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Nest Representations of TAF Algebras

Alan Hopenwasser, Justin R. Peters and Stephen C. Power

Abstract. A nest representation of a strongly maximal TAF algebra A with diagonal D is a representation 7 for
which Lat 7(A) is totally ordered. We prove that ker 7 is a meet irreducible ideal if the spectrum of A is totally
ordered or if (after an appropriate similarity) the von Neumann algebra m(D)’/ contains an atom.

1 Introduction

Irreducible *-representations and their kernels, the primitive ideals, play a fundamental
role in the theory of C*-algebras. For example, the structure of the lattice of all ideals in
a C"-algebra is determined by the space of primitive ideals with the hull-kernel topology
(there is a bijection between the lattice of ideals and the lattice of closed subsets of the
primitive ideal space) and every ideal is the intersection of those primitive ideals which
contain it.

Recent work by Michael Lamoureux [6], [7], [8] has shown that a similar situation
prevails in a number of non-self-adjoint operator algebra settings. One motivation for
investigating non-self-adjoint algebras arises from dynamical systems. While C*-crossed
products constructed from dynamical systems are very useful in the study of dynamical
systems, some essential information may be lost. (There are different dynamical systems
which give rise to isomorphic C*-crossed products.) In the case of free, discrete systems,
the remedy is to look instead at the semi-crossed product (a non-self-adjoint algebra) as-
sociated with the system (see [1], [11], [12]). In this context there is a bijection between
the isomorphism classes of (free, discrete) dynamical systems and their associated semi-
crossed products. This correspondance is established via an analysis of the space of ideals
of the operator algebra.

In attempting to extend this program to other dynamical systems, Lamoureux drew at-
tention to nest representations and their kernels (which he called n-primitive ideals). A
nest representation w of an operator algebra A is simply a continuous algebra homomor-
phism of A into some B(JH) with the property that the lattice of projections invariant un-
der m(A) is totally ordered. Nest representations do not arise naturally as a concept in the
C*-algebra context. For one thing, most representations arising in C*-algebra theory are
*-representations. A projection is invariant under a *-representation if, and only if, it is
reducing; consequently, for *-representations, the family of nest representations reduces to
the family of irreducible representations. Even if one looks at representations which are
not *-representations, the n-primitive ideals in a C*-algebra are just the primitive ideals.
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(Nest representations are necessarily topologically cyclic—this is valid for nest representa-
tions of any Banach algebra with a bounded approximate identity [6]—and Haagerup [4]
has shown that a cyclic representation of a C*-algebra is similar to a *-representation.)

In the non-self-adjoint context, the story is quite different. Non-self-adjoint algebras
may lack primitive ideals, but n-primitive ideals generally abound. Lamoureux has shown
that, at least in the presence of certain hypotheses, n-primitive ideals in semi-crossed prod-
ucts provide information about arc spaces in dynamical systems, so that the semi-crossed
product essentially determines the dynamical system. He has also shown that, in a variety
of contexts, the n-primitive ideals carry a topology and that the lattice of closed sets in this
topology is isomorphic to the lattice of ideals in the original algebra. Also, every ideal is
equal to the intersection of the n-primitive ideals which contain it. Thus, for general oper-
ator algebras, n-primitive ideals are often a suitable replacement for the primitive ideals of
C*-algebra theory.

The topology which Lamoureux puts on the n-primitive ideals is, of course, the hull-
kernel topology. In order to show that the hull-kernel operation yields a topology, Lam-
oureux uses a technical property for ideals which is related to meet irreducibility and which
implies meet irreducibility. (An ideal J is meet irreducible if, for any ideals J and X,
J=9JNK =T =JorJ = K.) Meet irreducibility arises in [7] in connection with
semi-crossed products and dynamical systems.

The following four results from [8] indicate that meet irreducibility will be closely re-
lated to n-primitivity in diverse operator algebra contexts.

(1) Let J be a closed, two-sided ideal in a separable C*-algebra. Then J is n-primitive
<= J is primitive <= J is prime <= J is meet irreducible. (Some of this has, of
course, been known for a long while.)

(2) LetJbea closed, two-sided ideal in Alg(N)NI, where N is a nest of closed subspaces in
some Hilbert space I, Alg(N) is the associated nest algebra consisting of all operators
which leave invariant each subspace in N, and X is the algebra of all compact operators
acting on J{. Then, J is n-primitive <= J is meet irreducible <= J is the kernel of
the compression map of Alg(N) N X to some interval from N.

(3) LetJ be a closed ideal in the disk algebra, A(ID), the algebra of continuous functions
on the unit disk of € which are analytic in the interior. Then, J is n-primitive <= J
is meet irreducible <= J is either primary or zero. (In this context, it is not true that
every ideal is the intersection of meet irreducible ideals.)

(4) Let A= T, @ --- D T, bea direct sum of upper triangular n; by n; matrix algebras
and let J be a two-sided ideal in A. Then, J is n-primitive <= J is meet irreducible.

Meet irreducible ideals in the context of triangular AF algebras (TAF algebras) were in-
vestigated in [3]. In particular, it was proven that every meet irreducible ideal in a strongly
maximal TAF algebra is n-primitive [3, Theorem 2.4]. Once again, the lattice of all ideals is
isomorphic to the lattice of closed sets in the space of meet irreducible ideals with the hull-
kernel topology and every ideal is an intersection of meet irreducible ideals. The converse,
“every n-primitive ideal is meet irreducible,” was left open, however; it is the purpose of
this note to investigate this converse in the context of strongly maximal TAF algebras. In
Section 2 we describe a broad class of algebras (those characterized by “totally ordered spec-
trum”) for which the converse always holds. In Section 3 we show that the converse is valid
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for any nest representation which is similar to a representation 7 which is a *-representa-
tion on the diagonal D of the algebra and for which the von Neumann algebra generated
by 7(D) contains an atom. These two sections may be read independently of each other.

1.1 Notation

We now establish notation and terminology. Let B be an AF C*-algebra and let D be a
canonical masa in B. This implies that there is a sequence of finite dimensional C*-algebras
B; and embeddings ¢;: B; — B;j;; such that B = lirg(B,-, ¢;) and D = ligl(Di, ®;), where
each D; = DN B, is a masa in B; and each ¢; maps the normalizer of D; into the normalizer
of Diy;. In particular, the D-normalizing partial isometries in B have a linear span which is
dense in B (w normalizes D if wDw* C D and w*Dw C D; the set of D-normalizing partial
isometries in B is denoted by Np(B)). A TAF algebra A with diagonal D is a subalgebra of
B such that A N A* = D. It follows that A = lii>n(Ai7 ¢;), where A; = AN B;, for all i.
Each A; is necessarily triangular in B; with diagonal D;; if, in addition, each A; is maximal
triangular then we say that A is strongly maximal. This is equivalent to requiring that A+ A*
be dense in B.

AF C*-algebras are groupoid C*-algebras with groupoids which are especially tractable:
the groupoids are topological equivalence relations. As such, the C*-algebra can be iden-
tified with an algebra of functions on the groupoid. Subalgebras such as TAF algebras and
ideals determine and are determined by appropriate substructures of the groupoid. This
provides a coordinatization for TAF algebras and their ideals.

The following is a brief sketch of this coordinatization for strongly maximal TAF alge-
bras. For a more thorough description, see [13] or [9]. Let (D, A, B) be a triple in which
B is an AF C"-algebra, D is a canonical masa, and A is a strongly maximal TAF subalge-
bra of B with diagonal D. We need to describe the spectral triple, (X, P, G) associated with
(D, A, B). The first ingredient X is the usual spectrum of the abelian C*-algebra D (so that
D = C(X)). Note that, in the present context, X will be a Cantor space. The algebra B
is generated by partial isometries which normalize D. Each normalizing partial isometry
induces a partial homeomorphism of X into itself (a homeomorphism of a closed subset
of X onto another closed subset). The union of the graphs of these homeomorphisms is
an equivalence relation; when this set is topologized so that the graph of each normalizing
partial isometry is open and closed, one obtains the groupoid G. The spectrum P of A is
the union of the graphs of the normalizing partial isometries which lie in A.

If x € X, the equivalence class in G which contains x is referred to as the orbit of x (since
it consists of all the images of x under homeomorphisms associated with D-normalizing
partial isometries) and is denoted by orb,. When (x, y) € P, we shall often write x < y;
when A is strongly maximal, P induces a total order on each orbit.

Now suppose that 7 is a nest representation of a TAF algebra A. Since D is an abelian
C*-algebra, results in [5] imply that the restriction of 7 to D is similar to a *-representa-
tion. (For the limited domain in which we need this theorem, abelian C*-algebras, Kadison
attributes this fact to unpublished 1952 lecture notes of Mackey.) Thus any nest represen-
tation of a TAF algebra is similar to another nest representation whose restriction to the
diagonal is a *-representation. Accordingly, we assume throughout this paper that any nest
representation 7w of a TAF algebra A acts as a *-representation on the diagonal, D.
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2 Totally Ordered Spectrum

In this section, A will be a strongly maximal TAF algebra whose C*-envelope B is simple.
This implies that the orbit of each element in X is dense in X. The diagonal of A is denoted
by D. The spectral triple for (D, A, B) is (X, P, G). We assume that X has a total order <
which agrees on each equivalence class with the total order induced by P. X has a minimal
and a maximal element, which we denote by 0 and 1, respectively. If a € X, we say that
a has a gap above if a has an immediate successor and that a has a gap below if a has an
immediate predecessor.

FElements of B will be viewed as continuous functions in Co(G); elements of A are contin-
uous functions whose supports lie in P. Of course, not all elements of Cy(G) are elements
of B, but all those with compact support certainly are in B. When elements of B are viewed
as functions, the multiplication is given by a convolution formula with respect to a Haar
system consisting of counting measure on each equivalence class from G.

If Y is a clopen subset of X, then Ey denotes the projection in D correspondingto Y (i.e.,
the characteristic function of Y). If a is an element of X, [0, a] denotes the set {x € X |
0 < x < a}. When a # 1, [0,a] is clopen if, and only if, a has a gap above. This occurs
precisely when the characteristic function of [0, a] is continuous and hence a projection
(not the identity) in D.

In the situation where X carries a total order compatible with P, the meet irreducible
ideal sets have been completely described in Theorem 3.1 in [3]. For the convenience of
the reader, we restate that theorem here. For each pair of elements a and b in X, define two
subsets of P:

oap ={(x,y) €EP|x<aorb=<y},

Tap = Oab U {(aa b)}

The set 0,5 is an ideal set in P; the set 7, is an ideal set provided that (a,b) € P and 7, is
an open subset of P. (We always assume that these two conditions hold.)

Theorem 2.1  Assume that A is a strongly maximal TAF algebra with simple C*-envelope
and totally ordered spectrum. The following is a complete list of all the meet irreducible ideal
sets in P:

1) Ta,bs lf(aa b) € P;
2) Oap if (a,b) ¢ P and either a has no gap above or b has no gap below;
3) Tap, where either a has no gap above or b has no gap below.

Theorem 2.2 Let 7 be a continuous nest representation of A, where A is a strongly maximal
TAF algebra with simple C*-envelope and totally ordered spectrum. Then the kernel of 7 is a
meet irreducible ideal in A.

Proof Let 7 be a continuous nest representation of A acting on the Hilbert space J{. Let
be the ideal set in P which corresponds to the ideal ker 7. Through a series of facts, we will
show that o is one of the meet irreducible ideal sets listed in Theorem 2.1; consequently,
ker 7 is meet irreducible.
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Fact1  Suppose that a has a gap above or, equivalently, that Ejy ) is a projection in A not
equal to the identity. Then Ej q) is invariant for A and hence w(Ejq)) € Latm(A).

Proof Let f € A;view f as a Cy function on G. For any (x, y) € G,

fEoa(x,y) = > f(x,2)Epa(z )

z€orb,
) fxy), ity =a
0, otherwise

= E[0,a)(x, %) f(x, ¥)Ej0.a) (3, ¥)
= Ef0,a) fEj0.a1 (%, y).

We use the fact that (x, y) € supp f implies that x < y in X. ]

Fact2 If a has a gap above and if there is a point (a,c) € P\ o, then w(Ej,) # 0 and
m(E[0,q)) is a non-trivial invariant projection for m(A).

Remark If we were not assuming that 7 is normalized to a *-representation of D, then
m(E[o,q)) would be a non-trivial idempotent whose range is an invariant subspace for 7(A).

Proof Since (a,4a) o (a,c) = (a,c) and o is an ideal set, (a,a) € P\ 0. If m(E[o o) = 0, then
Ejo.q1 € ker m; hence, supp Ejo 4 C 0. Thus (a,a) € o, a contradiction. [ |

Fact3  Ifb has a gap below and if there is a point (¢, b) € P\ o, then w(E17) # 0.
Proof Essentially the same as for Fact 2: (¢, b) o (b, b) = (¢, b), so (b,b) € P\ 0. [ |

Fact4  Assume a has a gap above, b has a gap below, m(Ejgq) # 0, and w(Epp17) # 0. If
Ej0.a1 fE) € kerm forall f € Np(A) (o, for all f in a set with linear span dense in A), then
0 iS not a nest representation.

Proof Since ker 7 is closed, Ejg 4 fE[p,1] € kerm, forall f € A. As a consequence, we have
T(Ej.a))T(f)m(Epy) = 0, forall f € A. Let X; be the range of m(Ej4) and X, be the
norm closure of m(A)m(Ep, 7). Then X; and X, are non-zero invariant subspaces for
m(A) and K; N K, = (0). So Lat7w(A) is not totally ordered by inclusion; 7 is not a nest

representation. [ ]
In what follows we use the standard identification of X with the diagonal of P, i.e., with
{(x,x) | x € X}.

Fact5 If 7 is a nest representation, then (P \ o) N X is an interval in X.
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Proof Suppose not. Then there are three points a, b, ¢ with a < b < ¢ in X such that
(a,a) € P\ o, (b,b) € 0, and (c,c) € P\ o. It follows that if (x,y) € Pwithx < b
and b = y, then (x,y) € 0. (Since o is open there is a neighborhood of (b, b) which
is contained in o; use the assumption that all orbits are dense and the ideal set property
for o.)

Choose vand #sothata < a < b, b < 3 < ¢, a has a gap above, and ( has a gap below.
(Since X is a totally ordered Cantor set, either a itself has a gap above or there are infinitely
many points between a and b which have a gap above; this guarantees the existence of cv.
The existence of 3 is handled analogously.) Then (a,a) € supp E{g q]; hence w(E[,4)) # 0
and the range of 7(E[g ) is in Lat w(A). Also, (b, b) € supp Ejg,1), so m(Eg,1;) # 0. For
any g € A,

(x,y) € suppEjo.a1gEip1) = x X a <bandb< =<y

= (x,y) €0.

Consequently, Ejo .18E|s,1] € ker m. Fact 4 now implies that 7 is not a nest representation,
contradicting the hypothesis. ]

Assume 7 is a nest representation and that a is the left endpoint of (P \ o) N X and
b is the right endpoint of (P \ o) N X. Each of a and b may or may not be elements of
(P \ o) N X. However, if a has a gap above, then without loss of generality, we may assume
thata € (P \ o) N X (simply replace a by its immediate successor, if necessary). Similarly,
if b has a gap below, we may assume that b € (P \ o) N X.

Fact6 Ifa<a=<p<band(a,pB) € P, then(a,) € P\ o.

Proof Suppose thata < o X 3 < b, (o, ) € P, and (, 3) € 0. Choose & and 3 so
thata < @ = a <X =X [ < b, & has a gap above, and [ has a gap below. [Exceptions: if
« = succa, choose & = a and note that this element is not in o N X; if § = pred b, choose

(3 = b and note that this is not in o N X.]

It follows that 7(E[o4)) is non-zero and has range in Lat w(A) and that w(E5,;) # 0.
Let ¢ € A be arbitrary. If (x, y) is in supp Ejo a)gE3,)> then x = & = aand 3 = B =y
hence (x, y) € o. Thus Ejoa)gE3,; € kerm, for all g. Fact 4 now implies that 7 is not a
nest representation, a contradiction. [ ]

Conclusion A If w is a nest representation and a and b are the endpoints of the interval
(P\ o)NX, then

{(x,y)€P|x<aorb<y} CoC{(x,y) €P|x=aorb=y}.
Proof The conclusion follows from the following implications for a point (x, y) € P:

x<a= (x,x) €0 = (x,y) €0
b<y= (y,y) €0 = (x,y) €0

a<x=y<b=(x,y) € P\o. u

https://doi.org/10.4153/CJM-2000-051-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2000-051-7

Nest Representations 1227

Given a and b in X, let

H={(a,y)eP|a=<y=<b}, and
V ={(x,b) e P|a=<x=b}

Fact7  If a has no gap above, then HN o C {(a,b)}. If b has no gap below, then V N o C
{(a,b)}.

Proof This follows immediately from the fact that o is an open subset of P. ]
Fact8 Ifa has a gap above, then either HNo = HorHNo C {(a,b)}.

Proof Assume the contrary. Then (a,a) ¢ o and there is § such thata < 3 < b and
(a,3) € o. Consider two cases. First, assume that 3 = pred b. In this case, since b has
a gap below, we also have available the assumption that (b,b) ¢ o. (See the comments
after Fact 5.) Since (a,a) ¢ o and (b,b) ¢ o, both m(Ej,) and w(E[1)) are non-zero.
Furthermore, for any ¢ € A, supp Ejoq1gEp1] € 0. Indeed, if (x, y) € supp Ejo a18E[p.a1>
thenx <aand b <X y. Ifeitherx < aorb < y,the (x,y) € 0. If x = aand y = b, then
(a,b) = (x,y) € P;since (a, 3) € o, we also have (a,b) € o. Fact 4 implies that 7 is not a
nest representation, a contradiction.

In the alternative case, 3 < band there is 3 such that 3 < 3 < band /3 has a gap below.
Since (3,0) ¢ o, m(E(g,)) # 0. As before, m(Ejoq)) # 0. Let (x,y) € supp Ej0.a18E31)>
where g is any element of A. If x < a then (x,y) € 0. If x = athen 3 < 3 < y, whence
(x,y) = (a, y) € . Once again, Fact 4 yields a contradiction. [ |

Fact9 Ifb has a gap below, then either VN o =V orVNo C {(a,b)}.

Proof The idea behind the proof is essentially the same as in the proof of Fact 8. This time,
if the conclusion does not hold, then (b,b) ¢ o and there is « such thata < o < b and
(o, b) € 0. If & = succa then take & = a; otherwise, take & so that a < @ < « and & has
a gap above. Now apply Fact 4 to Ejo 4] and Ep ;. ]

Conclusion B Conclusion A and Facts 8 and 9 imply that o has one of the following two
forms:

oap ={(x,y) EP|x<aorb<y} or
Tab = Oab U {(aa b)}

Note that the latter is a possibility only if (a, b) € P and 7, is open.

Fact 10  If a has a gap above and b has a gap below and either o = o, with (a,b) ¢ P or
0 = Ta, then T is not a nest representation.

Proof Apply Fact 4 to Ejg 4 and Efp 3. |

This effectively ends the proof of Theorem 2.2. If 7 is a nest representation, then o is
one of the ideal sets listed in Theorem 2.1. Since these are all meet irreducible, we have
proven that ker 7 is meet irreducible. ]
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3 Nest Representations with Atoms

In this section we give a condition on a nest representation which guarantees that ker 7 is
meet irreducible. This condition requires that 7 be a *-representation on the diagonal of the
strongly maximal TAF algebra. As pointed out in the introduction, any nest representation
is similar to one with this property; consequently, we assume throughout this section that
the restriction of 7 to D is a *-representation.

Recall that, in a von Neumann algebra D, a projection E is said to be an atom if E
majorizes no proper (nonzero) subprojection. D is atomic if, for any projection P € D,
P=\/{E€D:Eisanatomand E < P}.

If 7 is a nest representation of a strongly maximal TAF algebra A with diagonal D such
that the von Neumann algebra 7(D)’’ contains an atom, then ker 7 is meet irreducible.
This is established in Theorem 3.9, for which we give two proofs. The first proof depends
on Theorem 2.1 in [3]; the alternative proof is independent of this theorem. Both proofs
require the fact (established in Proposition 3.5) that if 7(D)’’ contains an atom, then it is an
atomic von Neumann algebra. The alternative proof can be read immediately after Proposi-
tion 3.5; from this point on it uses the inductivity of ideals rather than the spectrum charac-
terization of meet irreducible ideals from [3]. In fact, a reader willing to assume that 7w(D)"’
is atomic can read the alternative proof to Theorem 3.9 immediately after Lemma 3.1. This
provides a much shorter route to a somewhat weaker theorem. The alternative proof can
be found at the end of this section.

If (D)’ is atomic, then Corollary 3.10 implies that Lat 7(A) is a purely atomic nest. The
reverse implication is false: Example 1.3 in [10] provides an example of a *-extendible repre-
sentation of a standard limit algebra for which Lat w(A) = {0, I} and 7(D) is weakly dense
in a continuous masa. Since kerm = {0} in this example, ker 7 is meet irrreducible; we
conjecture that ker 7 is meet irreducible any time that Lat w(A) contains an atom. Proposi-
tion 3.5 establishes a dichotomy: either (D)’ is atomic or else w(D)’’ contains no atoms
at all. This raises the natural question: is the same dichotomy valid for Latw(A)? This
dichotomy certainly does not hold for general nest representations (those which are not
*-representations on the diagonal); the failure is a consequence of the similarity theory for
nests. The proof of Theorem 2.4 in [3] applied to a refinement algebra provides an example
of a nest representation m of a TAF agebra whose nest is purely atomic, order isomorphic
to the Cantor set, and such that the atoms are ordered as the rationals. There exist nests
which are not purely atomic but which are order isomorphic to the Cantor nest and which
have (rank one) atoms ordered as the rationals; the similarity theorem for nests [2] gives
the existence of an invertible operator which carries the invariant subspace nest for = onto
a nest of the second type. The composition of 7 with this similarity yields a nest represen-
tation of a strongly maximal TAF algebra (the refinement algebra) which has atoms but is
not purely atomic.

As before, we let X denote the spectrum of the diagonal D of a TAF algebra A. This is a
zero dimensional topological space and the clopen sets form a basis for the topology. When
e is a projection in D, we let é denote the spectrum of e in X (i.e., the support set of e viewed
as an element of C(X)).

Now suppose that 7 is a *-representation of the diagonal D of a TAF algebra and let E be
the spectral measure associated with 7. E is a regular, projection valued measure defined on
the Borel sets of X which “agrees” with 7 on clopen subsets in the sense that E(¢) = m(e),
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where e is any projection in D and ¢ is its support in X. If D is the von Neumann algebra
generated by 7(D), then any projection P in D is of the form E(S), where S is a Borel subset
of X.

When S is a singleton {x} we shall write E, in place of E({x}). If ¢, is a decreasing
sequence of projections in D such that () é, = {x}, then, by the regularity of E, E, =
A\ 7(e,). In particular, A 7(e,) = A 7(f,) for any two decreasing sequences of projections
in D with &, = {x} and ) f, = {x}.

If there is a projection e in ker 7 with x € ¢, then clearly E, = 0. In this case, if é, is any
decreasing sequence of clopen sets with (]é, = {x}, then, since {é,} is a neighborhood
basis for x, we have m(e,) = 0 for all large n. The alternative is that w(e) # 0 for any
projection with x € & in particular, for any decreasing sequence e, with ()¢, = {x},
m(e,) # O for all n. The projection E, = /A 7(e,) may or may not be 0; it is, however,
independent of the choice of decreasing clopen sets with intersection {x}.

Note also that if x, y € X and x # y, then E(E, = 0.

Lemma 3.1 Let D be the diagonal of a TAF algebra; let m: D — B(H) be a *-representa-
tion; let E be the spectral measure for m; and let D be the von Neumann algebra generated by
(D). For any x € X, if Ex # 0 then E, is an atom of D. Conversely, if E, is an atom for D,
then there is a unique element x € X such that Ey = E,.

Proof Any projection in D has the form E(S) for some Borel subset S of X. Given x € X, if
x € Sthen E, < E(S) and if x ¢ S then E,E(S) = 0. This shows that when E, # 0, it is an
atom of D.

Now suppose that Ej is an atom of D. Let S be such that Ey = E(S). It is evident that
there is at most one point x € S such that E, # 0; we need to prove the existence of such a
point.

Since X is a Cantor set, we can find, for each n € N, 2" disjoint clopen sets ¢}, k =
1,...,2", whose union is X, with the further property that any decreasing sequence of
these sets has one-point intersection. Since Ej is an atom of D, for each n there is a unique
integer k, in {1,...,2"} such that B, < m(¢] ). Let x be such that (1, ¢} = {x}. Clearly,
Ey < E,. But E, is an atom when it is non-zero; hence Ey = E,. The uniqueness of x follows
immediately form the orthogonality of E, and E, when x # y. ]

Notation Let m: A — B(H) be a representation of a TAF algebra A (which acts as a
*-representation on the diagonal D). For £ € H and x € X let M¢ denote the smallest
m-invariant subspace which contains £ and M, denote the smallest 7-invariant subspace
which contains Ran E,.

Since the linear span of the D-normalizing partial isometries is dense in A, M is the
closed linear span of {w(v)¢ | v € Np(A)} and M is the closed linear span of {m(v){ | v €
Np(A), & € B},

We now need to investigate the manner in which D-normalizing partial isometries act
on atoms of D. Throughout the remainder of this section, A will denote a TAF algebra (we
will add the hypothesis that A is strongly maximal later); 7 will denote a nest representation
of A acting on a Hilbert space J(; D will denote the diagonal of A (with spectrum X); and
D =n(D)".
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Lemma3.2 Letv € Np(A)andletx € X. Ifx ¢ vy, then m(v)E, = 0. Ifx € VY,
there exists y € X such that (y,x) € v and n(v)Ex = E,w(v). In particular, if y # x,
Ran 7(v)E, L RanE,.

Proof Let {e,} be a decreasing sequence of projections in D with ()&, = {x}. If x & v*v,
then ve, = 0 for large n, in which case 7(v)E, = w(v)7w(e,)E; = w(ve,)E, = 0.

Now suppose that x € v*v and let y be such that (y,x) € V. With e, as above, let

fo = ve,v*, so that N f, = {y} and An(f,) = E,. Then ve, = f,v for large n;

hence 7(v)m(e,) = 7(f,)m(v) and, taking strong limits, w(v)E, = E,m(v). It follows that

Ran (W(V)Ex) C Ran E, and, hence, that E, and 7 (v) E have orthogonal ranges when y # x.

|

Remark Ifv € Np(A)and (y,x) € ¥, then w(v)E, = E,m(v)E;. Itis possible that 7(v)E, =
0 even when 7(v) # 0 and E, # 0.

Lemma 3.3 Letx € X. IfE, # O, then E, is a rank-one atom.

Proof Letx € X and assume that Ran E, contains two unit vectors £ and ¢ such that& L (.
Letv € Np(A). Since w(v)E, = w(v)w(e)E, for any projection e for which x € é, we may, by
a suitable restriction, reduce to considering two cases: when 7 is contained in the diagonal
{(z,2) | z € X} of G and when ¥ is disjoint from the diagonal. When ¥ is contained in
the diagonal, v is a projection in D and 7(v) either dominates E, or is orthogonal to E,.
In this case, either 7(v){ = £ and 7(v){ = ( or 7(v)§ = 0 and w(v)( = 0. When 7 is
disjoint form the diagonal of G, there is y € X such that y # x and (y,x) € 7. In this
case, 7(v)§ € RanE, and m(v)¢ € RanE,. In particular, 7(v){ L ¢ and w(v){ L & for all
v € Np(A).

It now follows that £ € Mg and § ¢ M, while ¢ € M¢ and ( ¢ M,. But 7 is a nest
representation and M, and M are m-invariant; hence one must contain the other. Thus,
the rank of E, is at most 1. u

Corollary 3.4  Let u,w € Np(A) and assume that u and w have a common subordinate. Let
(y, %) be a point in P such that (y,x) € it N Ww. Then m(u)E, = w(w)E, and, if E,, E, # 0,
Ran 7(u)Ex = Ran E,.

Proof Let e be a (nonzero) projection in D such that e < min{u*u, w*w} and x € é. (One
could just take e = u*uw*w.) Then ue = we. Since m(e) dominates E,,

m(u)E, = w(u)w(e)E, = m(ue)E, = m(we)E, = w(w)n(e)E, = m(w)E,.

For the second assertion, suppose E, and E, # 0. Now by Lemma 3.2, for any v €
Np(A), either 7(v)E, is zero or else m(v)E, is contained in Ran E, for some z € X with
(z,y) € v. Butas y < x, Ran7w(v)E, L RanE,. We have seen that M, the smallest
m-invariant subspace containing Ran E,, is disjoint from Ran E,; since 7 is a nest represen-
tation, it follows that M, C M. Thus, for some v, Ran7(v)Ex N RanE, # (0). Since
the ranges of E, and E, are one-dimensional, Ran w(v)E; = Ran E,. For such a v we have

(y,x) € V. By the first paragraph, v can be replaced by any u with (y, x) € 7. ]
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Proposition 3.5 Ey = \/{E, | x € X} is either 0 or L.

Proof Let E; = I — Ey. We shall show that both EyH and E,; H are invariant under 7. Since
7 is a nest representation, this means that one of them must be zero.

If EyH is not invariant, then for some v € Np(A) and £ € EgH, E;n(v)€ # 0. Now
& =Y {E& | x € X}, so there exists x € X with E;n(v)E,§ # 0. By Lemma 3.2, 7(v)E, =
E,7(v)Ey, for some y. Since 7(v)E, # 0 it follows that E,, # 0; hence E, is an atom in D.
As E; majorizes no atoms, E,E, = 0. On the other hand, 0 # E,7(v)E, = E,E,m(v)E,, so
that E,E, # 0. This contradiction shows that EyJ is invariant.

If E;JH is not invariant, there exists a vector £ € E;H and a D-normalizing partial
isometry v in A such that Eym(v)E;€ # 0. Since Ej is the sum of the atoms it majorizes,
E,m(v)E;§ # 0 for some y € X. By Lemma 3.2, there is an element x € X with E,7(v) =
E,7(v)E, whence E,m(v)E.E, # 0. In particular, E.E, # 0, which contradicts the fact that
E; majorizes no atoms. Thus, E;J{ is also invariant. |

Remark Let D be the von Neumann algebra generated by (D), where D is the diagonal of
the TAF algebra A. According to Proposition 3.5, if m: A — B(J) is a nest representation,
then either D is generated by its atoms (that is, D is purely atomic), or else it has no atoms.
(This, of course, presumes that the restriction of 7 to D is a *-representation.)

Lemma 3.6 Ifx and y are two points of X such that E, and E,, are both nonzero, then x and
y belong to the same orbit in X.

Proof If x and y are not in the same orbit, it follows that Ran E; 1. M, and Ran E, L M,
(Lemma 3.2). Since Ran E, € M, and Ran E, C M, M, and M, are not lineraly ordered,
a contradiction. [ |

Lemma 3.7  Assume, further, that A is a strongly maximal TAF algebra. If, for some x € X,
E, # 0, then ] = {z | E, # 0} is an interval in the orbit of x.

Proof If E, # 0, Lemma 3.6 implies that ] is contained in the orbit of x. If E, = 0 for all
z # x, we are done. Suppose then, that E, # 0 for some y # x in the orbit of x. Without
loss of generality we may assume that y < x. Let v € Np(A) be such that (y,x) € ¥. Then
M, C M, and Ran 7(v)E; = Ran E, (Corollary 3.4). In particular, 7(v)E, # 0.

Let z be a point in the orbit of x with y < z < x. Since A is strongly maximal, there exist
u,w € Np(A) with (y,z) € #1and (z,x) € w. Now 1(V)E, = w(uw)E, = mw(u)m(w)E,;
hence w(w)E, # 0. As Ran m(w)E, C Ran E,, it follows that E, 0 and, hence, z € J. This
shows that J is an interval. |

Corollary 3.8  If D has an atom and ] is the interval obtained in Lemma 3.7, then \/{E, |
x € J} =Iand D is a masa in B(IH).

Proof The first assertion follows from Lemma 3.1 and Proposition 3.5, since all atoms have
the form E,;, for some x € X. Since the set {E, | x € X} is a collection of commuting, rank-
one atoms whose ranges span 3, the von Neumann algebra which they generate is a masa
in B(H). [ |
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Theorem 3.9  Let A be a strongly maximal TAF algebra and w: A — B(H) be a nest repre-
sentation for which the von Neumann algebra D generated by (D) contains an atom. Then
the kernel of  is a meet irreducible ideal in A.

Proof By hypothesis, D contains an atom, necessarily of the form E,, for some x € X. By
Lemma 3.7, there is a nonempty interval J in an orbit in X with the following property:
for any D-normalizing partial isometry v, w(v) # 0 if, and only, if ] x ] intersects . In
other words, the complement of the spectrum of the ideal ker 7 contains (J x J) N P. But
the complement is a closed set, so it contains (J x J) N P. On the other hand, if v is a
D-normalizing partial isometry with ¢ disjoint from (J x J) N P, then w(v) = 0. Thus,

kerr =P\ (Jx ) NP.
By [3, Theorem 2.1], ker 7 is a meet-irreducible ideal. ]

Corollary 3.10 Let A, , and ] be as above and let N = Lat (A).

1) IfFis decreasing subset of J, then P = > {E, | x € F} € N. On the other hand, if P € N,
then F = {x | 0 # E, < P} is a decreasing subset of J. This correspondence between
decreasing subsets of | and projections in N is a bijection.

2) D = AlgN N (AlgN)* equals the von Neumann algebra generated by N.

Proof The first assertion is clear. For the second, first note that, since D is a masa, D =
AlgNN(AlgN)*. Letx € J,letP = {E, |y € Jandy < x},andletP_ =) {E, |y € ]
and y < x}. Then P_ is the immediate predecessor of Pin N and E, = P—P_. Thus, every
atom from D, and hence D itself, is contained in the von Neumann algebra generated by
N. The reverse inclusion is obvious. ]

There is an alternate proof for Theorem 3.9 based on a presentation for A rather than on
the spectrum of A and Theorem 2.1 in [3]. This proofis dependent only on the preliminary
results through Proposition 3.5; in fact, if the reader is willing to assume that 7(D)"’ is
purely atomic, then only Lemma 3.1 is needed. In the alternate proof, we view A as the
union of an ascending chain of subalgebras each of which is star extendibly isomorphic to
a maximal triangular subalgebra of a finite dimensional C*-algebra. Also we may assume
that a system of matrix units for each Ay has been selected in such a way that each matrix
unit in A is a sum of matrix units in Ag,;; this gives a matrix unit system for A. Another
fact from the lore of direct limit algebras that we need is that ideals are inductive: if I is an
ideal in A, then I is the closed union of the ideals I, = I N Ay in Ay.

Alternate Proof of Theorem 3.9 Assume that 7 is a nest representation but that ker 7 is
not meet irreducible. Let I and J be two ideals in A such that IN J = kermand I N J
differs from both I and J. By the inductivity of ideals, there exist matrix units u; € T\ J
and u; € J\ I. These matrix units must lie in some Ay; since we may replace the sequence
Ay by a subsequence, we may assume that u; and u; lie in A;.

Since u; ¢ J, m(u;) # 0. By Proposition 3.5,

m(uy) = Z Ex'/T(uI)Eya

x,y
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where the sum is taken over all pairs of atoms and is convergent in the strong operator
topology. Consequently, there exist points x; and y; in X such that Ey 7(u)E,, # 0. For
each k, letef and f] be the unique diagonal matrix units in Ay such thatx; € ¢} and y; € fk’ .
Since u; € I, eiulfkl € I, for all k. On the other hand, W(eiulfkl) # 0, so eiulf}f ¢ Ji, for
all k.

Let x; and y; in X and ¢] and f in A be analogously defined for the ideal J. This time,
elurf] € Jrand elu;f! ¢ I

We shall show (after possibly reversing the roles of I and J) that for infinitely many k,
eiAk fk] C ker 7 and fk] Ake{( C ker 7. This leads to a contradiction with the hypothesis that
7 is a nest representation and so shows that ker 7 is necessarily meet irreducible. Indeed,
from

r(eDm(A)n(f) =0, allk,
m(f)m(Am(e) =0, allk,
it follows that
E,m(A)E,, =0,
E, m(A)E, =0,

and hence that E, | M,, and E,, | M,,, where M, and M, are the smallest 7-invariant
subspaces containing E,, and E,, respectively. But then M, and M, are not related by
inclusion, a contradiction.

Each finite dimensional algebra Ay is a direct sum of T,’s and the matrix units e} and f;
are in the same summand, as are e,{ and fk] . If these two summands differ, then eiAk fk] =0
and fk]Ake'{c = 0. Should this occur for infinitely many k, then we are done. So we need
consider only the case in which, for all k, all of e{(, e,{, fkl and fk] are in the same summand
in Ag.

If e and f are diagonal matrix units (minimal diagonal projections) in Ay, let m(e, f) be
the matrix unit in C*(A) with initial projection f and final projection e (if there is such
a matrix unit). If m(e, f) € Ay, then e < f in the diagonal order on minimal diagonal
projections. We shall need the following property of ideals in Ax: ife; < e; < f, < f; and
if m(e,, f;) is in an ideal, then m(ey, f1) is also in the ideal.

Since ei and e,{ are in the same T,,-summand of Ay, they are related in the diagonal order.
By interchanging I and ] and passing to a subsequence, if necessary, we may assume that
el < e/, for all k. The facts concerning the membership of elu; f{ and e/u;f; in Iy and Ji
may be rephrased as

m(ei,fkl) € I and m(ei, fk[) ¢ Jk,
m(el, f) ¢ Irand m(e/, f) € Ji.

As a consequence f{ < f/, forall k. (If f/ < f! for some k, then el < ¢/ < f/ < fl. Since
m(e,{7 fk]) € Ji, we have m(ei, ka) € Ji, a contradiction.) But now,

rn(ei,fkl) eI andka < fk] — m(ei,fk]) e I

m(e,{,fk]) € i ande{c = e,{ — m(ei,f}(]) € Jx.
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Thus m(ei, fk]) € It N Ji C kerm; hence eiAkfk] C kerm. Also, since ei = fkl =< fk],
flArel = {0} C kerm. As pointed out earlier, this implies that 7 is not a nest represen-
tation; so, when 7 is a nest representation with an atomic lattice, ker 7 is meet irreducible.

|
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