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The density theorem

for loop near-rings

C. Santhakumari

An algebraic formulation of the density theorem for loop near-

rings is presented, which generalizes the same result for near-

rings .

1 . Introduction

The algebraic and topological formulations of the density theorem are

quite well known in ring theory. These results have been extended by

several authors for primitive near-rings; in particular Betsch [7] proved

a density theorem for O-primitive near-rings. The aim of this paper is to

generalize Betsch's result [7, 2.1^] to the case of algebraic systems known

as loop near-rings.

2. Preliminaries

For the definitions of loops and normal subloops see [2]. We recall

[3, Definition l.l] that a loop near-ring N = (N, +, • , 0) is a system

where

(1) (N, +) is an additive loop with identity 0 , which we

denote by N ;

(2) (N, •) is a semigroup;

(3) a'(b+o) = a'b + a'o for all a, b, c in N ; and

(It) O'a = 0 , for all a € N .
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For any a belonging to an additive loop we shall denote the unique

right and left additive inverses of a by a and a, , respectively.
2* i.

Now it is easy to verify that aO = 0 , (ab) = ab , (ob)-j = db-, , for

all a, b in N .

Throughout this paper N always stands for a loop near-ring. The

identity element of (N, +) will be denoted by 0 .

An il/-loop G is an additive loop (G, +, 0) together with a mapping

(g, n) •* gn of G x N -*• G such that for all n, m d N , g € G ,

(1) g{n+m) = gn + gm ,

(2) g{nm) = (gn)m .

Then we have gO = O' , (gn)r = ^ r , (gn)i = 3«j . f o r a 1 1 9 € G a n d

n S. N . We abbreviate (G, +, 0) by G . A subloop A of an tf-loop G

is called an ^-subloop of G , provided that AiV c A . The AP-subloops in

N are called W-loop modules of N . ^-loop homomorphisms and iV-loop

kernels are defined in the usual way. The quotient ff-loop of an W-loop

G by an #-loop kernel K will be denoted by G/K t where

(g+K)n = gn + K , for all g+K i G/K and n € N .

A nonempty subset K of an ^-loop G is an iV-loop kernel of G if

and only if

(1) (K, +) is a normal subloop of G ,

(2) for all g € G , k i K , n € N , (g+k)n + gnp € K [3,

Theorem 1.11].

tf-loop kernels of N are called right ideals. A right ideal L of

N is an ideal if and only if NL c_ L . Intersection of any family of

W-loop kernels of an #_loop 0 is an tf-loop kernel of G [3, Theorem

l.lU]. The set of all #-loop kernels of an #-loop forms a commutative

semigroup under addition. If G is an iV-loop, then for any g £. G ,

gN = {gn \ n € N} is an ^-subloop of G , and A(g) = {n € N \ gn = 'o}

is a right ideal of N ; A{G) = D A(g)' is an ideal of S . ^-loops of

gZG

type V , l/-primitive loop near-rings, l/-primitive ideals for

V = 0, 1, 2 are defined in the usual way as for near-rings. For further

results and information see [3].
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3. Algebraic formulation of the density theorem

Our proof of the density theorem (3.l6) will be based on Lemmas 3.12

and 3.15. We shall obtain these lemmas as consequences of the fundamental

result (Lemma 3.9), which generalizes the same result for near-rings due to

Wielandt[7, Lemma 2.9]. We start with the following

THEOREM 3.1. Let G be an N-loop with an ^-generator g , and L

a right ideal of N ; then gL = {ga | a (. L} is an N-loop kernel.

We first divide this theorem into several lemmas and prove one after

the other.

LEMMA 3.2. gL is a subloop of G .

Proof. Let ga, gb € gL . Then ga + gb = g(a+b) € gL and

gO = 0 gL . Since ga, gb € G , there exist unique elements x, and x?

in G such that gb = ga + x, = x~ + ga • Since a, b € L and since L

is a subloop of N , there exist unique elements a-., a^ in L such that

b=a+a=a^+a . Hence gb = ga + ga. = ga^ + ga • Therefore, by the

uniqueness of x. , x~ , we have x, = ga-. and xp = ga^ • Hence

x , x € gL . Therefore gL is a subloop of G .

LEMMA 3.3. gL is a normal subloop of G .

Proof. Let x d G and ga d gL . Then x = gn , where n € N .

Consider x + ga = gn + ga = g{n+a) . Since L is a normal subloop of

N , n + L = L + n for all n € N . But n+a (. n+L . Hence

n + a = b + n , where b t L . Then

x + ga = g(n+a) = g(b+n) = gb + gn = gb + x .

Therefore x+ga € gL+x . Hence x + gL c gL + x . Similarly it can be

proved that gL + x c_ x + gL . Therefore x + gL = gL + x for all

x € G . Let x, y d G and ga € gL . Then x = gn , y = gn , where

ni' n2 6 N ' W o w (x+y^ + 9<z = [gn^+gn^ + ga = g[[n^+n^ +a) . Since L

is a normal subloop of N , [n +Wp) + L = n + [n+L] . Now

(r^+Mg) + a € {nx+n^\ + L . Hence [n^+n^l + a = «1 + [n2+b] , where

b £ L . Therefore
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(x+y) + ga = giin^+n^+a) = g[n^{n2*b)) = gn± + [gn2+b] = x + (y+gb) .

Hence (x+y) + ga € x + {y+gL) . Therefore (any) + ̂ £ c a; + {y+gL) . The

other inclusion i s also verified. Therefore (x+y) + gL = x + {y+gL) for

a l l x, y i. G . By a similar argument i t can be shown that for a l l
x, y e G > 0-k + (j/+a0 = (g'i+y) + a; . Therefore gL i s a normal subloop

of G .

LEMMA 3.4. gL is an N-loop kernel of G .

Proof. Let ga € gL , x € (3 , and w € tf . Let x = gm where

m € N . Now (x+<7<z)n + xn = {gm+ga)n + (gm)n = g[(m+a)n+rm ) € gL ,

since L i s a r ight ideal of N and a € L .

By Lemmas 3.1 and 3.2, <?L is a normal subloop of G . Therefore gL

i s an #-loop kernel of G .

COROLLARY 3.5. If G is an N-loop of type 1 and L a right

ideal of N , then for each g € G > either gL = {0} or gL = G .

Proof. I f gL + {o) , then gN ± fo} and hence gN = G . Therefore

g i s an iV-generator of G . Since G i s irreducible and since {0} $ gL

i s an ff-loop kernel of G , we have gL = G .

COROLLARY 3.6. If G is an N-loop of type 1 with A(G) = {0}

and L # {0} a right ideal of N , then there exists an element g € G

such that gL = G .

Proof. Since A(G) = {0} , there exis ts an element g Z G such that

gL # (5} . Hence gL = G (Corollary 3.5) .

LEMMA 3.7. Let G be an N-loop with A{G) = {0} . If N+ is not

associative then G is not associative.

Proof. Since N is not associative, there exist x, y, s € N such

that (x+y) + 3 # x + (y+z) . Since A{G) = {0} , there exists a a (. G

such that g((x+y)+z) t g(x+{y+z)) ; for otherwise

g[(x+y)+z) = g[x+(y+z))

for all g £ G implies that g({x+y)+2) + g[x+{y+z)) = O" for all

g € G , and hence ((x+y)+z) + [x+(y+z))r € A{G) = {0} . Therefore

{(x+y)+s) + (x+{y+z))p = 0 = [x+(y+z)) + [x+(y+z))p ; hence by

https://doi.org/10.1017/S0004972700008996 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700008996


Loop n e a r - r i n g s 471

cancellation in N , (x+y) + z = x + (y+z) , a contradiction. Therefore.

for some g € G , g[x+(y+z)) * g[(x+y)+z] ; t h a t ' i s ,

gx + (gy+gz) i- (gx+gy) + gz . Therefore G i s not associat ive.

LEMMA 3.8 [4, Proposition 2 .1] . Let A, B, K be normal subloops of

an additive loop G ; then the additive loop

G := (A+K) n (B+K)/(A n B) + K

is an dbelian group.

LEMMA 3.9. Let N be a loop near-ring and let A, B, K be N-loop

kernels of some N-loop G . Then the N-loop

G~ := (A+B) n (B+K)/(A n B) + K

•is an dbelian group, and for all g € G , n € N the mapping

G •+ G : g -*• gn is an endomorphism of (G, +) .

Proof. Let E = (A n B) + K and H = (A+K) n (Bt-K) ; t hen

G := H/E i s an abe l i an group (Lemma 3 . 8 ) . Now i t i s enough t o show t h a t

for a l l x, y € H and n (. N , {x+y)n + E = (xn+yn) + E . Let

x, y € H ; then x € A+K and y € B+K ; t h e r e f o r e x = a + p ,

y = b + q for some a $. A , b £ B , and p, q € K . Since E i s a

normal subloop, x + E = (a+p) + E = a + (p+£) = a + E , since p (. K

implies p € E ; hence p + E = E . Similarly we get y + E = b + E .

Since a t A and .4 i s an tf-loop kernel of ff , we have

(a+b)n + bn € 4 , and also an i A . Therefore

{(a+b)n+bn ) +A=A=~0+A= [bn+bn ) + A ;

since G/A is a loop and the cancellation laws hold good in a loop, we

have (a+b)n +A=bn+A=A+bn = (A+an) + bn = A + (an+bn) . Since

(a+b)n € {a+b)n + A , we have (a+b)n Z A + (an+bn) . Since A i s a

normal subloop of G , we have

{a+b)n + {an+bn) € [A+{an+bn)} + {an+bn)
r r

= A + {(an+bn)+{an+bn) } = A + H) = A .

By a similar argument we get (a+b)n + {an+bn) f B . Therefore

(a+b)n + (an+bn) € A n B c E . Hence
r —

{(a+b)n+(an+bn)r) + E = E = ~0 + E = {(an+bn)+(an+bn) } + E .
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Since G/E i s a loop, we get {a+b)n + E = (an+bn) + E . Therefore

(x+y)n + E = (xn+yn) + E , since x + E = a + E and y + E = b + E .

Hence the result.

COROLLARY 3.10. Under the assumptions and with the notation of Lemma

3.9, we get N = N/A{G) is a ring.

Proof. G i s an abelian group (Lemma 3.9) . Further, G i s a

fai thful #-loop. Since addition in G i s associat ive, addition in N i s

also associative (Lemma 3.7); consequently {N, +) i s a group, and hence

it i s a near-r ing. Hence G is a faithful tf-group and G is abelian.

Further, for a l l n £ N , g ->• gn is an endomorphism of {G, +) (Lemma

3.9) . Therefore N i s a r ing [J , Lemma 1.5].

COROLLARY 3.11. Let N be a loop near-ring with identity and let no

nonzero epimorphic image of N be a ring. Then the lattice of right

ideals of N is distributive.

The proof i s similar as in the case of near-rings [7, Corollary 2 .1] .

As a further consequence of Lemma 3.9 we obtain:

LEMMA 3.12. Let N be a loop near-ring and G an N-loop which is

monogenie with generator g (G = gN) and faithful. Let B and C be

right ideals of N with the property that B + A{g) = C + A(g) = N and

B n C <£A(g) . Then N is a ring.

Proof. We form the il/-loop

G := [B+A(g)] n [C+A(g)]/{B n C) + A(g) = N/A(g) ,

which i s /l/-isomorphic to G . By Lemma 3.9, G i s an abelian group, and

hence G i s an abelian group; therefore N i s a near-ring and N

induces only endomorphisms of (ff, +) on G . Since G i s fa i thful , N

must be a ring [ J , Lemma 1.5] .

Let N be a O-primitive loop near-ring. G wi l l denote a faithful

tf-loop of type 0 . We denote the set {g t. G \ gN = G] by C . That i s ,

C i s the set of a l l iV-generators of G , and C + 0 .

LEMMA 3.13. Let G be an N-loop of type 0 and g € C . Then

A(g) is a maximal right ideal of N 3 and the quotient loop N/A(g) is

N-loop isomorphic to G .

The proof is easy and will be omitted.
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COROLLARY 3 .14 . If g, g € C and if A{g) D A ^ ) , then

Ms) =A[9I) .

The proof is easy and will be omitted.

LEMMA 3 .15 . Let N be a loop near-ring which is not a ring and is

O-primitive on G . Let g , g , . . . , g E C . Assume A[g.) t A [g.) for
1 2 S %• Q

i + j . Then for t = 1, 2, . . . , s-1 the following statement is true:

t
S(t) = fl A[g.) <^A[g ) for all t < k 5 s .

^ = l

The proof of this lemma is similar as in the case of near-rings [/,

Lemma 2.13].

THEOREM 3.16. Let N be a O-primitive loop near-ring which is not

a ring, and G an ti-loop of type 0 with A(G) = {o} . Let

g±, g2, ..., gk € C such that A[g^\ ± A [g.) for i t j . For arbitrary

elements g', g', ..., gl, of G there exists an n € N such that

g\= gm for i = 1, 2, ..., k .

Proof. Since g. € C, there exists an element n,£N such that

g n = g' . So the result is true for k = 1 . Assume the result for

i = 1, 2, ..., t , where 1 - t - k-1 . Then there exists an n . € N such

that g.n = g'. for i = l, 2, ..., t . We have
7* V If

K:= ^A(g.)±A[)

(Lemma 3.15)- Hence g, K £ £0} 5 and since g K is an //-loop kernel
t+1 t+J.

of G , g, K = G . Therefore there exists an element k € K , such that

gL,, = 9+^k • Also there exists a k' € K , such that g, _n, = g, ^k' .

Let nt+1 = («t+fê ) + fe . Then

for i = 1 , 2 , . . . , * ;
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Hence ^ « t + 1 = 9^ for i = 1, 2, . . . , t+1 .

By induction the result follows.
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