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STATE SPACE COLLAPSE FOR
CRITICAL MULTISTAGE EPIDEMICS
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Abstract

We study a multistage epidemic model which generalizes the SIR model and where
infected individuals go through K ≥ 1 stages of the epidemic before being removed.
An infected individual in stage k ∈ {1, . . . , K} may infect a susceptible individual, who
directly goes to stage k of the epidemic; or it may go to the next stage k+1 of the
epidemic. For this model, we identify the critical regime in which we establish diffusion
approximations. Surprisingly, the limiting diffusion exhibits an unusual form of state
space collapse which we analyze in detail.
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1. Introduction

1.1. A multistage model

In this paper we study an epidemic model proposed by Antal and Krapivsky [2] which
generalizes the classical SIR model. Similarly as for the SIR model, there is a closed population
where each individual is either susceptible, infected, or removed. In addition, we assume that
the disease which is spread progresses through K ≥ 1 stages. In short, we will say that an
(infected) individual is in stage k ∈ {1, . . . , K} if it possesses the disease in stage k. It will also
be convenient to say that an individual is in stage 0 if it is susceptible and in stage K+1 if it is
removed.

Two types of transitions may occur within our model: either (i) an infected individual in
stage k ∈ {1, . . . , K} tries to infect a susceptible individual; or (ii) an infected individual in
stage k ∈ {1, . . . , K} progresses to the next stage k+1. We consider the mean-field regime
where in case (i) above, the infected individual samples an individual uniformly at random
from the whole population: if the sampled individual is susceptible then it becomes infected
and starts the infection at the same stage than the individual who infected him or her.

In view of its epidemiological interpretation and because it generalizes the SIR model (which
corresponds to the single-stageK = 1 case), it is natural to interpret this model as an epidemic
model. From that viewpoint, our model differs from multistage epidemic models previously
proposed. For HIV/AIDS, for instance, Hyman et al. [10] proposed a multistage (or staged-
progression) model where a newly infected individual starts the epidemic in stage one. We
believe that the techniques used in the present paper can be adapted to study this case as well.

Besides its natural epidemiological interpretation, this model may also bear insight into
other areas of applied probability. We may, for instance, think of cell population dynamics,
for example, when a cancer tumor progresses cells accumulate mutations that are passed on
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to newly infected cells. In this case the stage of an individual corresponds to the number of
mutations. Another potential application of this model is in communication networks: in this
case we may think of users accumulating information and, upon meeting with a user with
no information, sharing all the information the first user has. Such epidemic spreading of
information is actually at the heart of modern peer-to-peer systems.

1.2. Scaling limits

Epidemic models can be broadly categorized into discrete and continuous ones; see, for
example, [13]. Discrete models are individual-based models that focus on the inherent stochas-
ticity of the dynamic, and are often described by finite-state space Markov processes. Contin-
uous models correspond to large population approximations: they may be either deterministic
(corresponding to some notion of averaging in the large population regime) or stochastic. In
the first case, the continuous model is typically described by ordinary differential equations
(ODEs) and in the second case, by stochastic differential equations (SDEs).

In this paper we bridge these two viewpoints by starting from a discrete model which, after
a suitable renormalization procedure, leads to a continuous model. This is a classical approach
which allows us to understand the extent to which a continuous model, usually more tractable,
suitably approximates a discrete model. In addition to giving insight into how the epidemic
develops over time, such schemes are also useful to understand the final outbreak size of the
epidemic. In the SIR case, for instance, this makes it possible to express the final outbreak size,
properly renormalized, as the hitting time of 0 by a Brownian motion with a parabolic drift;
this allows in turn for explicit computation, see, for example, [18]. Note that our Theorem 2.2
generalizes this result to the multistage K ≥ 1 case.

For the SIR model it is well known that different scaling limits may be obtained depending
on the discrete model’s parameters; see, for example, [23]. In particular, the limit may be
deterministic or retain some stochasticity of the original discrete model, and the intermediate
regime at which transition occurs is usually referred to as critical regime: this is the regime in
which we are interested in this paper. In this regime, scaling limits of the SIR model have, for
example, been obtained by Martin-Löf et al. [17], [18], [23] and by Aldous [1] in the closely
related context of the Erdős–Rényi random graph.

A popular method to establish such scaling limits relies on semi-group techniques; see, for
example, [8]. This approach has recently been followed by Dolgoarshinnykh and Lalley [7]
to study the related SIS model, and who also sketch a proof for the SIR model. However,
because of the different boundary conditions between the SIS and the SIR models, the authors
only mention that different analytical results from the theory of parabolic partial differential
equations are needed in the SIR case. In this paper we use a different and more probabilistic
approach, closer to Aldous’ approach [1], that relies on semimartingale arguments. These
arguments rely on elementary calculations made on the infinitesimal generator of the Markov
process, and require almost no analytical results. This is the reason why we believe that this
method is robust and can be adapted to study other models such as the HIV/AIDS model of
Hyman et al. [10].

1.3. Presentation and discussion of the main results

We present our results in the particular case where all individual transition rates are equal to 1,
in general these will be allowed to be close to 1. For n ≥ 1, we consider the (K+2)-dimensional
Markov process an(t) = (an,k(t), k = 0, . . . , K+1) that represents a multistage epidemic pro-
cess in a population of sizen. It is defined by an initial state an(0) = (an,k(0), k = 0, . . . , K+1)
satisfying the relation an,0(0)+· · ·+an,K+1(0) = n and, for a = (a0, a1, . . . , aK+1) ∈ N

K+2,
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by the following transition rates:

a −→
{
a − ek + ek+1 at rate ak, 1 ≤ k ≤ K,

a − e0 + ek at rate aka0/n, 1 ≤ k ≤ K,
(1.1)

where e0 = (1, 0, . . . , 0), e1 = (0, 1, 0, . . . , 0), etc. For t ≥ 0, an,k(t) is the number of
individuals in stage k at time t , i.e. an,0(t) is the number of susceptible individuals; an,k(t) for
k = 1, . . . , K is the number of infected individuals in stage k; and an,K+1(t) is the number of
removed individuals. The transition rates (1.1) preserve the total population size, so that the
relation an,0(t)+ · · · + an,K+1(t) = n is satisfied for any t ≥ 0.

These rates formalize the description of the dynamic given above: each infected individual
progresses to the next stage of the epidemic at rate 1; each infected individual makes an infection
attempt at rate 1, which is successful with probability proportional to the number of susceptible
individuals (which gives the factor a0/n).

Consider the initial condition where an,1(0) = nβ for some β ∈ (0, 1) and an,k(0) = 0 for
k = 2, . . . , K + 1. The asymptotic behavior of the (K + 1)-dimensional process (an,k, k =
1, . . . , K + 1) as n → +∞ is then governed by the precise value of β, and there are three
different regimes.

(i) Small initial condition. For β < 1/(K + 2) on the time scale nβ , an,k lives on the space
scale nkβ and the scaling limit is governed by the following SDE:

dA1(t) = (2A1(t))
1/2 dB(t), dAk(t) = Ak−1(t) dt for k = 2, . . . , K + 1.

(1.2)

(ii) Intermediate initial condition. For β = 1/(K + 2) on the time scale n1/(K+2), an,k lives
on the space scale nk/(K+2), the outbreak size is of the order of n(K+1)/(K+2), and the
scaling limit is governed by the following SDE:

dA1(t) = −AK+1(t)A1(t) dt + (2A1(t))
1/2 dB(t), (1.3a)

dAk(t) = (Ak−1(t)− AK+1(t)Ak(t)) dt for k = 2, . . . , K, (1.3b)

dAK+1(t) = AK(t) dt. (1.3c)

(iii) Large initial condition. Forβ > 1/(K+2) on the time scalenγ with γ = (1−β)/(K+1),
an,k lives on the space scale nβ+(k−1)γ and the scaling limit is governed by the following
ODE:

dA1(t) = −AK+1(t)A1(t) dt, (1.4a)

dAk(t) = (Ak−1(t)− AK+1(t)Ak(t)) dt for k = 2, . . . , K, (1.4b)

dAK+1(t) = AK(t) dt. (1.4c)

In the above, B is a standard Brownian motion. Moreover, since the total population size
is fixed, the asymptotic behavior of an,0 is recovered from the behavior of all an,k; since
n − an,0 = an,1 + · · · + an,K+1 and in all three regimes an,K+1 � an,k , for k = 1, . . . , K ,
then n− an,0 obeys the same scaling and has the same limit as an,K+1.

It is also interesting to note that the intermediate regime interpolates between the small and
large regimes in two ways: (i) the scaling at play there can be obtained by letting β ↑ 1/(K+2)
in the small regime or β ↓ 1/(K+2) in the large regime; and (ii) the evolution ofA1 in (1.3) is a
mixture of (1.2) and (1.4). However, β does not appear in the asymptotic dynamics (1.2)–(1.4)
and so (1.3) appears somehow discontinuously.
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When specializing the results of the intermediate regime toK = 1, we recover the classical
result on the SIR model [23]: starting with of the order of n1/3 infected individuals, we obtain
an outbreak size of the order of n2/3. WhenK = 2, these results show that by starting with n1/4

individuals in the first stage, the number of individuals in the second stage during the outbreak
is of the order n1/2, while the total outbreak size is of the order of n3/4.

Note that for the above comparison we have referred to [23], which actually considers
a discrete-time version of the SIR model, the so-called Reed–Frost model. In this model,
individuals stay infected for a deterministic amount of time and, at the end of this period, try
to infect every other individual with a fixed probability. In the K = 1 case the two models are
indeed equivalent, at least with respect to the final outbreak size: heuristically, it does not matter
when and by whom a given individual gets infected. However, in the truly multistage K ≥ 2
case this is no longer the case: the stage of an individual that spreads the disease matters. In
that respect, individuals from different stages ‘compete’ for the pool of susceptible individuals
and it is natural to consider a continuous-time model. We suspect that, compared to theK = 1
case, this additional difficulty is causing the discrepancy discussed in Section 6.

In order to get an insight into the scalings at play, let us consider the continuous-time Markov
branching process aB = (aBk ,k = 1, . . . , K + 1) with K + 1 types, whose transition rates for
a ∈ N

K+1 are given by

a −→
{
a − ek + ek+1 at rate ak, 1 ≤ k ≤ K,

a + ek at rate ak, 1 ≤ k ≤ K.
(1.5)

These rates are obtained from (1.1) by setting a0 = n: this corresponds to an infinite
population limit, where an infection attempt is always successful. Then aB1 is a continuous-
time Markov branching process (also known as a Bellman–Harris branching process), and it
can be seen that if aB1 (0) = nβ and time is sped up by nβ then it converges to an interesting
object (Feller diffusion). Thus, if we are to have an interesting limit for aB1 , the correct time
scale (for all processes) needs to be nβ . But then, the total number of individuals it ever begets
is of the order of

∫ ∞
0 aB1 (t) dt , which is of the order of n2β . These individuals form the initial

condition for aB2 , which can thus be seen as a Bellman–Harris branching process, started at n2β

but for which time is sped up by nβ . However, we know from the above discussion that in order
for aB2 to evolve on the space scale n2β , it needs to be sped up in time by n2β ; thus, on the time
scale nβ , aB2 remains essentially constant. However, on this time scale it begets of the order of∫ nβ

0 aB2 (t) dt ∝ n3β individuals, which form the basis for aB3 . Iterating this argument, we see
the geometric progression observed in all three regimes appearing, where an,k+1 is of the order
of the time scale times an,k . But actually, more can be learned from this simple approximation.

First of all, we see that the approximation of an by aB is asymptotically exact in the small
regime, in the sense that (1.2) is also the scaling limit of aB subject to the same scaling. This
approximation begins to break down in the intermediate regime, which is therefore the regime
where finite-size population effects begin to kick in. This phenomenon is also sometimes
called the depletion of points effect. In the intermediate regime the epidemic begins to feel the
decreasing number of susceptible individuals.

Moreover, we have just argued that we are considering a time scale which is suited for an,1
but not for an,2. More precisely, on the time scale where an,1 evolves, an,2 has not enough time
to evolve on its own and all its randomness comes from an,1. This problem of time scales leads
to a classical phenomenon in queueing theory, called state space collapse, but which is more
surprising to find in the context of an epidemic.
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1.4. An unusual form of state space collapse

Let K̄ = K−1 and Tn be the first time at which an,1 hits 0, i.e. Tn = inf{t ≥ 0 : an,1(t) = 0}.
It is then important to observe that the (K̄+2)-dimensional process ān = (ān,k, k = 0, . . . , K̄+
1) obtained by keeping track of the individuals in stages 0, 2, . . . , K+ 1 after time Tn, i.e. with
ān,0(t) = an,0(Tn + t) and ān,k(t) = an,k+1(Tn + t) for k = 1, . . . , K̄ + 1, is a multistage
epidemic process with K̄ stages. However, we know that in the intermediate regime, an,2, and,
thus, ān,1(0), is of the order of n2/(K+2) = n2/(K̄+3). As such, this corresponds to a multistage
epidemic process with a large initial condition (with β = 2/(K̄+3) > 1/(K̄+2)), and we
know from the above discussion that its scaling limit is deterministic. In summary, once the
first stage has become extinct, the subsequent evolution of the process is deterministic, which
supports the previous claim that all the randomness lies in the first stage. This property can
actually be directly read off the SDE (1.3).

Indeed, a striking feature of this SDE is that the diffusion coefficients governing Ak for
k �= 1 are equal to 0; in particular, only the coordinate A1 is truly random, the other ones being
obtained deterministically from it via an ODE. More precisely, let F : R × R

K → R
K be the

function such that if Ā = (A2, . . . , AK+1) then (1.3) rewrites dĀ(t) = F(A1(t), Ā(t)) dt ,
then Ā satisfies an ODE of the kind

dx(t)

dt
= F(y(t), x(t)), t ≥ 0. (1.6)

We will show that if y : [0,∞) → [0,∞) is continuous then this ODE has a unique solution.
This naturally defines a one-dimensional manifold M(y) ⊂ R

K , namely, if xy is the unique
solution to (1.6), the space M(y) = {xy(t) : t ≥ 0}.

If A = (A1, . . . , AK+1) is the solution to (1.3) then by definition Ā is the unique solution
to (1.6) with y = A1, which justifies seeing Ā as deterministically obtained from A1. Thus,
we can see AK+1 as a function of A1 and the initial condition ā = Ā(0), and write AK+1(t) =
ϕ(A1, ā; t) for some deterministic map ϕ. With this notation, we see thatA1 on its own satisfies
the following SDE:

dA1(t) = (γ1 − ϕ(A1, ā; t))A1(t) dt + (2A1(t))
1/2 dB(t). (1.7)

Such an SDE is sometimes referred to as an Itô process and is, in the terminology of Rogers
and Williams [20], not of diffusion type since ϕ(A1, ā; t) depends on A1 through the entire
path (A1(s), 0 ≤ s ≤ t) and not only through the value of A1 at time t .

In summary, we start with a sequence of (K + 2)-dimensional stochastic processes (or
(K + 1)-dimensional, given that the total population size is fixed), but the diffusion A =
(A1, . . . , AK+1) appearing in the limit is truly one-dimensional: one coordinate,A1, is random
and given by (1.7), while the other coordinates A2, . . . , AK+1 are obtained deterministically
from it via (1.6).

Such a phenomenon of reduction of the dimension of the state space in the critical (or near-
critical) regime is well known in queueing theory, where it is usually referred to as state space
collapse. It was first systematically investigated in [6] and [24] in the context of multiclass
queueing networks, and has since been observed in various settings; see [5], [19], [21], [22].
In all these examples and similarly as to what we observe in our model, the randomness of the
limiting diffusion is contained in one coordinate (the workload process for queueing systems),
while the other coordinates are obtained deterministically from it. Typically, in queueing
theory the workload process converges to a reflected Brownian motionW and the queue length
processes Q are obtained via a deterministic map, for example, Q = G ◦W .
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However, there are two main differences between these results from queueing theory and
our present form of state space collapse. First of all, in all these queueing examples, the map
G is linear, i.e. we can writeQk(t) = αkW(t) for some deterministic coefficients αk > 0. This
makes the queue length processes Q = (Qk) live in a deterministic one-dimensional manifold,
namely, the space MQ = {(αkw) : w ≥ 0}. In contrast, the coordinates A2, . . . , AK+1 live in
our case in the random one-dimensional manifold M(A1).

Moreover, the reasons leading to this state space collapse phenomenon are also distinct.
As explained above, in our case this comes from a matter of time scales, while in queueing
theory this essentially comes from the law of large numbers since the workload is the sum of
the residual service times over the number of customers.

1.5. Organization of the paper

In the next section we introduce the general model considered in this paper, which gen-
eralizes (1.1) to the near-critical case, and state the main results, which formalize the results
described previously. In Section 3 we analyze the limiting SDE that generalizes (1.3), where
we prove existence and uniqueness of solutions as well as a useful sample path property. These
results rely on the analysis of the ODE that generalizes (1.6), and the deterministic results that
are needed are proved in Appendix A. Sections 4 and 5 are devoted to the proofs of the main
results. In Section 4 we present the proof for the scaling limits, i.e. the asymptotic behavior
at the process level, and Section 5 is concerned with the proof of the asymptotic behavior of
the outbreak size. In Section 6 we conclude the paper by discussing the conjecture formulated
in [2] and how it relates to our results.

2. Main results

2.1. Notation

Throughout let D be the set of real-valued, càdlàg functions. For f ∈ D and ε > 0, we
define T0(f ) = inf{t ≥ 0 : f (t) = 0}, T ↑

ε (f ) = inf{t ≥ 0 : f (t) ≥ ε}, and T ↓
ε (f ) =

inf{t ≥ 0 : f (t) ≤ ε}, with the convention inf ∅ = +∞. If t ≥ 0 and f is càdlàg (real- or
vector-valued) we consider θt the shift operator, defined by θt (f ) = f (t + · ). The space of
càdlàg functions with values in R

d is endowed with the topology of uniform convergence on
compact sets.

Throughout, we fix some integer K ≥ 1 and we consider the map π̄ : R
K+2 → R

K+1

defined by π̄(a0, . . . , aK+1) = (a0, a2, . . . , aK+1) (this unusual indexing of vectors will be
convenient for our purposes).

2.2. Model and main results

We now present the full model investigated in the rest of this paper, which generalizes (1.1)
by allowing individual transition rates to be close to 1. For each n ≥ 1, let an(t) = (an,k(t), k =
0, . . . , K+1) be the (K+2)-dimensional Markov process corresponding to a finite population
of size n, i.e. an,0(0) + · · · + an,K+1(0) = n, and with nonzero transition rates given for
a = (a0, a1, . . . , aK+1) ∈ N

K+2 by

a −→
{
a − ek + ek+1 at rate (1 + δn,k)ak, 1 ≤ k ≤ K,

a − e0 + ek at rate (1 + εn,k)aka0/n, 1 ≤ k ≤ K,
(2.1)

where δn,k, εn,k > −1 for k = 1, . . . , K , and we will always assume that δn,k, εn,k → 0 as
n → +∞ for each k = 1, . . . , K; the critical case (1.1) is recovered by setting δn,k = εn,k = 0.
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Moreover, it will be convenient to define δn,0 = δn,K+1 = εn,K+1 = −1. We first state the
results concerning the intermediate regime, which constitute the main results of the paper.

Theorem 2.1. (Intermediate initial condition.) Let β = 1/(K+2) and assume that for each
k = 1, . . . , K , there exists γk ∈ R such that

nβ(εn,k − δn,k) −→ γk as n → +∞. (2.2)

Let An = (An,k, k = 0, . . . , K + 1) be the (K + 2)-dimensional process defined as

An,0(t) = n− an,0(n
βt)

n(K+1)β
, An,k(t) = an,k(n

βt)

nkβ
, k = 1, . . . , K + 1, t ≥ 0.

If An(0) → a ∈ [0,∞)K+2 then the sequence of processes (An, n ≥ 1) converges weakly
as n → +∞ to the unique solution A = (Ak, 0 ≤ k ≤ K + 1) of the SDE

A(t) = a +
∫ t

0
b(A(u)) du+

∫ t

0
σ(A(u)) dB(u), (2.3)

where B is a standard (K + 2)-dimensional Brownian motion and for a = (a0, . . . , aK+1) ∈
[0,∞)K+2, we have σ(a) = diag(0, (2a1)

1/2, 0, . . . , 0) and

b0(a) = bK+1(a) = aK, b1(a) = (γ1 − a0)a1,

bk(a) = ak−1 + (γk − a0)ak for k = 2, . . . , K.

Since all the diffusion coefficients but one are equal to 0, when convenient we will identify
the (K+2)× (K+2) matrix σ(a) and its only nonzero entry (2a1)

1/2. For the same reason, if
we write B = (B0, . . . , BK+1) then only the coordinate B1 matters and we will identify B and
B1, i.e. whenever convenient we will consider that B is a one-dimensional standard Brownian
motion; note that this is in line with the notation used in (1.2) and (1.3). We now state some
properties of the solutions to (2.3).

Proposition 2.1. Consider the assumptions and notation of Theorem 2.1. Then A almost surely
satisfies the following properties:

(i) the two processes A0 and AK+1 are equal;

(ii) ifK ≥ 2 thenA0 is strictly increasing, and its terminal valueA0(∞) is finite and satisfies
A0(∞) > γk for every k = 2, . . . , K;

(iii) T0(A1) < +∞;

(iv) for every k = 2, . . . , K , Ak(t) → 0 as t → +∞, but T0(Ak) = +∞.

Note that the first property of A above comes from the relation
∑K+1
k=0 an,k(t) = n, which

translates after scaling to
∑K+1
k=1 n

kβAn,k(t) = n(K+1)βAn,0(t). Next, we turn to the asymptotic
behavior of the outbreak size An,K+1(∞). The following result essentially states that we can
interchange the limits n → +∞ and t → +∞.

Theorem 2.2. Under the assumptions and notation of Theorem 2.1, the renormalized outbreak
size An,K+1(∞) converges weakly as n → +∞ toward AK+1(∞).
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Let us conclude the presentation of results in the intermediate regime by comparing with
the SIR K = 1 case. In the K = 1 case the natural notion of criticality is that every infected
individual tries to infect on average (close to) one other individual. The notion of criticality
that we consider here is at first sight different, since every infected individual tries to infect on
average one other individual in each stage. If an individual starts in stage k, it will therefore
make on average K−k+1 infection attempts. But the two notions actually coincide. Indeed,
from Theorem 2.1, it follows that individuals in the last stageK of the epidemic dominate: there
are nK/(K+2) such individuals and nk/(K+2) � nK/(K+2) individuals at stage k = 1, . . . , K−1.
Thus, with overwhelming probability, an individual eventually infected has actually started the
epidemic in stage K and has made on average one infection attempt. Beware, however, this
does not mean that only stage K matters, since an,K becomes of the order of nK/(K+2) thanks
to the help of the individuals in the previous stages.

Moreover, according to Proposition 2.1, theK = 1 case is the only case whereAK+1(∞) is
reached in finite time. Indeed, for K = 1 the dynamic is frozen after the time T0(A1) which is
finite, while if K ≥ 2 then AK+1 remains strictly increasing at all times. As will be discussed
in Section 5 when proving Theorem 2.2, this difference creates an additional difficulty in order
to control the asymptotic behavior of the outbreak size.

We now state the result for the large regime.

Proposition 2.2. (Large initial condition.) Fix some sequence n1/(K+2) � αn,1 � n and for
n ≥ 1 define

τn =
(
n

αn,1

)1/(K+1)

, αn,0 = n

τn
, αn,k = τ k−1

n αn,1 for k = 2, . . . , K + 1. (2.4)

Assume that, for each k = 1, . . . , K , there exists γk ∈ R such that

τn(εn,k − δn,k) −→ γk as n → +∞. (2.5)

Let An = (An,k, k = 0, . . . , K + 1) be the (K + 2)-dimensional renormalized process
defined as

An,0(t) = n− an,0(τnt)

αn,0
, An,k(t) = an,k(τnt)

αn,k
for k = 1, . . . , K + 1, t ≥ 0. (2.6)

If An(0) → a ∈ [0,∞)K+2 then the sequence of processes (An, n ≥ 1) converges weakly
as n → +∞ to the unique solution of the ODE

A(t) = a +
∫ t

0
b(A(u)) du, (2.7)

with b defined as in Theorem 2.1.

Note that this result is coherent with Theorem 2.1, in the sense that the limit of θT0(An,1) ◦
π̄ ◦An = π̄ ◦ θT0(An,1) ◦An is the same whether we consider this process as the process π̄ ◦An

shifted at time T0(An,1) and then use Theorem 2.1, or whether we consider this process as a
multistage epidemic process with K̄ = K − 1 stages started from a large initial condition and
then use Proposition 2.2.

We complete the results of Theorem 2.1 and Proposition 2.2 by studying the case of a small
initial condition an,1(0) � n1/(K+2). When an,1(0) converges to some finite number, the
sequence of processes (an,k, k = 1, . . . , K + 1) converges to the multitype branching process
given by (1.5). As the next result shows, such a branching approximation continues to be valid
in the small regime.
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Proposition 2.3. (Small initial condition.) Fix some sequence 1 � αn,1 � n1/(K+2) and
assume that, for each k = 1, . . . , K , there exists γk ∈ R such that

αn,1(εn,k − δn,k) −→ γk as n → +∞. (2.8)

Let An = (An,k, k = 0, . . . , K + 1) for n ≥ 1 be the (K + 2)-dimensional renormalized
process defined as

An,0(t) = n− an,0(αn,1t)

αK+1
n,1

, An,k(t) = an,k(αn,1t)

αkn,1

for k = 1, . . . , K + 1, t ≥ 0.

If An(0) → a ∈ [0,∞)K+2 then the sequence of processes (An, n ≥ 1) converges weakly
as n → +∞ to the unique solution of the SDE

A(t) = a +
∫ t

0
bS(A(u)) du+

∫ t

0
σ(A(u)) dB(u), (2.9)

where σ is as in Theorem 2.1 and bS is given by

bS0 (a) = bSK+1(a) = aK, bS1 (a) = γ1a1, bSk (a) = ak−1 + γkak for k = 2, . . . , K.

As discussed in the introduction for the strictly critical δn,k = εn,k = 0 case, the limiting
diffusion (2.9) obtained in the small regime is the same as the limit of the branching process
corresponding to the infinite population setting, i.e. where a0/n = 1 in (2.1) (this could be
proved using the techniques of this paper). Thus, an,1(0) ∝ n1/(K+2) is the threshold at which
finite-size population effects (or depletion of points effects) begin to kick in; this is the threshold
at which the branching approximation ceases to be valid.

Also, note that for A = (Ak, k = 0, . . . , K + 1) satisfying (2.9), A1 is Feller diffusion with
drift γ1, i.e. is the unique solution to the SDE dA1 = γ1A1 dt+ (2A1)

1/2 dB (see (3.2) below),
and then Ak for k = 2, . . . , K + 1 is given recursively by A′

k = γkAk +Ak−1 (throughout this
paper, prime denotes differentiation with respect to the time variable). In particular, existence
and uniqueness of solutions to (2.9) follow immediately.

The next three sections are devoted to proving these results. In the next section we prove
uniqueness and existence of solutions to (2.3), and we also prove Proposition 2.1. The scaling
limits results of Theorem 2.1 and Propositions 2.2 and 2.3 are proved in Section 4, and the
proof of Theorem 2.2 on the asymptotic behavior of the outbreak size is given in Section 5.

3. Analysis of the SDE (2.3)

As mentioned in the introduction, the fact that σ(a) = diag(0, (2a1)
1/2, 0, . . . , 0) is a

manifestation of the state space collapse property and makes the process π̄ ◦A deterministically
obtained from A1 by an ODE. More precisely, in what follows we consider F : R × R

K+1 →
R
K+1 the function defined by F(a1, π̄(a)) = π̄(b(a)) for a ∈ R

K+2 and with b as in
Theorem 2.1 (when all parameters γk = 0, this coincides with the function F in (1.6)). With
this notation, we see that if A satisfies (2.3) then π̄ ◦ A is a solution of the ODE

dx(t)

dt
= F(y(t), x(t)), x(0) = ā, (3.1)

with y = A1. The following properties of this ODE will be needed; their proof is postponed to
Appendix A.
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Lemma 3.1. For any ā ∈ [0,∞)K+1 and any continuous function y : [0,∞) → [0,∞), the
ODE (3.1) has a unique solution defined on [0,∞).

Lemma 3.2. Fix ā = (a0, a2, . . . , aK+1) ∈ [0,∞)K+1 and y : [0,∞) → [0,∞) a continuous
function, and let x = (x0, x2, . . . , xK+1) be the unique solution to (3.1) given by Lemma 3.1.
Then the function x0 is nondecreasing and its limit x0(∞) as t → +∞ exists in [0,∞].
Moreover,

(i) if y(0) > 0 or a2 > 0, then xk(t) > 0 for every k = 0, 2, . . . , K and t > 0;

(ii) if xk(t) > 0 for every k = 2, . . . , K and t > 0 and x0 is bounded, then
∫ ∞

0 y < +∞
and, moreover,

∫ ∞
0 xk < +∞ and x0(∞) > γk for every k = 2, . . . , K;

(iii) if y(t) = 0 for all t ≥ 0 and a2 > 0, then x0 is bounded and xk(t) → 0 as t → +∞ for
every k = 2, . . . , K .

We now turn to the study of the SDE (2.3). In what follows we will call a Feller diffusion
with drift γ ∈ R the unique solution to the SDE

Z(t) = Z(0)+ γ

∫ t

0
Z(u) du+

∫ t

0
(2Z(u))1/2 dB(u). (3.2)

It is well known that there is a unique strong solution to (3.2). If Z is this solution then it
does not explode in finite time, P{T0(Z) < +∞} > 0 and P{T0(Z) < +∞} = 1 if γ ≤ 0.
Moreover, since A1 satisfies

A1(t) = A1(0)+
∫ t

0
b1(A(u)) du+

∫ t

0
(2A1(u))

1/2 dB(u),

with b1(a) = (γ1 − a0)a1 ≤ γ1a1, [20, Theorem V.43.1] implies that A1(t) ≤ Z(t) for all
t ≥ 0 almost surely, where Z is a Feller diffusion with drift γ1 started at Z(0) ≥ A1(0). This
comparison argument will be used several times. The proof of the following result uses standard
arguments, and we only sketch the proof.

Lemma 3.3. Uniqueness in law holds for the SDE (2.3).

Proof. The problem of invoking classical results is that some of the coefficients bk grow
quadratically. However, standard localization and change of drift arguments (to go back to the
case of Feller diffusion, since σ(a) = diag(0, (2a1)

1/2, 0, . . . , 0)) show that, for each N ≥ 1,
the law of a solution A to (2.3) stopped at inf{t ≥ 0 : ‖A(t)‖ ≥ N} is uniquely determined
(say, with ‖a‖ = a0 + · · · + aK+1). By successively patching up these solutions, we obtain
uniqueness to (2.3) until the time of explosion, and so it only remains to show that solutions
to (2.3) do not explode. But A1 cannot explode since it is dominated by Feller diffusion, and
since π̄ ◦ A satisfies (3.1), no other coordinate can explode by Lemma 3.1.

Lemma 3.4. If A satisfies (2.3) then T0(A1) is almost surely finite.

Before proving this result, we first explain briefly how it yields Proposition 2.1 in combination
with Lemma 3.2.

Proof of Proposition 2.1. The fact that T0(A1) is almost surely finite is precisely the content
of Lemma 3.4. Then by shifting A at timeT0(A1), we see that θT0(A1) ◦ A satisfies the ODE (3.1)
with y = 0, and so the results of Lemma 3.2 are precisely those that we need to prove for
Proposition 2.1.
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Proof of Lemma 3.4. To prove P{T0(A1) < +∞} = 1, it is enough to prove that

P{T0(A1) < +∞, T ↑
γ1
(A0) < +∞} = P{T ↑

γ1
(A0) < +∞} (3.3)

and
P{T0(A1) = +∞, T ↑

γ1
(A0) = +∞} = 0, (3.4)

which we do now.
In the event {T ↑

γ1(A0) < +∞}, we have dA↑(t) = b(A↑(t)) dt + σ(A↑(t)) dB↑(t), where
A↑ and B↑ are the processes A and B shifted at time T ↑

γ1(A0), so that, since T ↑
γ1(A0) is a

stopping time, B↑ is a Brownian motion according to the strong Markov property. Moreover,
we have, by definition, b1(A

↑(t)) = (γ1 − A
↑
0 (t))A

↑
1 (t) ≤ 0 and so A↑

1 is dominated by a
Feller diffusion without drift (see, for example, [20, Theorem V.43.1]), which almost surely
hits 0 in finite time. This proves (3.3).

We now prove (3.4). Assume that T ↑
γ1(A0) = +∞, then A0 is bounded (by γ1 and, in

particular, γ1 > 0) and according to (i) and (ii) of Lemma 3.2, we obtain that
∫ ∞

0 A1 is finite.
In particular, L = 0, where we define L = lim inf t→∞A1(t), and so

P{T0(A1) = +∞, T ↑
γ1
(A0) = +∞} ≤ P{T0(A1) = +∞, L = 0}.

Thus, to prove (3.4), we only have to show that P{T0(A1) = +∞, L = 0} = 0. Let ϑi be
defined recursively by ϑ0 = 0 and ϑi+1 = inf{t ≥ 1 + ϑi : A1(t) ≤ 1}. Then in {L = 0},
ϑi is almost surely finite for every i ≥ 0 and so we can define Zi as the solution to the SDE
dZi = γ1Zi dt + (2Zi)1/2 dBi with initial condition Zi(0) = 1, where Bi is the process B
shifted at time ϑi . Note that conditionally on {ϑi < +∞}, Zi is a Feller diffusion with drift
γ1 > 0 started at 1, and that the strong Markov property and the comparison theorem [20,
Theorem V.43.1] show that A1(t + ϑi) ≤ Zi(t) for t ≥ 0 and i ≥ 1. In particular,

P{T0(A1) = +∞, L = 0} ≤ P{for all i ≥ 1 : ϑi < +∞ and T0(Zi) = +∞}
and so we only have to show that this last probability is equal to 0. For I ≥ 1 and in the event
{ϑI < +∞} the strong Markov property at time ϑI gives

P{ϑI < +∞ and T0(Zi) = +∞ for i = 1, . . . , I }
= P{T0(Z1) = +∞}P{ϑI < +∞ and T0(Zi) = +∞ for i = 1, . . . , I − 1}
≤ P{T0(Z1) = +∞}P{ϑI−1 < +∞ and T0(Zi) = +∞ for i = 1, . . . , I − 1}

and so we obtain, by induction,

P{ϑI < +∞ and T0(Zi) = +∞ for i = 1, . . . , I } ≤ [P{T0(Z1) = +∞}]I .
Since P{T0(Z1) = +∞} < 1, letting I → +∞ achieves the proof of (3.4).

4. Scaling limits

We now prove the convergence results of Theorem 2.1 and Propositions 2.2 and 2.3. The
proofs of these three results can be cast into the same framework by defining An as in (2.6)
for each condition and by assuming, with this notation, that τn(εn,k − δn,k) → γk , which is
consistent with the assumptions (2.2), (2.5), and (2.8).
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(i) Intermediate initial condition (Theorem 2.1). Where αn,1 = n1/(K+2), τn = αn,1, αn,0 =
αn,K+1, and αn,k = αkn,1 for k = 2, . . . , K + 1.

(ii) Large initial condition (Proposition 2.2). Where n1/(K+2) � αn,1 � n, τn, and αn,k for
k = 2, . . . , K + 1 are as in (2.4).

(iii) Small initial condition (Proposition 2.3). Where 1 � αn,1 � n1/(K+2), τn = αn,1,
αn,0 = αn,K+1, and αn,k = αkn,1 for k = 2, . . . , K + 1.

In order to prove Theorem 2.1 and Propositions 2.2 and 2.3 with this notation, we have to
prove that the sequence (An, n ≥ 1) converges weakly toward (i) the solution of (2.3) in the
intermediate regime, (ii) the solution of (2.7) in the large regime, and (iii) the solution of (2.9)
in the small regime. In what follows, we will use the fact that in all three regimes, the algebraic
relations αn,0 = αn,K+1 and αn,k = τnαn,k−1, for k = 2, . . . , K + 1, hold.

The proof relies on the standard machinery. We first prove tightness and then identify
accumulation points. Both steps rely on semimartingale arguments based on the explicit form
of the generator of An. Indeed, An is by definition a Markov process with generatorn given,
for any function f : R

K+2 → R and any a ∈ R
K+2, by

n(f )(a) = τn

K∑
k=1

[
f

(
a − ek

αn,k
+ ek+1

αn,k+1

)
− f (a)

]
(1 + δn,k)αn,kak

+ τn

(
1 − αn,0a0

n

) K∑
k=1

[
f

(
a + e0

αn,0
+ ek

αn,k

)
− f (a)

]
(1 + εn,k)αn,kak (4.1)

(note that an,0/n = 1 − αn,0An,0/n, which provides the factor 1 − αn,0a0/n in the above
expression). Since An lives on a finite state space, for any function f the process

M
f
n (t) = f (An(t))− f (An(0))− V

f
n (t),

with V fn (t) = ∫ t
0 n(f )(An(u)) du is a martingale whose quadratic variation process 〈Mf

n 〉 is
equal to

〈Mf
n 〉(t) =

∫ t

0
Bn(f )(An(u)) du,

with Bn(f ) = n(f
2) − 2fn(f ); see, for example, [11, Lemma VII.3.68]. Recall that

δn,0 = δn,K+1 = εn,K+1 = −1, and in the rest of this section let πk , for k = 0, . . . , K + 1, be
the projection on the kth coordinate, i.e. πk(a) = ak for any a = (a0, . . . , aK+1) ∈ R

K+2.

Lemma 4.1. For each n ≥ 1 and t ≥ 0,

V π0
n (t) = τn

αn,0

K∑
k=1

(1 + εn,k)αn,k

∫ t

0

(
1 − αn,0An,0(u)

n

)
An,k(u) du, (4.2)

V πkn (t) =
∫ t

0

[
(1 + δn,k−1)An,k−1(u)+ τn(εn,k − δn,k)An,k(u)

− τnαn,0

n
(1 + εn,k)An,0(u)An,k(u)

]
du (4.3)

https://doi.org/10.1239/aap/1444308879 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1444308879


State space collapse for critical multistage epidemics 727

for k = 1, . . . , K + 1 and

〈Mπk
n 〉(t) = 1

αn,k
V πkn (t)+ 2

τn

αn,k
(1 + δn,k)

∫ t

0
An,k(u) du (4.4)

for k = 0, . . . , K + 1.

Proof. Recall that V πkn (t) = ∫ t
0n(πk)(An(u)) du and 〈Mπk

n 〉(t) = ∫ t
0 Bn(πk)(An(u)) du,

so that we only have to compute n(πk) and Bn(πk) for k = 0, . . . , K + 1. By writing
n(f

2)(a)− 2f (a)n(f )(a) in the form∑
j

(x2
j − y2)βj − 2y

∑
j

(xj − y)βj =
∑
j

((x2
j − y2)− 2y(xj − y))βj =

∑
j

(xj − y)2βj

for some xj , βj and y, we see that Bn(f ) can alternatively be written as

Bn(f )(a) = τn

K∑
k=1

[
f

(
a − ek

αn,k
+ ek+1

αn,k+1

)
− f (a)

]2

(1 + δn,k)αn,kak

+ τn

(
1 − αn,0a0

n

) K∑
k=1

[
f

(
a + e0

αn,0
+ ek

αn,k

)
− f (a)

]2

(1 + εn,k)αn,kak.

(4.5)

For k = 0,

n(π0)(a) = τn

αn,0

(
1 − αn,0a0

n

) K∑
k=1

(1 + εn,k)αn,kak, Bn(π0)(a) = 1

αn,0
n(π0)(a),

which proves the result for k = 0. For k = K + 1,

n(πK+1)(a) = τn

αn,K+1
(1 + δn,K)αn,KaK = (1 + δn,K)aK

usingαn,K+1 = τnαn,K to obtain the last equality, and Bn(πK+1) = n(πK+1)/αn,K+1, which
proves the result for k = K + 1. Now consider k = 1, . . . , K ,

n(πk)(a) = τn

(
− 1

αn,k
(1 + δn,k)αn,kak + 1

αn,k
(1 + δn,k−1)αn,k−1ak−1

)

+ τn

αn,k

(
1 − αn,0a0

n

)
(1 + εn,k)αn,kak

= (1 + δn,k−1)ak−1 + τn(εn,k − δn,k)ak − τnαn,0

n
(1 + εn,k)a0ak

using δn,0 = −1 for k = 1, and αn,k−1τn = αn,k for k ≥ 2. This proves the result for V πkn ,
while writing

Bn(πk)(a) = τn

(
1

α2
n,k

(1 + δn,k)αn,kak + 1

α2
n,k

(1 + δn,k−1)αn,k−1ak−1

)

+ τn

α2
n,k

(
1 − αn,0a0

n

)
(1 + εn,k)αn,kak

= 1

αn,k
n(πk)(a)+ 2

τn

αn,k
(1 + δn,k)ak

proves the result for Mπk
n , which concludes the proof.
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4.1. Tightness

We now prove that the sequence (An, n ≥ 1) is tight. Since An makes jumps of vanishing
size (at most 1/αn,1), in order to show that (An, n ≥ 1) is tight it is sufficient to show that for
every T ≥ 0,

lim
η→0

lim sup
n→+∞

�n(η) = 0,

where

�n(η) = sup
ϒ

sup
0≤t≤η

E

{K+1∑
k=0

|An,k(ϒ + t)− An,k(ϒ)|
}
,

where the first supremum in the definition of �n(η) is taken over all the random variables
ϒ ≤ T that are stopping times relatively to the filtration generated by An (see [4, Corollary,
p. 179]). In the rest of the proof fix some T ≥ 0. Because of the strong Markov property and
the fact that we consider stopping times ϒ ≤ T , we have

�n(η) ≤ sup
0≤t≤η

E

{
sup

0≤y≤T
�tn(An(y))

}
, (4.6)

where

�tn(a) =
K+1∑
k=0

Ea{|An,k(t)− An,k(0)|}.

The subscript refers to the initial state of the process An (when there is no subscript this refers
to an initial condition as in the statement of the theorem or the propositions). By definition,
we have Ea{|An,k(t) − An,k(0)|} = Ea{|Mπk

n (t)+ V
πk
n (t)|}, and so combining the triangular

inequality with the Cauchy–Schwarz inequality and summing over k = 0, . . . , K+1, we obtain

�tn(a) ≤
K+1∑
k=0

√
Ea{〈Mπk

n 〉(t)} +
K+1∑
k=0

Ea{|V πkn (t)|}. (4.7)

In order to control the first moment of 〈Mπk
n 〉(t) and of V πkn (t), we introduce the functions

ψ = π0 + · · · + πK , i.e. ψ(a) = a0 + · · · + aK for a = (a0, . . . , aK+1) ∈ R
K+2, and

� = ψ + ψ2. Since αn,1 → +∞ as n → +∞, αn,k+1 = τnαn,k for k = 1, . . . , K , and
τn → +∞, we will assume for convenience that 1 ≤ αn,1 ≤ · · · ≤ αn,K+1. Moreover, it can
be checked that the constant

C0 = sup
n≥1,1≤k≤K

(
τn|εn,k − δn,k|, 1 + |δn,k|, 1 + |εn,k|, τnαn,0

n
,

2τn
αn,k

,
τnαn,k

αn,0

)

is finite. From these various definitions, (4.2)–(4.4), and also recalling that δn,0 = δn,K+1 =
εn,K+1 = −1, it follows that

max(|V πkn (t)|, 〈Mπk
n 〉(t)) ≤ 2C2

0

∫ t

0
�(An(u)) du for k = 0, . . . , K + 1, t ≥ 0.

Combined with (4.7) this leads to

�tn(a) ≤ C1

√∫ t

0
Ea{�(An(u))} du+ C1

∫ t

0
Ea{�(An(u))} du,
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with C1 = 2C2
0 (K + 2). For t ≤ η ≤ 1, we obtain

�tn(a) ≤ C1η
1/2

(
sup

0≤u≤1

√
Ea{�(An(u))} + sup

0≤u≤1
Ea{�(An(u))}

)
. (4.8)

Lemma 4.2. There exists a finite constant C2 such that, for every initial state a,

sup
0≤u≤1

Ea{ψi(An(u))} ≤ C2

i∑
j=0

ψj (a), i = 1, 2. (4.9)

In particular,

sup
n≥1

E

{
sup

0≤y≤T
�(An(y))

}
< +∞. (4.10)

Let us quickly finish the proof of the tightness of (An) based on this lemma. First,
substituting (4.9) into (4.8), we obtain the existence of a finite constant C3 such that

�tn(a) ≤ C3η
1/2(

√
�(a)+�(a)), 0 ≤ t ≤ η ≤ 1,

and so in view of (4.6), we see that, for every η ≤ 1,

�n(η) ≤ C3η
1/2

E

{
sup

0≤y≤T
(
√
�(An(y))+�(An(y)))

}
.

Thus, (4.10) implies the existence of a finite constant C4 such that �n(η) ≤ C4η
1/2, which

proves that (An) is tight. It now remains to prove Lemma 4.2.

Proof of Lemma 4.2. Let us first prove (4.9). Defining ηn,k = 1/αn,k−1{k �=K}/αn,k+1 ≥ 0,
where 1{·} is the indicator function, and writing

ψi(a)− ψi
(
a − ek

αn,k
+ ek+1

αn,k+1

)
= (ψ(a))i − (ψ(a)− ηn,k)

i = i

∫ ψ(a)

ψ(a)−ηn,k
xi−1 dx,

we obtain

ψi(a)− ψi
(
a − ek

αn,k
+ ek+1

αn,k+1

)
≥ iηn,k(ψ(a)− ηn,k)

i−1.

Defining μn,k = 1/αn,0 + 1/αn,k similarly leads to

ψi
(
a + e0

αn,0
+ ek

αn,k

)
− ψi(a) ≤ iμn,k(ψ(a)+ μn,k)

i−1.

Substituting these inequalities into definition (4.1) of n, we obtain

n(ψ
i)(a) ≤ iτn

(
1 − αn,0a0

n

) K∑
k=1

μn,k(ψ(a)+ μn,k)
i−1(1 + εn,k)αn,kak

− iτn

K∑
k=1

ηn,k(ψ(a)− ηn,k)
i−1(1 + δn,k)αn,kak.
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Using 1 − αn,0a0/n ≤ 1, expanding the terms raised to the power i−1, and changing the
order of summation, we obtain

n(ψ
i)(a)

≤ i

i−1∑
j=0

(
i − 1

j

)
(ψ(a))i−1−j

×
{
τn

K∑
k=1

μ
j+1
n,k (1 + εn,k)αn,kak − (−1)j τn

K∑
k=1

η
j+1
n,k (1 + δn,k)αn,kak

}
.

Substituting in the definitions of ηn,k and μn,k , we see that, for j = 0, the term between the
brackets in the previous display is given by

τn

K∑
k=1

(1 + εn,k)

(
1 + αn,k

αn,0

)
ak − τn

K∑
k=1

(1 + δn,k)

(
1 − 1{k �=K} αn,k

αn,k+1

)
αn,kak

= τn

K∑
k=1

(εn,k − δn,k)ak +
K∑
k=1

τnαn,k

αn,0
(1 + εn,k)ak +

K−1∑
k=1

(1 + δn,k)ak

≤ 3C2
0ψ(a).

For j ≥ 1, we obtain, similarly, using μn,k ≤ 2/αn,k ≤ 2 and ηn,k ≤ 1/αn,k ≤ 1, that the
term between the brackets is upper bounded by

τn

K∑
k=1

4

α2
n,k

(1 + εn,k)αn,kak + τn

K∑
k=1

1

α2
n,k

(1 + δn,k)αn,kak ≤ 3C2
0ψ(a).

Thus, we obtain for some finite constant C(i) and every a,

n(ψ
i)(a) ≤ C(i)

i∑
j=1

(ψ(a))j . (4.11)

In particular,

Ea{ψi(An(t))} = ψi(An(0))+
∫ t

0
Ea{n(ψi)(An(u))} du

≤ C(i)

∫ t

0
Ea

{ i−1∑
j=0

ψj (An(u))

}
du+ C(i)

∫ t

0
Ea{ψi(An(u))} du

assuming without loss of generality that C(i) ≥ 1 for the last inequality. Thus, Grönwall’s
lemma implies

Ea{ψi(An(t))} ≤ C(i)

∫ t

0

i−1∑
j=0

Ea{ψj (An(u))} dueC(i)t .
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Then (4.9) follows from this inequality by induction on i. We now derive (4.10). Since
� = ψ + ψ2 it is enough to prove (4.10) with ψ2 in place of �. First of all, note that the
previous reasoning shows the existence of a finite constant C′

2 such that

sup
0≤u≤T

E{ψi(An(u))} ≤ C′
2

i∑
j=0

ψj (An(0)), i = 1, 2, 3, 4. (4.12)

By definition, ψ2 ◦ An = ψ2(An(0))+Vn +Mn, defining Vn = V
ψ2

n andMn = M
ψ2

n , and
so

E

{
sup

0≤y≤T
ψ2(An(y))

}
≤ ψ2(An(0))+ E

{
sup

0≤y≤T
Vn(y)

}
+ E

{
sup

0≤y≤T
Mn(y)

}
.

The first term of the above upper bound is bounded (in n) since the sequence An(0) converges
by assumption. For the second term, we write

Vn(y) =
∫ y

0
n(ψ

2)(An(u)) du ≤ C(2)
∫ y

0
�(An(u)) du,

where the inequality comes from (4.11). Thus,

E

{
sup

0≤y≤T
Vn(y)

}
≤ C(2)

∫ T

0
E{�(An(u))} du ≤ C(2)T sup

0≤u≤T
E{�(An(u))},

which is finite by (4.12). We now control the last martingale term. For any real-valued random
variable X, we have E{X} ≤ 1 + E{X2} and so from Doob’s inequality, we obtain

E

{
sup

0≤t≤T
Mn(t)

}
≤ 1 + 4E{〈Mn(T )〉} = 1 + 4

∫ T

0
E{Bn(ψ

2)(An(u))} du.

Defining B ′
n as in (4.5) but with the term −αn,0a0/n taken equal to 0, we have

Bn(ψ
2)(a) ≤ B ′

n(ψ
2)(a) = ′

n(ψ
4)(a)− 2ψ2(a)′

n(ψ
2)(a),

defining ′
n similarly as n in (4.1) but with the term −αn,0a0/n taken equal to 0. Since the

first step in the derivation of (4.11) was to use 1−αn,0a0/n ≤ 1, the reasoning leading to (4.11)
also leads to an upper bound on |′

n(ψ
2)| of the same kind, i.e. it leads to the existence of

a finite constant C′(i) such that |′
n(ψ

i)(a)| ≤ C′(i)
∑i
j=1 ψ

j (a). This finally proves that
Bn(ψ

2)(a) ≤ C′∑4
j=1 ψ

j (a) for some finite constant C′, and, in particular,

E

{
sup

0≤t≤T
Mn(t)

}
≤ 1 + 4C′T

4∑
j=1

sup
0≤u≤T

E{ψj (An(u))}.

Since the supremum over n ≥ 1 on the right-hand side is finite by (4.12), the proof is
complete.

4.2. Characterization of accumulation points

Let A = (Ak, k = 0, . . . , K + 1) be any accumulation point of (An) and assume without
loss of generality that An

w−→ A, i.e. An converges weakly to A. Remember that we have to
prove that A satisfies (2.3) in the intermediate regime, (2.7) in the large regime, and (2.9) in
the small regime. We treat the three regimes separately.

https://doi.org/10.1239/aap/1444308879 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1444308879


732 F. SIMATOS

In each regime, if f ∈ D we denote by
∫
f the function (

∫ t
0 f (u) du, t ≥ 0), and we will

use the following result in conjunction with the continuous mapping theorem. If (fn), (gn) are
two sequences of functions with fn → f and gn → g for some continuous functions f and g
(where ‘→’denotes uniform convergence on compact sets), then fngn → fg and

∫
fn → ∫

f .
In particular, since in all three regimes it holds that τnαn,k/αn,0 = αn,k+1/αn,K+1 → 1{k=K}

and αn,0/n → 0, we have from (4.2) that V π0
n

w−→ ∫
AK . Since αn,0 → +∞ and δn,0 = −1,

we have 〈Mπ0
n 〉 w−→ 0 by (4.4), which implies, by Doob’s inequality, that Mπ0

n
w−→ 0. Similarly,

recalling that δn,K+1 = εn,K+1 = −1, we have V πK+1
n

w−→ ∫
AK and MπK+1

n
w−→ 0.

4.2.1. Large initial condition. In this regime, we have τnαn,0 = n. Moreover, since δn,0 =
δn,K+1 = εn,K+1 = −1 from (4.3), we obtain V π1

n
w−→ ∫

(γ1 − A0)A1 and V πkn
w−→ ∫

(Ak−1 +
(γk − A0)Ak) for k = 2, . . . , K . In other words, V πkn

w−→ ∫
bk ◦ A for k = 0, . . . , K + 1.

Moreover, since αn,k → 0 and τn/αn,k → 0 for k = 1, . . . , K from (4.4), we obtain
〈Mπk

n 〉 w−→ 0 for any k = 0, . . . , K + 1. By Doob’s inequality, this implies that Mπk
n

w−→0
and since An,k = An,k(0) +M

πk
n + V

πk
n , we finally obtain An,k

w−→ ak + ∫
bk ◦ A. Since all

the above convergences hold jointly as a consequence of the continuous mapping theorem,
we obtain, on the one hand, An

w−→ a + ∫
b ◦ A, while, on the other hand, since An

w−→ A by
assumption, we obtain A = a+ ∫

b ◦A. Thus, A solves (2.7) as desired, and since uniqueness
of solutions to this ODE is guaranteed by Lemma 3.1, this uniquely characterizes A.

4.2.2. Intermediate initial condition. We still have τnαn,0 = n so that, as in the large regime,
we have V πkn

w−→ ∫
bk ◦ A. Moreover, in this regime, we have τn/αn,k → 0 for k = 2, . . . , K ,

which implies that, as in the previous regime, Mπk
n

w−→0 for k = 0, 2, . . . , K + 1.
The difference with the large regime is that since τn = αn,1, we have 〈Mπ1

n 〉 w−→ 2
∫
A1.

Note that 2
∫
A1 = 〈M〉, where M(t) = ∫ t

0 (2A1(u))
1/2 dB(u). Moreover, since Mπk

n
w−→0 for

k �= 1 while 〈Mπ1
n 〉 w−→〈M〉, it follows that the quadratic covariation processes 〈Mπk

n ,M
π�
n 〉

vanish for any k �= � by polarization. Since all these convergences hold jointly, it follows
from [11, Theorem IX.2.4] that A is the semimartingale with characteristics (b ◦ A,M) in the
sense that A = a + ∫

b ◦ A + M , i.e. A solves (2.3) (and, thus, is uniquely determined by
Lemma 3.3).

4.2.3. Small initial condition. It follows similarly as in the two previous regimes, noting that
in this regime, we have τnαn,0/n → 0 (which leads to the drift term bS instead of b) and
τn/αn,k → 1{k=1} (which leads to the nonvanishing diffusion term as in the intermediate
regime).

5. Asymptotic behavior of the outbreak size

This section is devoted to proving Theorem 2.2. For f ∈ D , we define the operator
T̄0(f ) = sup{t ≥ 0 : f (t) > 0}; recall also the various operators defined in Section 2.1. Then,
we have An,0(∞) = An,0(T̄0(An,K)) and, in order to compute T̄0(An,K), we will use the
relation T̄0(An,2) = T0(An,1)+ T0 ◦ θT0(An,1)(An,2) which, iterated, leads to

T̄0(An,K) =
K−1∑
k=1

T0 ◦ θT0(An,k−1) ◦ · · · ◦ θT0(An,1)(An,k).

There are two difficulties to solve in order to prove Theorem 2.2. The first one is that
hitting times are in general not continuous functional, i.e. we may have fn → f but T0(fn) �→
T0(f ). The second difficulty is that, as Proposition 2.1 shows, T̄0(AK) = +∞ for K ≥ 2
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while the convergence An
w−→ A holds uniformly on compact sets (see the discussion following

Theorem 2.2). We address these two difficulties in two steps.

5.1. First step

The goal of this first step is to prove that (An, T0(An,1))
w−→(A, T0(A1)). First, assume that,

for every δ > 0,

lim sup
n→+∞

P{T0(An,1)− T ↓
ε (An,1) ≥ δ} −→ 0 as ε → 0. (5.1)

We now argue that this implies (An, T0(An,1))
w−→(A, T0(A1)). First of all, note that if

T0(An,1)
w−→T0(A1) then the joint convergence automatically holds; see, for example, [15,

Corollary 2.2].
To see that (5.1) implies T0(An,1)

w−→T0(A1), let us say that A1 goes across ε if for
every η > 0 we have inf0≤t≤η A1(T

↓
ε (A1)+ t) < ε, and define the random set G through

G = {ε > 0 : A1 goes across ε}. Then it is known (and actually easy to show) that if
T

↓
ε (A1) is almost surely finite and P{ε ∈ G} = 1, then T ↓

ε (An,1)
w−→ T

↓
ε (A1); see, for

example, [11, Proposition VI.2.11] or [14, Lemma 3.1]. Note that in our case, T ↓
ε (A1) is

finite by Proposition 2.1.
On the other hand, the complement Gc of G is precisely the set of discontinuities of the

process (T ↓
ε (A1), ε > 0). Since (T ↓

ε (A), ε > 0) is càdlàg, as the left-continuous inverse of the
process (inf [0,t]A1,t ≥ 0), the set {ε > 0 : P{ε ∈ Gc} > 0} (sometimes called the set of fixed
times of discontinuities) is at most countable; see, for example, [4, Section 13]. Gathering
these two observations, we see that T ↓

ε (An,1)
w−→ T

↓
ε (A1), for all ε > 0, outside a countable

set. Then, writing

P{T0(An,1) ≥ x} = P{T0(An,1) ≥ x, T0(An,1)− T ↓
ε (An,1) ≥ δ}

+ P{T0(An,1) ≥ x, T0(An,1)− T ↓
ε (An,1) < δ},

using (5.1), and using suitable quantifiers provides the convergence of T0(An,1) toward T0(A1).
Indeed, we can, for instance, write

P{T0(An,1) ≥ x} ≤ P{T0(An,1)− T ↓
ε (An,1) ≥ δ} + P{T ↓

ε (An,1) ≥ x − δ},
then choose ε such that T ↓

ε (An,1) → T
↓
ε (A1) to obtain, by the portmanteau theorem, for any

δ > 0,

lim sup
n→+∞

P{T0(An,1) ≥ x} ≤ lim sup
n→+∞

P{T0(An,1)− T ↓
ε (An,1) ≥ δ} + P{T ↓

ε (A1) ≥ x − δ}.

Since T ↓
ε (A1) → T0(A1) as ε → 0, by first letting ε → 0 and then δ → 0, and using (5.1),

we obtain
lim sup
n→+∞

P{T0(An,1) ≥ x} ≤ P{T0(A1) ≥ x}.
Since x was arbitrary, this shows that T0(An,1)

w−→T0(A1) by the portmanteau theorem. In
conclusion, (5.1) indeed implies T0(An,1)

w−→T0(A1).
The proof of (5.1) relies on a simple coupling betweenAn,1 and a continuous-time branching

process (more precisely, a Bellman–Harris branching process). Looking at the transition rates
of the process an,1 in (2.1), we see that An,1 decreases by 1/αn,1 at rate (1 + δn,1)An,1α2

n,1 and
increases by 1/αn,1 at rate

(1 + εn,1)An,1

(
1 − An,0

αn,1

)
α2
n,1 ≤ (1 + εn,1)An,1α

2
n,1.

https://doi.org/10.1239/aap/1444308879 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1444308879


734 F. SIMATOS

In particular, shifting the origin of time at T ↓
ε (An,1) and using the strong Markov property,

we see that An,1 can be coupled with a Markov process Zn,1 in such a way that Zn,1(0) =
αn,1�ε/αn,1�, An,1(T

↓
ε (A1) + t) ≤ Zn,1(t) for t ≥ 0, and Zn,1 decreases by 1/αn,1 at rate

(1 + δn,1)Zn,1α2
n,1 and increases by 1/αn,1 at rate (1 + εn,1)Zn,1α2

n,1 (note that the law of Zn,1
depends on ε, but we omit this dependency in order to ease the notation). More concretely, this
coupling can, for instance, be realized by adding a ‘ghost’ individual in the population each
time an individual in stage one makes an unsuccessful infection attempt (alternatively, we could
also invoke the comparison result of Rogers and Williams [20, Theorem V.43.1]). Using the
strong Markov property at time T ↓

ε (An,1) and this coupling, we obtain

P{T0(An,1)− T ↓
ε (An,1) ≥ δ} ≤ P{T0(Zn,1) ≥ δ}.

It is well known that Zn,1
w−→Z1, where Z1 is a Feller diffusion with drift γ1 started at ε

(see, for example, [8, Chapter 9]). Moreover, standard arguments can be used to show that
T0(Zn,1)

w−→T0(Z1), for instance, by using the fact that Zn,1 and Z1 are time-change transform-
ations of Lévy processes killed at 0, say Yn and Y , so that T0(Zn,1) = ∫ ∞

0 Yn
w−→∫ ∞

0 Y =
T0(Z1) (this time-change transformation is usually called a Lamperti transformation; see, for
example, [16]). Thus, we have (making clear the role of the initial condition)

lim sup
n→+∞

P{T0(An,1)− T ↓
ε (An,1) ≥ δ} ≤ P{T0(Z1) ≥ δ | Z1(0) = ε}.

Since T0(Z1)
w−→0 as Z1(0) → 0, we have finally proved (5.1), which concludes the first

step.

5.2. Second step

The first step shows, by using the strong Markov property at time T0(An,1), that we only
need to prove Theorem 2.2 when An,1(0) = 0. In this case, from Theorem 2.1, it follows that
An

w−→A, where A is a solution to the ODE (3.1) with y = 0.
With this initial condition, we have An,1(t) = 0 for all t ≥ 0, and π̄ ◦ An is a Markov

process; actually, it is a multistage epidemic process with K − 1 stages. The problem of
iterating the arguments of the first step is that from Proposition 2.1, although T ↓

ε (A2) < +∞
for every ε > 0, we have T0(A2) = +∞. To get round this problem, we will use a time-change
argument. Such an idea is classical in the SIR K = 1 case; see, for example, [23].

Let us set up a similar coupling as in the first step. The process An,2 decreases by 1/α2
n,1 at

rate (1 + δn,2)α
3
n,1An,2 and increases by 1/α2

n,1 at rate

(1 + εn,2)α
3
n,1An,2

(
1 − An,0

αn,1

)
≤ (1 + εn,2)α

3
n,1An,2

(
1 − An,0(0)

αn,1

)
,

where the inequality follows from the monotonicity of An,0. Thus, similar to the first step, we
can coupleAn,2 with a continuous-time Markovian branching processZn,2 such thatZn,2(0) =
An,2(0), An,2(t) ≤ Zn,2(t) for t ≥ 0, and Zn,2 decreases by 1/α2

n,1 at rate (1 + δn,2)α
3
n,1Zn,2

and increases by 1/α2
n,1 at rate (1 + εn,2)α

3
n,1Zn,2(1 −An,0(0)/αn,1). In particular, Zn,2

w−→z2,
with z2(t) = z2(0) exp(−(A0(0)− γ2)t).

Since by Proposition 2.1, A0 is strictly increasing with A0(∞) > γ2, we can assume that
without loss of generality, by shifting the processes at time T ↑

γ2(An,0)+ 1 that A0(0) > γ2, so
that each z2 vanishes exponentially fast. The problem, as mentioned earlier, is that T0(z2) =
+∞. We now introduce the time-change argument.
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Let Cn,2 be the right-continuous inverse of t �→ ∫ t
0 Zn,2 and c2 be the right-continuous

inverse of t �→ ∫ t
0 z2, in the sense that

∫ Cn,2(t)
0 Zn,2 = t for t <

∫ ∞
0 Zn,2 and

∫ c2(t)

0 z2 = t

for t <
∫ ∞

0 z2. Since
∫ ∞

0 z2 < +∞, c2 blows up at time
∫ ∞

0 z2. Moreover, such random
time-change transformations induce continuous mappings, so that An ◦ Cn,2 w−→A ◦ c2 and
Zn,2 ◦ Cn,2 w−→z2 ◦ c2; see, for example, [9].

Time-changing Zn,2 with Cn,2 actually corresponds to the Lamperti transformation men-
tioned above: Zn,2 ◦Cn,2 is a continuous-time random walk (killed at 0), z2 ◦ c2 starts atA2(0)
and decays linearly at rate A0(0)− γ2, i.e. z2(c2(t)) = A2(0)− (A0(0)− γ2)t for t ≤ ∫ ∞

0 z2,
and T0(Zn,2 ◦ Cn,2) w−→T0(z2 ◦ c2). In particular, since

P{T0(An,2 ◦ Cn,2)− T ↓
ε (An,2 ◦ Cn,2) ≥ δ} ≤ P{T0(Zn,2 ◦ Cn,2) ≥ δ | Zn,2(0) = ε},

we obtain

lim sup
n→+∞

P{T0(An,2 ◦ Cn,2)− T ↓
ε (An,2 ◦ Cn,2) ≥ δ} −→ 0 as ε → 0

and the arguments of the first step imply that

(An ◦ Cn,2, T0(An,2 ◦ Cn,2)) w−→ (A ◦ c2, T0(A2 ◦ c2)).

In particular, from the strong Markov property at time T0(An,2 ◦ Cn,2), it follows that

(An ◦ Cn,2)(T0(An,2 ◦ Cn,2)) = An(T0(An,2))
w−→ (x ◦ c2)(T0(A2 ◦ c2)) = x(∞) = 0.

By using the strong Markov property at time T0(An,2) and iterating this argument, we finally
obtain the desired result that An,0(∞)

w−→A0(∞), which concludes the proof of Theorem 2.2.

6. An intriguing conjecture

We conclude this paper by discussing a conjecture formulated in [2] which initially motivated
the present work.

Conjecture 6.1. (See [2].) Assume that εn,k = δn,k = 0 and let Nn,k be the number of
individuals ever being of type k = 1, . . . , K over the course of the epidemic, starting from the
initial condition an(0) = (n − 1, 1, 0, . . . , 0). Then E{Nn,k} grows as n → +∞ like nkλK ,
where

λK = 2K − 1

(K + 1)2K − 1
.

Note that, with our notation, Nn,K = an,K+1(∞), since any individual ever removed must
have been in stage K of the epidemic at some point (and vice-versa). On the other hand,
from Theorem 2.2, it follows that starting with an order of n1/(K+2) individuals in stage one
(instead of just one as in the above conjecture), an,K+1(∞) is, in distribution, of the order of
n(K+1)/(K+2). When K = 1, there is a well-known argument that links these two objects; the
connection going through a random partitioning of {1, . . . , n}.

Consider the following model, where n individuals are assigned a unique label from the set
{1, . . . , n} and which results in a random partition �1, . . . ,�S of the set {1, . . . , n}. Imagine
that �1, . . . ,�s have been generated and that the set Fs = {1, . . . , n} \ (�1 ∪ · · · ∪ �s) is
not empty, then the iteration proceeds as follows. Choose an individual v uniformly at random
from Fs , and run the epidemic with the following initial condition: at time 0 the individuals
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in Fs \ {v} are susceptible and the individuals in �1 ∪ · · · ∪ �s are removed, so that only
v is infected (and, in the K ≥ 2 case, is in the first stage of the epidemic). Eventually, this
epidemic will die out and we define �s+1 as the set of individuals infected over the course of
this epidemic.

This connection between random partition and epidemic processes is well known; see, for
example, [3]. In the K = 1 case this links clusters of the Erdős–Rényi random graph to the
SIR process. This construction leads to several interesting by-products, one of them being that
it makes it possible to compute the mean size of a typical cluster in terms of the mean size of
the largest ones. More precisely, choose an individual v uniformly at random in {1, . . . , n} and
let�∗ be the cluster to which it belongs. Moreover, let (�(i), i ≥ 1) be the clusters ordered in
decreasing size, i.e. {�(i)} = {�i} and |�(1)| ≥ |�(2)| ≥ · · · with |E| the size of a set E ⊂ N.
Then the probability that v belongs to�(i) is exactly |�(i)|/n, in which case�∗ = �(i) and so

E{|�∗|} =
∑
i≥1

E

{ |�(i)|
n

|�(i)|
}
.

Assuming that the largest term in this sum dominates, we obtain the approximation

E{|�∗|} ≈ 1

n
E{|�2

(1)|}. (6.1)

When K = 1, |�∗| is, by exchangeability, equal in distribution to Nn,1 and so E{|�∗|} =
E{Nn,1}. Moreover, |�(1)| is of the same order as an outbreak size started from an intermediate
initial condition. Roughly speaking, this comes from the fact that the intermediate regime is
precisely the one where the finite-size population effects begin to kick in. In particular, |�(1)|
is of the order of n(K+1)/(K+2) = n2/3. Gathering these two observations, and thanks to (6.1),
we obtain the relation E{Nn,1} ≈ n4/3−1 = n1/3, whenK = 1. This answer coincides with the
conjecture presented in [2] and the above reasoning through random partitioning can be made
rigorous; see, for example, [12].

It is tempting to also use this reasoning forK ≥ 2, and this initially motivated us to identify
the intermediate regime and the scalings at play there. However, this reasoning would lead to
the estimate

E{Nn,K} ≈ 1

n
n2(K+1)/(K+2) = nK/(K+2)

which is different (for K ≥ 2) from the nKλK predicted by Antal and Krapivsky [2]. We find
this discrepancy, and the related fact that the above reasoning through random partitioning
seems to fail, very intriguing. We believe that the temporal aspects intrinsic to this multistage
epidemic (see the discussion of the main results in the introduction) play a major role in this
discrepancy, although it is challenging to obtain rigorous results in that direction.

Appendix A. Proof of Lemmas 3.1 and 3.2

Let x be any solution to (3.1) defined on the interval J = [0, t∗) for some t∗ ∈ (0,∞].
It will be convenient to define x1 = y and to index the R

K+1-valued function x by the set
{0, 2, . . . , K + 1}, i.e. to write x = (x0, x2, . . . , xK+1). Also in what follows let

Ik(t) =
∫ t

0
(x0(u)− γk) du, t ∈ J, k = 1, . . . , K.
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Then (eIk xk)′e−Ik = (x0 − γk)xk + x′
k is equal to xk−1 for k = 2, . . . , K by (3.1). Thus,

for these k, we have (eIk xk)′e−Ik = xk−1, which can be written as

xk(t) =
(
xk(0)+

∫ t

0
xk−1(u)e

Ik(u) du

)
e−Ik(t), k = 2, . . . , K, t ∈ J. (A.1)

A.1. Proof of Lemma 3.1

First note that the representation (A.1) implies that x(t) ∈ [0,∞)K+1 for every t ∈ J .
Indeed, since x1(t) = y(t) ≥ 0, this implies that x2(t) ≥ 0 and by induction on k, this implies
that xk(t) ≥ 0 for every k = 2, . . . , K and t ∈ J . Finally, since x0(0), xK+1(0) ∈ [0,∞)

and x′
0 = x′

K+1 = xK which has just been shown to stay nonnegative, we obtain x0 and xK+1
which also stay nonnegative.

Let us now prove Lemma 3.1, i.e. the existence and uniqueness of solutions to (3.1). Since
F is locally Lipschitz, the Picard–Lindelhöf theorem implies local existence and uniqueness
to (3.1). To show this globally, we only have to show that local solutions do not explode. Since
x′

2 = y + (γ2 − x0)x2 and x2, x0 ≥ 0, we obtain x′
2 ≤ y + γ+

2 x2, where γ+ = max(0, γ )
for any γ ∈ R. Thus, from Grönwall’s lemma, it follows that x2 does not explode. Similarly,
for k = 3, . . . , K , we have x′

k ≤ xk−1 + γ+
k xk and so xk also does not explode. Finally,

since x′
0 = x′

K+1 = xK , solutions stay locally bounded which proves the global existence and
uniqueness on [0,∞).

A.2. Proof of Lemma 3.2

We prove each property separately. As mentioned earlier, in the rest of the proof we define
x1 = y.

Proof of Lemma 3.2(i). Assume that y(0) > 0 or a2 > 0: then it is clear from (A.1) that
x2(t) > 0 for all t > 0. By induction, we see that xk(t) > 0 for all k = 2, . . . , K and t > 0.

Proof of Lemma 3.2(ii). Assume that xk(t) > 0 for k = 2, . . . , K and t > 0, and that x0
is bounded: we prove by backwards induction on k that

∫ ∞
0 xk is finite for k = 1, . . . , K and

that x0(∞) > γk for k = 2, . . . , K . For k = K , the fact that
∫ ∞

0 xK is finite comes from the
fact that x0 is bounded and nondecreasing, and so its derivative xK is integrable on [0,∞).
Consider now any 2 ≤ k ≤ K and assume that

∫ ∞
0 xk is finite. We prove that

∫ ∞
0 xk−1 is finite

and that x0(∞) > γk .
Since

∫ ∞
0 xk is finite, there must exist a sequence tn → +∞ such thatxk(tn) → 0. Moreover,

we have by definition x′
k = xk−1 + (γk − x0)xk and so integrating between times 0 and tn, we

obtain∫ tn

0
xk−1 = xk(tn)− xk(0)+

∫ tn

0
(x0(u)− γk)xk(u) du ≤ xk(tn)+ (x0(∞)− γk)

∫ tn

0
xk.

Letting n → +∞, we obtain the inequality
∫ ∞

0 xk−1 ≤ (x0(∞)− γk)
∫ ∞

0 xk which shows,
by induction, that

∫ ∞
0 xk−1 is finite and also that x0(∞) > γk (since

∫ ∞
0 xk−1 > 0).

Proof of Lemma 3.2(iii). Assume that y(t) = 0 for all t ≥ 0 and that a2 > 0. In particular,
according to (i), we see that xk(t) > 0 for every t > 0 and k = 0, 2, . . . , K , a fact that will
repeatedly be used in what follows. We begin by proving the following:

xk(t) =
(k−2∑
i=0

xk−i (0)φk,i(t)
)

exp

(
−

∫ t

0
(x0(u)−γk) du

)
, k = 2, . . . , K, t ≥ 0, (A.2)
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where the functions φk,i for k = 2, . . . , K and i = 0, . . . , k − 2 are defined recursively by
φk,0(t) = 1 and, for i = 1, . . . , k − 2,

φk,i(t) =
∫ t

0
φk−1,i−1(u)e

ηku du, (A.3)

with ηk = γk−1 − γk, k = 3, . . . , K .
We prove (A.2) by induction on k. For k = 2, we have by (A.1), and since x1 = 0,

x2(t) = x2(0)e−I2(t) which is precisely (A.2). Now assume that (A.2) holds for k ≥ 2 and let
us prove it for k + 1. Substituting (A.2) into (A.1), we obtain

xk+1(t) =
(
xk+1(0)+

∫ t

0

(k−2∑
i=0

xk−i (0)φk,i(u)
)

e−Ik(u)eIk+1(u) du

)
e−Ik+1(t).

Using Ik+1(u)− Ik(u) = (γk − γk+1)u = ηk+1u, exchanging the integral and the sum, and
changing variables in the sum, we obtain

xk+1(t) =
(
xk+1(0)+

k−1∑
i=1

xk+1−i (0)
∫ t

0
φk,i−1(u)e

ηk+1u du

)
e−Ik+1(t)

from which we obtain (A.2) by (A.3). We now prove that x0(∞) is finite by contradiction, so
assume that x0(∞) = +∞. Starting from the definition (A.3) of φk,i , we obtain, by induction,
φk,i(t) ≤ eiη

∗t with η∗ = 1 + max3≤j≤K |ηj |. In particular, from (A.2) for k = K , we obtain

xK(t) ≤
(k−2∑
i=0

xk−i (0)
)

eKη
∗t exp

(
−

∫ t

0
(x0(u)− γK) du

)
.

Since x0(t)−γK > Kη∗ for large enough t (since we are assuming x0(∞) = +∞), the last
equation implies that xK converges to 0 exponentially fast, and, in particular,

∫ ∞
0 xK < +∞.

Since x′
0 = xK , x0(∞) is finite, which yields the contradiction. Thus, x0(∞)must be finite and

so the conclusions of Lemma 3.2(ii) apply, in particular, x0(∞) > γk for every 2 ≤ k ≤ K .
We now complete the proof and show that xk(t) → 0 for every k = 2, . . . , K . In view

of (A.2), we only have to show that

lim
t→+∞(φk,i(t)e

−∫ t
0 (x0−γk)) = 0 (A.4)

for every i = 0, . . . , K − 2 and every k = i + 2, . . . , K . We prove this by induction on i. For
i = 0 this comes immediately from the facts that φk,0(t) = 1 and x0(∞) > γk . So assume
that (A.4) holds for some i = 0, . . . , K − 2 and every k = i + 2, . . . , K . We show that it also
holds for i + 1 and k = i + 3, . . . , K . By definition (A.3), we have

φk,i+1(t)e
−∫ t

0 (x0−γk) =
(∫ t

0
φk−1,i (u)e

ηku du

)
e−∫ t

0 (x0−γk).

Let ε > 0 and, by induction hypothesis, t∗ such that φk−1,i (t) ≤ εe
∫ t

0 (x0−γk−1) for every
t ≥ t∗. Then, for such t ,

φk,i+1(t)e
−∫ t

0 (x0−γk)

≤
(∫ t∗

0
φk−1,i (u)e

ηku du

)
e−∫ t

0 (x0−γk) + ε

(∫ t

0
e
∫ u

0 (x0−γk−1)eηku du

)
e−∫ t

0 (x0−γk).
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Since the first term of the above upper bound vanishes as t → +∞ and we can rewrite the
second term as(∫ t

0
e
∫ u

0 (x0−γk−1)eηku du

)
e−∫ t

0 (x0−γk) =
(∫ t

0
e
∫ u

0 (x0−γk) du

)
e−∫ t

0 (x0−γk)

=
∫ t

0
e−∫ t

u (x0−γk) du,

we obtain

lim sup
t→+∞

(φk,i+1(t)e
−∫ t

0 (x0−γk)) ≤ ε sup
t≥0

(∫ t

0
e−∫ t

u (x0−γk) du

)
.

Thus, to achieve the proof we only have to show that this last supremum is finite. Let κ > 0
and s∗ < +∞ be such that x0(t)− γk ≥ κ for t ≥ s∗ and k = 2, . . . , K . Then, for t ≥ s∗,∫ t

s∗
e−∫ t

u (x0−γk) du ≤
∫ t

s∗
e−κ(t−u) du ≤

∫ ∞

0
e−κu du

and
∫ s∗

0 e−∫ t
u (x0−γk) du ≤ ∫ s∗

0 e−∫ s∗
u (x0−γk) du so that writing

∫ t

0
e−∫ t

u (x0−γk) du =
∫ s∗

0
e−∫ t

u (x0−γk) du+
∫ t

s∗
e−∫ t

u (x0−γk) du

completes the proof.
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