regime of turbulence, where both the boundary layers (BL) and the bulk
are turbulent (Ta > 3 × 108), it was experimentally found that Nuω ∼ Ta0.40, in the
Taylor number regime of 109 to 1013, independent of the rotation ratio a=−ωo/ωi and
radius ratio ρ (van Gils et al. 2011; Paoletti & Lathrop 2011; Huisman et al. 2014;
Ostilla-Mónico et al. 2014). This scaling has been identified, using the analogy with
RB flow, with the ultimate scaling regime Nuω∼Ta1/2L(Ta), where the log corrections
L(Ta) are due to the presence of the BLs (Grossmann & Lohse 2011). The wind
Reynolds number Rew was found experimentally to scale as Rew ∼ Ta0.495 within the
bulk flow (Huisman et al. 2012); very close to the 1/2 exponent that was theoretically
predicted by Grossmann & Lohse (2011). Here, remarkably, the log corrections cancel
out.

In this study we characterize the local response of the flow with an alternative
response parameter based on the standard deviation of the azimuthal velocity σ(uθ)
and the microscales of the turbulence, i.e. the Taylor–Reynolds number which is
defined as Reλ = u′λ/ν, where u′ is the root mean square (r.m.s.) of the velocity
fluctuations and λ is the Taylor microscale.

Reλ is often used in the literature to quantify the level of turbulence in a given flow,
ideally for homogeneous and isotropic turbulence (HIT), where it should be calculated
from the full three-dimensional (3-D) velocity field. In experiments however, the entire
flow field is generally not accessible. Assuming isotropy (which is most of the time
not strictly fulfilled), the dissipation rate ε (in Cartesian coordinates) can be reduced
to ε = 15ν〈(∂u/∂x)2〉t, where u is the component of the velocity in the streamline
direction x. In this way, the Taylor microscale is then redefined as λ=〈u2

〉/〈(∂u/∂x)2〉.
Examples where this procedure has been followed in spite of the lack for perfect
isotropy include turbulent RB flow (Zhou, Sun & Xia 2008), the flow between counter-
rotating disks (Voth et al. 2002), von Kármán flow (Zimmermann et al. 2010) or
channel flow (Martínez Mercado et al. 2012). In all cases the isotropic form of Reλ
is still chosen as a robust way to quantify the strength of the turbulence. It is in this
spirit that we aim to calculate Reλ in turbulent Taylor–Couette flow, albeit in a region
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sufficiently far away from the BLs (bulk). Such a calculation allows for a quantitative
comparison between the turbulence generated in TC flow and the one produced by
other canonical flows, i.e. pipe, channel, RB, von Kármán flow, etc. Following this
route, we define the bulk Taylor–Reynolds number for TC flow as

Reλ,bulk ≡ (σbulk(uθ))2
(

15
νεbulk

)1/2

, (1.2)

σbulk(uθ)≡ 〈σθ,t(uθ(r, θ, t))〉rbulk , (1.3)
εbulk ≡ 〈ε(r, θ, t)〉θ,t,rbulk , (1.4)

where σθ,t(uθ(r, θ, t)) is the standard deviation of the azimuthal velocity in the
azimuthal direction and over time. σbulk(uθ) is then the average of the azimuthal
velocity fluctuations profile over the bulk and εbulk the bulk-averaged dissipation rate.
Note that the subscript rbulk means that we average in the radial direction but only
for 0.35< (r− ri)/d< 0.65, i.e. the middle 30 % of the gap (see also § 3.1).

Multiple prior estimates of Reλ in TC flow can be found in the literature:
Huisman, Lohse & Sun (2013) calculated it using a combination of the local velocity
fluctuations and the global energy dissipation rate εglobal, where the latter is obtained
from torque measurements denoted by τ through ε= τωi/m, where m is the total mass.
Lewis & Swinney (1999), however, estimated Reλ at midgap (r̃= (r− ri)/d=0.5) with
the local velocity fluctuations and a local dissipation rate estimated indirectly through
the velocity spectrum E(k) in wavenumber space k, i.e. ε = 15ν

∫
k2E(k) dk. In this

calculation, Taylor’s frozen flow hypothesis was used to get the θ -dependence for
the azimuthal velocity uθ , i.e. u(θ + dθ, t) = u(θ, t − r dθ/U), where U is the mean
azimuthal velocity. To the best of our knowledge, however, a truly bulk-averaged
calculation of Reλ,bulk (based on local quantities) has hitherto never been reported in
the literature. Of particular interest is how this quantity scales with Ta in the ultimate
regime, and how this scaling is connected to that of Nuω and Rew.

As TC flow is a closed flow system, the global energy dissipation rate εglobal is
connected to both the driving strength Ta and Nuω by (Eckhardt et al. 2007)

ε̃global =
d4

ν3
εglobal = σ

−2
TC NuωTa. (1.5)

In the ultimate regime this implies an effective scaling of the global energy
dissipation rate ε̃global ∼ Ta1.40. A calculation of Reλ in the bulk does not require
the global energy dissipation rate ε̃global, but the bulk-averaged energy dissipation
rate, εbulk in combination with the bulk-averaged velocity fluctuations σbulk(uθ), see
(1.3). In general, velocimetry techniques like particle image velocimetry (PIV) can
provide σbulk(uθ) directly, thus the challenge of the calculation is to correctly estimate
εbulk. While the global energy dissipation rate εglobal (1.5) can be obtained from torque
measurements, an estimate of εbulk requires the knowledge of the local dissipation rate
ε(r, θ, t) as is shown in (1.4). For fixed height along the cylinders, the dissipation
rate profile ε(r) = 〈ε(r, θ, t)〉θ,t is connected to the global energy dissipation rate
through εglobal = (π(r2

o − r2
i ))
−1
∫ ro

ri
ε(r)2πr dr. We note that due to the non-trivial

interplay between bulk and turbulent BLs in the ultimate regime, it is not known a
priori that εbulk and εglobal will scale in the same way: local measurements are needed
to confirm this assumption.

The energy dissipation rate ε is key for Kolmogorov’s scaling prediction of
the velocity structure functions (SFs) in HIT, namely DLL(s) = C2(εs)2/3 for the
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second-order longitudinal structure function and DNN(s) = C2(4/3)(εs)2/3 for the
second-order transverse structure function within the inertial range, neglecting
intermittency corrections (Frisch 1995; Pope 2000). The Kolmogorov constant was
measured to be C2 ≈ 2.0 and is believed to be universal (Sreenivasan 1995). The
exponents for the scaling of the pth order SFs (ζ ?p ) have been measured and found
to differ from Kolmogorov’s original prediction p/3: the difference between them
are attributed to the intermittency of the flow (Benzi et al. 1993; She & Leveque
1994; Lewis & Swinney 1999; Huisman et al. 2013). However, second-order SFs
along with the classical Kolmogorov scaling ζ2 = 2/3 have been successfully used
to estimate ε in fully developed turbulence (Voth et al. 2002; Blum et al. 2010;
Zimmermann et al. 2010; Chien, Blum & Voth 2013). One can then expect only a
moderate underestimation of ε since the intermittency correction to the exponent of
the second-order SFs is small ζ ?2 − 2/3 ≈ 0.03, where ζ ?2 is the measured exponent
of the second-order SFs in TC flow using extended self-similarity (ESS) (Lewis &
Swinney 1999; Huisman et al. 2013).

In this paper we make use of local flow measurements using planar particle image
velocimetry to find σbulk(uθ) and using the scaling of the second-order (p = 2) SFs
we estimate εbulk. The advantage of PIV over other flow measuring technique such
as laser-Doppler or hot-wire anemometry is the possibility of accessing the whole
velocity field at the same time in the r–θ plane, i.e. u = ur(r, θ, t)êr + uθ(r, θ, t)êθ ,
from which we can obtain directly the θ -dependence of the velocities. Unlike the
calculations of Lewis & Swinney (1999) and Huisman et al. (2013), in this work,
we do not need to invoke Taylor’s hypothesis in the calculation of Reλ,bulk. We only
explore the case of inner cylinder rotation (a= 0), where there is virtually no stable
structures (Taylor rolls) left when the driving strength is sufficiently large (Ta > 108)
(Huisman et al. 2014). In this way, the calculation is independent of the axial height
z and thus there is no need for an axial average (van Gils et al. 2012).

2. Experimental apparatus

The PIV experiments were performed in the Taylor–Couette apparatus as described
in Huisman et al. (2015). This facility provides an optimal environment for PIV
experiments in TC flow, due to its transparent outer cylinder and top plate. The radii
of the set-up are ri = 75 and ro = 105 mm, and thus ρ = ri/ro = 0.714, which is
very close to ρ = 0.724 and ρ = 0.716 from Lewis & Swinney (1999) and Huisman
et al. (2013), respectively. The height ` equals 549 mm, resulting in an aspect ratio
Γ = `/d= 18.3. The excellent temperature control of the set-up allows us to perform
all the experiments at a constant temperature of 26.0 ◦C with a standard deviation
of 15 mK. The measurements are done at midheight z = `/2 in the r–θ plane. The
flow is seeded with fluorescent polyamide particles with diameters up to 20 µm
and with an average particle density of ≈0.01 particles pixel−1. The laser sheet we
use for illumination is provided by a pulsed laser (Quantel Evergreen 145 laser,
532 nm) and has a thickness of ≈2.0 mm. The measurements are recorded using a
high-resolution camera at a frame rate of f = 1 Hz. The camera we use is an Imager
sCMOS (2560 × 2160 pixel) 16 bit with a Carl Zeiss Milvus 2.0/100. The camera
is operated in double frame mode which leads to an inter-frame time 1t� 1/f . In
figure 1(a) a schematic of the experimental set-up is shown. In order to obtain a
large amount of statistics, we capture 1500 fields for each of the 12 different Taylor
numbers explored. The velocity fields are calculated using a ‘multi-pass’ method with
a starting window size of 64 × 64 pixel to a final size of 24 × 24 pixel with 50 %
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Mirror

Camera
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(a) (b)

FIGURE 1. (Colour online) (a) Vertical cross-section of the experimental set-up. (b) A
sketch of the binning process on the r–θ plane for the calculation of the SFs. Here
we show an exaggeration of how the velocity fields are binned in both the radial and
azimuthal directions. êr and êθ are the unit vectors in polar coordinates. The orange dashed
line represents the streamline direction s for a fixed radius.

overlap. This allows us to obtain a resolution of dx = 0.01d. When using the local
Kolmogorov length scale in the flow (see § 3.3), we find that dx/ηbulk ranges from
≈1.6 (Ta= 4.0× 108) to ≈10 (Ta= 9.0× 1010).

3. Results
3.1. Identifying the bulk region

The profiles of the velocity fluctuations for both components of the velocity as
a function of Ta are shown in figure 2(a). The distance from the inner cylinder
is represented by the normalized radius r̃ = (r − ri)/d. When normalized with the
velocity of the inner cylinder riωi, both profiles collapse for all Ta numbers in most of
the gap width around the value of 0.03. Only very close the inner and outer cylinder,
the fluctuations increase (decrease) for the azimuthal (radial) component. In our
calculation of Reλ,bulk (1.2), we use σbulk(uθ) as our velocity scale as uθ is the primary
flow direction. Here, we are essentially assuming that the radial and axial velocity
fluctuations, on average, have the same order of magnitude, i.e. σbulk(uθ) ≈ σbulk(ur)
(the result is z-independent). In order to give an impression of how valid this
assumption is, in figure 2(b) we show the ratio of the velocity fluctuations throughout
the gap. We notice that within the bulk region, the ratio is between 1.0 and 1.6
for all analysed Ta numbers; consistent with what one would expect for reasonably
isotropic flows. Surprisingly, the ratio within the bulk increasingly deviates from unity
as the driving is increased. The same observation is also observed in turbulent TC
flow (Ta∈ [5.8× 107, 6.2× 109

]) for a wider gap η= 0.5, where also the ratio within
the bulk increasingly deviates from unity with increasing Ta. In that case however,
it seems to reach a value of ≈1.8 for the largest Ta (van der Veen et al. 2016b).
Since the same observation is found in two different studies (with two different
experimental set-ups), we believe this is a feature of TC flow; however, a more
rigorous theoretical explanation has yet to be provided. Another interesting feature
of the profiles in figure 2(b) is that they become flatter as the turbulence level is
increased, reflecting an increase in spatial homogeneity. Note that these results do not

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

79
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.795


402 R. Ezeta, S. G. Huisman, C. Sun and D. Lohse

0.4
0 0.2 0.4 0.6

Bulk

Bulk

Increasing Ta

Bulk

0.8 1.0

0.5

0.6

0

1

2

0

0.05

0.10

(a)

(b)

(c)

FIGURE 2. (Colour online) (a) Normalized velocity fluctuations profiles for various Ta:
azimuthal (dashed lines), radial (solid lines). (b) The profiles of the velocity fluctuation
ratio (radial/azimuthal) for various Ta. (c) Normalized specific angular momentum profile
for various Ta. In all figures, the bulk region r̃ ∈ [0.35, 0.65] is highlighted as the blue
region. The different colours represent different Ta as described in figure 3.

suggest readily that the flow is in a HIT state. What this merely shows is that there
is a special region (bulk) where the flow becomes more homogeneous as compared
to regions close to the solid boundaries and it is reasonably isotropic. This justifies
that our calculation is based on an isotropic form of Reλ as was also used in other
studies (Lewis & Swinney 1999; Voth et al. 2002; Zhou et al. 2008; Zimmermann
et al. 2010; Martínez Mercado et al. 2012).

Next, we define the bulk region as rbulk ≡ r − ri ∈ [0.35d, 0.65d], wherein the
magnitude of the velocity fluctuations for both ur and uθ are approximately constant.
This definition of the bulk was previously used by Huisman et al. (2012) who
measured the scaling of Rew in the ultimate regime. The same definition is also
consistent with other studies (Smith & Townsend 1982; Lewis & Swinney 1999),
where the bulk region is identified as the r domain wherein the normalized specific
angular momentum remains constant (L̃θ = r〈uθ 〉θ,t/(r2

i ωi) ≈ 0.5) for all Ta. In
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figure 2(c) we show L̃θ(r) and we find a good collapse of the profiles within our
definition of the bulk. Here, it is seen that the value of L̃θ is indeed approximately
0.5 within the bulk.

3.2. Structure functions and energy dissipation rate profiles
Having defined the bulk region, we bin the velocity data in the azimuthal (streamwise)
direction with a bin width dθ = 0.2◦ for every r and Ta. Now we calculate the second-
order structure functions in both longitudinal (LL) and transverse (NN) directions for
every radial bin,

δLL(r, s)= 〈(uθ(r, θ + s/r, t)− uθ(r, θ, t))2〉θ,t, (3.1)
δNN(r, s)= 〈(ur(r, θ + s/r, t)− ur(r, θ, t))2〉θ,t, (3.2)

where s is the distance along the streamwise direction. Since s = rθ , the azimuthal
binning guarantees a constant spatial resolution ds = r dθ along the direction of s,
when the radial variable r is fixed (see the sketch in figure 1b). The choice of ds
is limited by the resolution of the PIV experiments dx and it is chosen so as to not
filter out any intermittent fluctuations in the flow.

The energy dissipation rate profiles for both directions are calculated as follows.
For fixed r and Ta, εLL is chosen as the maximum of s−1(δLL(r, s)/C2)

−2/3 such that
s lies inside the inertial range. In the same manner, εNN is taken as the maximum of
s−1(δNN(r, s)/(4C2/3))−2/3 with the same restriction for s. This operation is repeated
for every r and Ta, leading to the dissipation rate profiles shown in figure 3. In this
figure, the ε-profiles are made dimensionless as ε̃(r) = ε(r)/(d−4ν3). Near the solid
boundaries, this figure shows that the dissipation rates (LL and NN) differ from each
other: εLL increases while εNN decreases, which is consistent with the measurement
of the velocity fluctuations (figure 2a,b). However, as one moves into the bulk
region, the discrepancy between them decreases until eventually both dissipation rates
intersect. The crossing remains within the bulk region, independent of Ta, and does
not seem to occur at any particular radial position. Only in the case of HIT, the
dissipation rates obtained from both SFs are exactly the same. However, as indicated
in figure 2(a,b), the flow tends to be more homogeneous within the bulk. We expect
then that, regardless of the structure function (longitudinal or transverse) used, the
energy dissipation rate obtained from either direction should, on average, be nearly
the same within the bulk. In this study we will show that this is indeed the case,
which means that εbulk can be obtained either from the dissipation rate in the LL
direction εLL or from that in the NN direction εNN . A similar approach is followed
in Ni, Huang & Xia (2011), where both SFs are calculated in RB flow within the
sub-Kolmogorov regime where the flow is found to be nearly homogeneous and
isotropic at the centre of the cell.

In figure 3, we have included the dimensionless dissipation rate ε̃u = (d4/ν3)〈(ν/2)
(∂ui/∂xj + ∂uj/∂xi)

2
〉V,t obtained from direct numerical simulations (DNS) for ρ =

0.714, Γ = 2 and Ta = 2.15 × 109 from Zhu et al. (2017). Here, the 〈 〉V,t denotes
the average over the entire volume and time respectively. This includes the boundary
layers that we explicitly avoid in our rbulk definition. When comparing the profile
obtained from numerics and from our data for Ta = 3.6 × 1010 we notice that both
agree rather well, thus mutually validating each other.

By averaging the ε-profiles in the bulk (figure 3), we finally find the bulk-averaged
dissipation rates ε̃LL,bulk = 〈ε̃LL(r̃)〉rbulk and ε̃NN,bulk = 〈ε̃NN(r̃)〉rbulk . In order to validate
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Increasing Ta

Bulk

0
108

109

1010

1011

1012

0.2 0.4 0.6 0.8 1.0

FIGURE 3. (Colour online) Dimensionless energy dissipation rate profile ε̃(r) =
ε(r)/(d−4ν3) for various Ta: longitudinal direction ε̃LL(r̃) (dashed lines), transversal
direction ε̃NN(r̃) (solid lines). Ta is increasing from bottom to top, the lines correspond
to the following Ta numbers: Ta= 4.0× 108, 1.6× 109, 3.6× 109, 6.4× 109, 1.0× 1010,
1.4× 1010, 2.0× 1010, 2.6× 1010, 3.2× 1010, 4.0× 1010, 5.7× 1010, 9.0× 1010. For every
Ta, both ε-profiles cross within the bulk region (r̃ ∈ [0.35, 0.65]) which is highlighted
in blue. The black solid line is the total energy dissipation rate obtained from DNS for
Ta= 2.15× 109 (Zhu, Verzicco & Lohse 2017).

the calculation, in figure 4 we show the bulk-averaged longitudinal DLL and
transverse DNN SFs for every Ta. Here, we compensate the SFs as s−1(DLL(s)/C2)

2/3

and s−1(DNN(s)/(4/3)C2)
2/3 such that their units match that of the dissipation

rate. The horizontal axis is normalized with the corresponding bulk-averaged
Kolmogorov length scale (see § 3.3). According to Kolmogorov’s scaling, within
the inertial regime (s ∈ [15η, L11]), where L11 is the integral length scale obtained
from the azimuthal velocity, each compensated curve (fixed r and Ta) should be
proportional to the dissipation rate in the bulk. Here we see that our estimates for the
bulk-averaged dissipation rates are located within the plateau regions, demonstrating
the self-consistency of the calculation. In the same figure, the separation of length
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FIGURE 4. (Colour online) Compensated time bulk-averaged structure functions for
various Ta: (a) longitudinal, (b) transverse. The colours represent the variation in Ta as
described in figure 3. In both figures, the black dashed line is 15η while the coloured
short vertical lines are located at L11/η for each Ta: the inertial range is approximately
bounded by these two lines. The coloured stars show the maximum of each curve which
corresponds to 〈ε(r)〉rbulk .

scales in the flow can also be seen. Note in particular how such separation between η
and L11 increases with Ta. The integral length scale L11(Ta) in figure 4 is calculated
using the integral of the autocorrelation of the azimuthal velocity in the azimuthal
direction and averaged over the bulk region.

3.3. The dissipation rate in the bulk
In figure 5(a) we show the scaling of both ε̃LL,bulk and ε̃NN,bulk. We find that the
dissipation rate extracted from both directions scale effectively as ε̃bulk ∼ Ta1.40, with
a nearly identical prefactor. This shows that the local energy dissipation rate scales
in the same way as the global energy dissipation rate ε̃ ∼ Ta1.40. Correspondingly,
this implies that the local Nusselt number scales as Nuω,bulk ∼ Ta0.40. In the same
figure (figure 5a), we include ε̃ of Ostilla-Mónico et al. (2014), obtained from both
DNS, and Huisman et al. (2014) torque measurements from the Twente turbulent
Taylor–Couette (T3C) experiment. The compensated plot (figure 5b) reveals that both
the local and global energy dissipation rate indeed scale as Ta1.40 with the ratio
εbulk/εglobal ≈ 0.1. In the regime of ultimate TC turbulence, it was suggested that both
turbulent BLs extend throughout the gap until they meet around d/2 (Grossmann
& Lohse 2011). The turbulent BLs give rise to the logarithmic correction L(Ta) in
the scaling of the Nusselt number, which changes the scaling from Nuω ∼ Ta1/2 to
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FIGURE 5. (Colour online) (a) Dimensionless bulk-averaged energy dissipation
rate: longitudinal ε̃LL,bulk (blue open triangles), transverse ε̃NN,bulk (red open circles).
Dimensionless global energy dissipation rate (ε̃global): DNS (Ostilla-Mónico et al.
2014) (solid black circles), torque measurements (Huisman et al. 2014) (black line).
(b) Compensated plot of the bulk-averaged dissipation rate, where an effective scaling of
ε̃bulk ∼ ε̃ ∼ Ta1.40 is revealed for both the global and the dissipation rate in the bulk. In
both figures, the green star corresponds to the bulk-averaged dissipation rate data of Zhu
et al. (2017) for Ta= 2.15× 109.

effectively Nuω ∼ Ta1/2L(Ta) ∼ Ta0.40 (van Gils et al. 2011; Huisman et al. 2012).
With (1.5) one obtains the effective scaling of the global energy dissipation rate
ε̃global ∼ Ta3/2L(Ta) ∼ Ta1.40. It is remarkable how our local measurements of the
local energy dissipation rate reveal the very same scaling due to L(Ta) as the global
energy dissipation rate. In contrast, in RB flow it is shown that when the driving is
of the order of 108 < Ra< 1011, i.e. far below the transition into the ultimate regime
(BLs are still laminar), ε̃bulk ∼ Ra1.5 (Shang, Tong & Xia 2008; Ni et al. 2011).
Note, however, that in that regime the global energy dissipation rate ε̃global is still
determined by the BL contributions, ε̃BL � ε̃bulk and ε̃BL ≈ ε̃global. Our measurements
are thus consistent with the prediction of Grossmann & Lohse (2011), where even at
such large Ta numbers, a rather intricate interaction between turbulent BLs and bulk
flow prevails through the entire gap.
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FIGURE 6. (Colour online) Compensated dimensionless dissipation rate profiles calculated
with both structure functions for different Ta: longitudinal (dashed lines), transverse (solid
lines). The colours represent the variation in Ta as shown in figure 3. In both figures, the
bulk region is highlighted in blue. The black solid line corresponds to the DNS data from
Zhu et al. (2017) for Ta= 2.15× 109.

In order to further show the quality of the scaling, we show in figure 6 the same
ε-profiles shown in figure 3 but now compensated with Ta−1.40. For both the LL and
NN direction, the dissipation rates for different Ta collapse throughout most of the
gap, far away from the inner and outer cylinder. Within the bulk however, they are
nearly constant and very close to the prefactors (≈5× 10−4) found from the scaling
in figure 5(a). When looking at the compensated data from DNS, we notice that
the prefactor is in that case twice as large as ours (≈10−3). The reason is that the
nature of both calculations is different: while the data from DNS are obtained from
averaging the 3-D velocity gradients over the entire volume, we rely on the scaling
of the second-order SFs (without intermittency corrections) to approximate the local
energy dissipation rate in the bulk at the maximum peak in the compensated curves
(see § 3.2).

In order to further characterize the turbulent scales in the flow, we calculate the
Kolmogorov length scale in the bulk. Since there are two dissipation rates available,
we define their corresponding Kolmogorov length scales as ηLL,bulk= (ν

3/εLL,bulk)
1/4 and

ηNN,bulk = (ν
3/εNN,bulk)

1/4. Because ε̃bulk ∼ Ta1.40, the scaling of η̃bulk = ηbulk/d ∼ Ta−0.35,
which can be seen in figure 7(a). Obviously, here we find a similar prefactor in
both directions LL and NN too. The inset of the figure shows the corresponding
compensated plot. For comparison, we include in the same figure the scaling
from Lewis & Swinney (1999). When comparing it with our data we notice some
differences in magnitude. While we average in the bulk and make use of PIV to
obtain the spatial dependence of the velocities directly, the data from Lewis &
Swinney (1999) were measured at a single point (r̃= 0.5) using hot-wire anemometry
and Taylor’s frozen flow hypothesis.

When fitting data to a power law, confidence bounds for every coefficient in the
regression can be obtained, given a certain confidence level. In this paper, we use
the standard 95 % confidence for every fit, from which the uncertainties in the power-
law exponents (figures 5, 6) were chosen as the middle point between the lower and
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FIGURE 7. (Colour online) (a) Dimensionless bulk-averaged Kolmogorov length scale:
longitudinal (blue open triangles), transverse (red open circles). Local scaling at r̃ = 0.5
from Lewis & Swinney (1999) (black dashed line). The inset shows the compensated
plots for the local quantities where the effective scaling of η̃bulk ∼ Ta−0.35 is found to
reproduce both directions. (b) Bulk-averaged azimuthal turbulent intensity. The data reveal
an effective scaling of Iθ,bulk ∼ Ta−0.061. The dashed black line represents the local scaling
Iθ = 0.1 Ta−0.062 at r̃ = 0.5 as it was obtained from Lewis & Swinney (1999). The inset
in (b) shows the corresponding compensated plot.

upper bound of its corresponding confidence bound. This procedure is done for all the
exponents reported throughout this paper.

3.4. The turbulent intensity in the bulk
The final step in the calculation of Reλ,bulk is to look at the azimuthal velocity
fluctuations. Thus we average σθ,t(uθ(r, θ, t)) (see (1.3)) from figure 2(a) in the
bulk and find a good description by the effective scaling law (d/ν)σbulk(uθ) ≈
11.3 × 10−2Ta0.44±0.01. In figure 7(b), we show the turbulence intensity Iθ,bulk =

〈σθ,t(uθ)/〈uθ 〉θ,t〉rbulk as a function of Ta. In this way, we are able to compare our data
to the turbulence intensity scaling from Lewis & Swinney (1999). We find that the
effective scaling Iθ,bulk ∼ Ta−0.061±0.003 reproduces our data well. In the inset of the
same figure we show the compensated plot throughout the Ta range. Similarly as
with the Kolmogorov length scale described in § 3.3, we include in the same figure

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

79
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.795


Turbulence strength in ultimate Taylor–Couette turbulence 409

108

101

102

1.0

1.5

2.0

2.5

109 1010

Ta
10121011

(b)

(a)

FIGURE 8. (Colour online) (a) Reλ,bulk as a function of Ta. The blue open triangles (red
open circles) show the calculation using εLL,bulk (εNN,bulk). The black star is the calculation
using the global energy dissipation rate from Huisman et al. (2013). (b) Compensated plot
of Reλ,bulk where an effective scaling of Reλ,bulk∼Ta−0.18 is found to be in good agreement
with both LL and NN directions.

the scaling of Lewis & Swinney (1999). In this case, the exponent in our scaling is
nearly identical to the one found by Lewis & Swinney (1999) with a slightly larger
prefactor. We remind the reader once again that our average is done over the bulk
region while the data of Lewis & Swinney (1999) are obtained at a single point at
midgap.

3.5. The scaling of the Taylor–Reynolds number Reλ,bulk

Finally, with both the local dissipation rate and the local velocity fluctuations in
the bulk, we calculate the corresponding Taylor–Reynolds number as a function of
Ta, using both εLL,bulk, εNN,bulk and σbulk(uθ). The results can be seen in figure 8(a)
where an effective scaling of Reλ,bulk ∼ Ta0.18±0.01 is found for both directions. The
compensated plot in figure 8(b) reveals the good quality of the scaling throughout the
range of Ta. In order to highlight the difference between the different calculations, we
also include the estimate of Huisman et al. (2013) for Ta= 1.49× 1012 (Reλ = 106).
We emphasize that our calculation is based entirely on local quantities (fluctuations
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and dissipation rate) whilst the estimate of Huisman et al. (2013) is done using a
single point in space, r̃ = 0.5, in combination with the global energy dissipation
rate (1.5). Our scaling predicts that the local Taylor–Reynolds number at that Ta is
approximately Reλ,bulk ≈ 217, roughly twice the value estimated by Huisman et al.
(2013) for the same Ta.

4. Summary and conclusions
To summarize, we have measured local velocity fields using PIV in the ultimate

regime of turbulence. We showed that both structure functions (longitudinal and
transverse) yield similar energy dissipation rate profiles that intersect within the bulk,
similarly to what is observed in Rayleigh–Bénard convection. When averaging these
profiles within the bulk, this leads to an effective scaling of ε̃bulk ∼ Ta1.40±0.04, which
is the same scaling as obtained for the global quantity ε̃ measured from the torque
scaling (Huisman et al. 2014; Ostilla-Mónico et al. 2014). This result reveals the
dominant influence of the turbulent BLs over the entire gap. Future work will show
whether this also holds for higher-order velocity structure functions, as it does hold
in other turbulent wall-bounded flows (de Silva et al. 2015).

Next, we showed that the Kolmogorov length scale scales as η̃bulk ∼ Ta0.35±0.01 and
the azimuthal turbulent intensity scales as Iθ,bulk ∼ Ta−0.061±0.003. In order to evaluate
the turbulence level in the flow, we showed that with both local quantities at hand
(dissipation rate and turbulent fluctuations), the bulk Taylor–Reynolds number scales
as Reλ,bulk ∼ Ta0.18±0.01. Our calculation can be generalized by inserting our result for
the ratio between the local and global energy dissipation rate ε̃bulk/ε̃global = α ≈ 0.1
back into (1.2) and using (1.5) to relate εglobal and Nuω. The latter yields

Reλ,bulk(Ta)=
√

1/α

(√
15σTCd2

ν2

)
(σbulk(uθ))2
√

Ta Nuω
. (4.1)

Thus, given the local variance of the velocity fluctuations and the global Nusselt
number, the response parameter Reλ,bulk(Ta) can be calculated in the bulk flow
(r̃∈ [0.35, 0.65]) for the case of pure inner cylinder rotation (a= 0). In order to extend
the calculation to the case a≈ aopt ≈ 0.36, i.e. close to the rotation ratio for optimal
Nuω, where pronounced Taylor rolls exist (Huisman et al. 2014; Ostilla-Mónico et al.
2014), an extra averaging process in axial direction for both the velocity fluctuations
and the dissipation rates would be needed.
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