φ-CONTRACTIBILITY AND φ-CONNES AMENABILITY COINCIDE WITH SOME OLDER NOTIONS

AMIN MAHMOODI

(Received 28 July 2017; accepted 18 August 2017; first published online 30 January 2018)

Abstract

It is shown that various definitions of φ -Connes amenability and φ -contractibility are equivalent to older and simpler concepts.

2010 *Mathematics subject classification*: primary 43A07; secondary 16E40, 46H25. *Keywords and phrases*: φ -amenability, φ -contractibility, φ -Connes amenability.

1. Introduction

The fertile notion of amenability was introduced by Johnson in [5]. A generalisation of amenability depending on homomorphisms was introduced and studied by Kaniuth *et al.* [6] and independently by Monfared [8]. For a Banach algebra \mathfrak{A} , we write $\Delta(\mathfrak{A})$ for the set of all homomorphisms from \mathfrak{A} onto \mathbb{C} . Let $\varphi \in \Delta(\mathfrak{A})$. An element $m \in \mathfrak{A}^{**}$ is called a *right* [*left*] φ -*mean* if $m(\varphi) = 1$ and $m(f \cdot a) = \varphi(a)m(f)$ [$m(a \cdot f) = \varphi(a)m(f)$] for $a \in \mathfrak{A}$ and $f \in \mathfrak{A}^*$. A Banach algebra is *right* [*left*] φ -*amenable* if it has a right [left] φ -mean [6, 8]. We say that \mathfrak{A} is φ -*amenable* if it is both left and right φ -amenable.

The concept of φ -contractibility was introduced by Hu *et al.* in [4]. Let \mathfrak{A} be a Banach algebra and *E* be a Banach \mathfrak{A} -bimodule. A continuous linear operator $D: \mathfrak{A} \to E$ is a *derivation* if it satisfies $D(ab) = D(a) \cdot b + a \cdot D(b)$ for all $a, b \in \mathfrak{A}$. Given $x \in E$, the *inner* derivation $ad_x : \mathfrak{A} \to E$ is defined by $ad_x(a) = a \cdot x - x \cdot a$. Let $\varphi \in \Delta(\mathfrak{A})$. We write $\mathbb{M}_{\varphi} [_{\varphi}\mathbb{M}]$ for the set of all Banach \mathfrak{A} -bimodules *E* such that the right [left] module action of \mathfrak{A} on *E* is given by $x \cdot a := \varphi(a)x [a \cdot x := \varphi(a)x]$ for $a \in \mathfrak{A}$, $x \in E$. We say that \mathfrak{A} is *right* [*left*] φ -contractible if for each Banach \mathfrak{A} -bimodule $E \in \mathbb{M}_{\varphi} [E \in {}_{\varphi}\mathbb{M}]$, every derivation $D: \mathfrak{A} \to E$ is inner. We say that \mathfrak{A} is φ -contractible if it is both left and right φ -contractible.

Recently and motivated by these notions, several authors have defined and studied the concept of φ -Connes amenability of dual Banach algebras, where φ is a w^* continuous homomorphism onto \mathbb{C} (see [2, 7, 10]). However, these three variations on φ -Connes amenability are not actually new. We show that they coincide with φ amenability and φ -contractibility (in the particular contexts considered in [2, 7, 10]).

^{© 2018} Australian Mathematical Publishing Association Inc.

We also show that φ -contractibility is equivalent to an existing notion. In fact, a Banach algebra \mathfrak{A} is φ -contractible if and only if the one-dimensional Banach \mathfrak{A} -bimodule \mathbb{C}_{φ} is projective. This concept goes back to Helemskii in the 1970s (see his book [3] and the paper of White [11]).

2. φ -Connes amenability

Let \mathfrak{A} be a Banach algebra. A Banach \mathfrak{A} -bimodule E is *dual* if there is a closed submodule E_* of E^* such that $E = (E_*)^*$. We call E_* the *predual* of E. A Banach algebra is *dual* if it is dual as a Banach \mathfrak{A} -bimodule. We write $\mathfrak{A} = (\mathfrak{A}_*)^*$ if we wish to stress that \mathfrak{A} is a dual Banach algebra with predual \mathfrak{A}_* . For a dual Banach algebra \mathfrak{A} , let $\Delta_{w^*}(\mathfrak{A})$ denote the set of all w^* -continuous homomorphisms from \mathfrak{A} onto \mathbb{C} .

We start with the definition of φ -Connes amenability in the sense of [2]. Let $\mathfrak{A} = (\mathfrak{A}_*)^*$ be a dual Banach algebra and let $\varphi \in \Delta_{w^*}(\mathfrak{A})$. A dual Banach \mathfrak{A} -bimodule $E \in {}_{\varphi}\mathbb{M}$ is *normal* if the module action $a \mapsto x \cdot a$ of \mathfrak{A} on E is w^* -continuous. A dual Banach algebra $\mathfrak{A} = (\mathfrak{A}_*)^*$ is *left* φ -Connes amenable if for every normal dual Banach \mathfrak{A} -bimodule $E \in {}_{\varphi}\mathbb{M}$, every w^* -continuous derivation $D : \mathfrak{A} \to E$ is inner. We can make similar definitions for right φ -Connes amenable and φ -Connes amenable Banach algebras. It is shown in [2, Theorem 2.3] that (left) φ -Connes amenability of \mathfrak{A} is equivalent to the existence of a (left) φ -mean.

THEOREM 2.1. Suppose that $\mathfrak{A} = (\mathfrak{A}_*)^*$ is a dual Banach algebra and $\varphi \in \Delta_{w^*}(\mathfrak{A})$. Then the following statements are equivalent:

- (i) \mathfrak{A} is φ -Connes amenable (in the sense of [2]);
- (ii) \mathfrak{A} is φ -contractible;
- (iii) \mathfrak{A} is φ -amenable.

PROOF. (i) \Rightarrow (ii) By [2, Theorem 2.3], we can take a φ -mean $m \in \mathfrak{A}^{**}$. Consider the \mathfrak{A} -bimodule inclusion map $\iota : \mathfrak{A}_* \to \mathfrak{A}^*$. Taking adjoints, we obtain a $w^* - w^*$ -continuous \mathfrak{A} -bimodule map $\xi : \mathfrak{A}^{**} \to \mathfrak{A}$. Now put $u = \xi(m) \in \mathfrak{A}$. It is easily checked that $\varphi(u) = 1$ and $ua = au = \varphi(a)u$ for all $a \in \mathfrak{A}$. Therefore, by Theorem 3.1 below, \mathfrak{A} is φ -contractible.

(ii) \Rightarrow (iii) Choose $u \in \mathfrak{A}$ as in Theorem 3.1. Then it is readily seen that u is a φ -mean and hence \mathfrak{A} is φ -amenable.

(iii) \Rightarrow (i) By [2, Theorem 2.3] again, every φ -amenable Banach algebra is φ -Connes amenable. This is noted in [2] (see the remark following Definition 2.2). Alternatively, we can appeal to [6, Theorem 1.1]. Let $E = (E_*)^*$ be a normal dual Banach \mathfrak{A} -bimodule with $E \in {}_{\varphi}\mathbb{M}$ and let $D : \mathfrak{A} \to E$ be a w^* -continuous derivation. Since \mathfrak{A} is φ -amenable, D is inner by [6, Theorem 1.1]. Hence, \mathfrak{A} is φ -Connes amenable.

Now we consider the definition of φ -Connes amenability in the sense of [10]. Let \mathfrak{A} be a dual Banach algebra and let $\varphi \in \Delta_{W^*}(\mathfrak{A})$. According to [10, Definition 2.1], \mathfrak{A} is (*left*) φ -*Connes amenable* if there exists $m \in \mathfrak{A}$ such that $m(\varphi) = 1$ and $am = \varphi(a)m$

A. Mahmoodi

for every $a \in \mathfrak{A}$. By Theorem 3.1, left φ -Connes amenability is nothing but right φ -contractibility. Hence, the following theorem is straightforward.

THEOREM 2.2. Suppose that \mathfrak{A} is a dual Banach algebra and $\varphi \in \Delta_{w^*}(\mathfrak{A})$. Then the following statements are equivalent:

- (i) \mathfrak{A} is φ -Connes amenable (in the sense of [10]);
- (ii) \mathfrak{A} is φ -contractible;
- (iii) \mathfrak{A} is φ -amenable.

Let \mathfrak{A} be a dual Banach algebra and let *E* be a Banach \mathfrak{A} -bimodule. As in [9], we write $\sigma wc(E)$ for the set of all elements $x \in E$ such that the maps

$$\mathfrak{A} \to E, \quad a \mapsto \begin{cases} a \cdot x, \\ x \cdot a \end{cases}$$

are w^* -weak continuous.

The following lemma is immediate.

LEMMA 2.3. Suppose that \mathfrak{A} is a dual Banach algebra. Then $\Delta_{w^*}(\mathfrak{A}) = \Delta(\mathfrak{A}) \cap \sigma wc(\mathfrak{A}^*)$.

The notion of φ -Connes amenability as defined in [7] is based on Lemma 2.3. Suppose that \mathfrak{A} is a dual Banach algebra and $\varphi \in \Delta_{w^*}(\mathfrak{A})$. We call \mathfrak{A} (*right*) φ -Connes amenable if \mathfrak{A} admits a (*right*) φ -Connes mean m, that is, there exists a bounded linear functional m on $\sigma wc(\mathfrak{A}^*)$ satisfying $m(\varphi) = 1$ and $m(f \cdot a) = \varphi(a)m(f)$ for all $a \in \mathfrak{A}$ and $f \in \sigma wc(\mathfrak{A}^*)$. Similarly, we may consider *left* φ -Connes amenability. We say that \mathfrak{A} is φ -Connes amenable if it is both left and right φ -Connes amenable.

THEOREM 2.4. Suppose that $\mathfrak{A} = (\mathfrak{A}_*)^*$ is a dual Banach algebra and $\varphi \in \Delta_{w^*}(\mathfrak{A})$. Then the following statements are equivalent:

- (i) \mathfrak{A} is φ -Connes amenable (in the sense of [7]);
- (ii) \mathfrak{A} is φ -contractible;
- (iii) \mathfrak{A} is φ -amenable.

PROOF. Only (i) \Leftrightarrow (ii) needs proof. Let $\iota : \mathfrak{A} \to \sigma wc(\mathfrak{A}^*)^*$ be the \mathfrak{A} -bimodule map obtained by composing the canonical inclusion $\mathfrak{A} \to \mathfrak{A}^{**}$ with the quotient map $\mathfrak{A}^{**} \to \sigma wc(\mathfrak{A}^*)^*$, so that $\langle \iota(a), \psi \rangle = \psi(a)$ for all $a \in \mathfrak{A}$ and $\psi \in \sigma wc(\mathfrak{A}^*)$.

(i) \Rightarrow (ii) Since \mathfrak{A} is a dual Banach algebra, \mathfrak{A}_* is an \mathfrak{A} -bimodule and $\mathfrak{A}_* \subseteq \sigma wc(\mathfrak{A}^*)$ (see [9, Corollary 4.6]). Taking adjoints gives a $w^* - w^*$ -continuous \mathfrak{A} -bimodule map $\xi : \sigma wc(\mathfrak{A}^*)^* \longrightarrow \mathfrak{A}$. Notice that $\xi \circ \iota(a) = a$ for all $a \in \mathfrak{A}$. By the assumption, there exists a φ -Connes mean $m \in \sigma wc(\mathfrak{A}^*)^*$. Set $u = \xi(m) \in \mathfrak{A}$. Then \mathfrak{A} is φ -contractible by Theorem 3.1.

(ii) \Rightarrow (i) Take $u \in \mathfrak{A}$ satisfying $\varphi(u) = 1$ and $ua = au = \varphi(a)u$ for all $a \in \mathfrak{A}$. Then $\iota(u)$ is a φ -Connes mean on $\sigma wc(\mathfrak{A}^*)$.

276

For a given dual Banach algebra \mathfrak{A} , it would be interesting to determine the set $\Delta_{w^*}(\mathfrak{A})$. We give some illustrative examples. It is known that $\mathcal{L}(\mathfrak{H})$, the algebra of all bounded linear operators on a Hilbert space \mathfrak{H} , is a dual Banach algebra. Let \mathfrak{A}_V be the dual Banach algebra generated by the *Volterra operator* $V \in \mathcal{L}(L^2([0, 1]))$ defined

by $Vf(x) = \int_0^x f(t) dt$. In fact, \mathfrak{A}_V is the *w*^{*}-closure of the algebra of all polynomials p(V) in $\mathcal{L}(L^2([0, 1]))$. In [1, Corollary 3.10], it was shown that $\Delta_{w^*}(\mathfrak{A}_V) = \emptyset$. Next, for the discrete convolution algebra $\ell^1(\mathbb{Z}^+)$, it is well known that $\Delta(\ell^1(\mathbb{Z}^+)) \cong \overline{\mathbb{D}}$, where \mathbb{D} denotes the open unit disc in \mathbb{C} centred at 0 (see [6, Example 2.5(2)]). Indeed, $\Delta(\ell^1(\mathbb{Z}^+))$ consists precisely of the point evaluations $\varphi_z(f) = f(z)$ for $f \in \ell^1(\mathbb{Z}^+)$ and $z \in \overline{\mathbb{D}}$. It is easy to check that φ_z is *w*^{*}-continuous when $z \in \mathbb{D}$. Therefore, $\Delta_{w^*}(\ell^1(\mathbb{Z}^+))$ is a dense subset of $\Delta(\ell^1(\mathbb{Z}^+))$.

3. φ -contractibility

It is known that right [left] φ -contractibility of \mathfrak{A} is equivalent to the existence of a *right* [*left*] φ -*diagonal* for \mathfrak{A} , that is, an element $m \in \mathfrak{A} \widehat{\otimes} \mathfrak{A}$ such that $\varphi(\pi(m)) = 1$ and $a \cdot m = \varphi(a)m$ [$m \cdot a = \varphi(a)m$] for $a \in \mathfrak{A}$, where $\pi : \mathfrak{A} \widehat{\otimes} \mathfrak{A} \to \mathfrak{A}$ is the bounded linear map determined by $\pi(a \otimes b) = ab$. If *m* is both a left and a right φ -diagonal, it is called a φ -*diagonal*.

The following theorem is likely to be well known, but since we could not locate a reference, we include a proof.

THEOREM 3.1. Suppose that \mathfrak{A} is a Banach algebra and $\varphi \in \Delta(\mathfrak{A})$. Then \mathfrak{A} is φ -contractible if and only if there exists an element $u \in \mathfrak{A}$ satisfying

$$\varphi(u) = 1$$
 and $ua = au = \varphi(a)u$ for $a \in \mathfrak{A}$. (*)

PROOF. Suppose that $u \in \mathfrak{A}$ satisfies the conditions in (*). Let $D : \mathfrak{A} \to E$ be a derivation for a Banach \mathfrak{A} -bimodule $E \in \mathbb{M}_{\varphi}$. Then $D^*(f \cdot a) = D^*(f) \cdot a - \langle Da, f \rangle \varphi$ for each $f \in E^*$ and $a \in \mathfrak{A}$. Put $t := Du \in E$. For $f \in E^*$ and $a \in \mathfrak{A}$,

$$\langle f, a \cdot t \rangle = \langle D^*(f \cdot a), u \rangle = \langle D^*(f), au \rangle - \langle Da, f \rangle = \varphi(a) \langle D^*(f), u \rangle - \langle Da, f \rangle = \varphi(a) \langle f, t \rangle - \langle Da, f \rangle.$$

Therefore, $a \cdot t = \varphi(a)t - Da$ for $a \in \mathfrak{A}$. Thus, $D = ad_{-t}$ and \mathfrak{A} is right φ -contractible. Notice that to get right φ -contractibility, we use only $au = \varphi(a)u$. A similar argument shows that \mathfrak{A} is also left φ -contractible.

Conversely, suppose that $m \in \mathfrak{A} \otimes \mathfrak{A}$ is a φ -diagonal for \mathfrak{A} . Put $u := \pi(m) \in \mathfrak{A}$. It is easily checked that u has the properties in (*).

Let \mathfrak{A} be a Banach algebra with the *unitisation* \mathfrak{A}^{\sharp} and let *P* be a left Banach \mathfrak{A} -module. We recall that *P* is a *projective* left \mathfrak{A} -module if the multiplication map

$$\pi: \mathfrak{A}^{\sharp} \widehat{\otimes} P \to P, \quad a \otimes x \mapsto a \cdot x \quad \text{for } a \in \mathfrak{A}^{\sharp}, x \in P,$$

has a right inverse which is also a left \mathfrak{A} -module homomorphism. Similar definitions hold for projective right \mathfrak{A} -modules and projective \mathfrak{A} -bimodules.

For $\varphi \in \Delta(\mathfrak{A})$, the space $\mathbb{C}_{\varphi} = \{ \alpha \varphi : \alpha \in \mathbb{C} \}$ is a Banach \mathfrak{A} -bimodule with module actions $a \cdot \varphi = \varphi \cdot a := \varphi(a)\varphi$ for $a \in \mathfrak{A}$.

A. Mahmoodi

THEOREM 3.2. Suppose that \mathfrak{A} is a Banach algebra and $\varphi \in \Delta(\mathfrak{A})$. Then \mathfrak{A} is φ -contractible if and only if \mathbb{C}_{φ} is a projective Banach \mathfrak{A} -bimodule.

PROOF. Without loss of generality, we may assume that \mathfrak{A} is unital. Let \mathbb{C}_{φ} be projective as a left \mathfrak{A} -module. Then there exists a bounded linear map $\rho : \mathbb{C}_{\varphi} \longrightarrow \mathfrak{A} \widehat{\otimes} \mathbb{C}_{\varphi}$ satisfying $\pi \rho(\varphi) = \varphi$ and $a \cdot \rho(\varphi) = \varphi(a)\rho(\varphi)$ for each $a \in \mathfrak{A}$. We have $\rho(\varphi) = \sum_{n=1}^{\infty} a_n \otimes \varphi$, where $a_n \in \mathfrak{A}$ for n = 1, 2, ... and $\sum_{n=1}^{\infty} ||a_n|| < \infty$. Put $u := \sum_{n=1}^{\infty} a_n \in \mathfrak{A}$. Then $\varphi(u) = 1$ and $au = \varphi(a)u$ for $a \in \mathfrak{A}$. By Theorem 3.1, \mathfrak{A} is right φ -contractible.

Conversely, let \mathfrak{A} be right φ -contractible. Take $u \in \mathfrak{A}$ with $\varphi(u) = 1$ and $au = \varphi(a)u$ for all $a \in \mathfrak{A}$. Then it is easy to verify that the map $\rho : \mathbb{C}_{\varphi} \longrightarrow \mathfrak{A} \widehat{\otimes} \mathbb{C}_{\varphi}$ defined by $\rho(\varphi) := u \otimes \varphi$ is a left \mathfrak{A} -module homomorphism which is a right inverse of π . It follows that \mathbb{C}_{φ} is a projective left \mathfrak{A} -module.

Similarly, one can see that \mathbb{C}_{φ} is a projective right \mathfrak{A} -module if and only if \mathfrak{A} is left φ -contractible.

Acknowledgement

The author would like to thank the anonymous reviewer for much helpful advice that improved the presentation of the paper, especially for directing us to the reference [1] and Lemma 2.3.

References

- B. Chevreau, I. B. Jung, E. Ko and C. Pearcy, 'Weak* continuous characters on dual algebras', *Indiana Univ. Math. J.* 54 (2005), 187–198.
- [2] A. Ghaffari and S. Javadi, 'φ-Connes amenability of dual Banach algebras', Bull. Iranian Math. Soc. 43 (2017), 25–39.
- [3] A. Ya. Helemskii, *The Homology of Banach and Topological Algebras* (Springer, Netherlands, 1989) (translated from the Russian).
- [4] Z. Hu, M. S. Monfared and T. Traynor, 'On character amenable Banach algebras', *Studia Math.* 193(1) (2009), 53–78.
- [5] B. E. Johnson, *Cohomology in Banach Algebras*, Memoirs of American Mathematical Society, 127 (American Mathematical Society, Providence, RI, 1972).
- [6] E. Kaniuth, A. T. Lau and J. Pym, 'On φ -amenability of Banach algebras', *Math. Proc. Cambridge Philos. Soc.* **144** (2008), 85–96.
- [7] A. Mahmoodi, 'On φ-Connes amenability of dual Banach algebras', J. Linear Topol. Algebra 3 (2014), 211–217.
- [8] M. S. Monfared, 'Character amenability of Banach algebras', *Math. Proc. Cambridge Philos. Soc.* 144 (2008), 697–706.
- [9] V. Runde, 'Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule', *Math. Scand.* **95** (2004), 124–144.
- [10] B. Shojaee and M. Amini, 'Character Connes-amenability of dual Banach algebras', *Period. Math. Hungar.* 74 (2017), 31–39.
- [11] M. C. White, 'Injective modules for uniform algebras', Proc. Lond. Math. Soc. 73(1) (1996), 155–184.

AMIN MAHMOODI, Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran e-mail: a_mahmoodi@iauctb.ac.ir