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Abstract

This paper deals with some asymptotic properties of nonoscillatory solutions of a class of n-th order
(« > 1) differential equations with deviating arguments involving the so called n-th order /--derivative
of the unknown function x defined by

where /•,-(/' = 0, l , . . . , n ) are positive continuous functions on [/0,oo). The fundamental purpose of
this paper is to find for any integer m, 0 =c m =c /j — 1, a necessary and sufficient condition
(depending on m) in order that there exists at least one (nonoscillatory) solution x so that the
lifn,_00(Dr

(m)x)(0 exists in R — {0}. The results obtained extend some recent ones due to Philos
(1978a) and also they prove, in a general setting, the validity of a conjecture made by Kusano and
Onose (1975).

1980 Mathematics subject classification (Amer. Math. Soc): 34 C 10, 34 K 25.

1. Introduction

Let rl (i = 0 , 1 , . . . , « ) be positive continuous functions on the interval [t0, oo).

For a real valued function h on [T, oo), T > t0, and any ft — 0 , 1 , . . . ,n we define

the /i-th r-derivative of h by the formula

)')'•
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296 Ch. G. Philos, Y. G. Sficas and V. A. Staikos [2 ]

Then we obviously have

rQh and D^h = r^D^^h)' (i = 1 , 2 , . . . , » ) .

If D^n)h is defined on [T, 00), then the function h is called n-times r-differentiable
and if, in addition, D^h is continuous, h is called n-times continuously r-
differentiable.

Now, we consider the n-th order (n > 1) differential equation with deviating

arguments of the form

where S — ±1 and

x(gU))=(x[gl(t)],x[g2(t)],...,x[gN(t)]), g = ( g , , g 2 , - . . , * * ) •

Obviously, there is no loss of generality for our purposes to suppose in the sequel
that rn — 1. The continuity of the real valued functions F at least on the set

Q =[t0, oo)x{y=(y,,y2,... ,yN) G R": (Vi)y, > 0 or (V/)j, < 0}

and gt (i = 1,2,...,JV) and b on [t0, 00) as well as sufficient smoothness for the
existence of solutions of (E,8) on an infinite subinterval of [t0,oo) will be
assumed without mentioning it any further. In what follows the term "solution" is
always used only for such solutions x(t) of (E, S) which are defined for all large
t. The oscillatory character is considered in the usual sense, that is a continuous
real valued function which is defined on an interval of the form [To, 00) is called
oscillatory if it has no last zero, and otherwise it is called nonoscillatory.

For real valued functions defined on subsets of the space R^ monotonicity will
be considered with respect to the order in RN defined by the usual positive cone

[y = (yl,y2,...,yN)eRN:(Vi)yi>0}.

Throughout the paper the function F is supposed to be increasing on the set S2
with respect to the second variable. Moreover, conditions (i) and (ii) below will be
assumed in the sequel without mentioning them any further:

(i) For every i — \,2,... ,N

lim g,(t) = 00.
r->oo

(ii) For each t s* t0 and every y — (y{, y2,. .-,yN) £ RN

(V/)j>,. > 0 = > F ( / ; y)>0

and

(Vi)y,<O=>F(t;y)*iO.
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[3] Asymptotic behavior 297

Finally, for the sake of brevity, for any integer in with 0 < w =£ w — 1 we
introduce the function Rm defined by

l, if m = 0

for all t 2* t0.
For such differential equations involving the operator D/"' there is recently an

increasing interest in studying the oscillatory and asymptotic behavior. We choose
to refer here the papers by Kusano and Onose (1976a, 1976b), Philos (1977,
1978a, 1978b), Philos and Staikos (1979, 1980), Staikos and Philos (1977a, 1977b,
1978) and Trench (1975). As one can be seen in the book of Coppel (1971), the
class of operators £)/"' property contains the disconjugate operators L,

Lx — x( n ) + p{x
("~l) + • • • +pnx (p( continuous functions).

The fundamental purpose of this paper is to find for any integer m, 0 < m < n
— 1, a necessary and sufficient condition (depending on m) in order to have at
least one (nonoscillatory) solution x of the differential equation (E,S) with b — 0
so that

lim (/>,<">*)(/) = Hm ( Zf*\( 0 =L, L e R - {0}.

Necessary and sufficient conditions are established usually in order that
differential equations with deviating arguments or functional differential equa-
tions of some forms have at least one (bounded nonoscillatory) solution whose the
limit at oo exists in R — {0} [see, for example, Kusano and Onose (1975), Philos
(1978a) and Staikos and Sficas (1972)]. The sufficiency of these conditions is
proved by the fixed point technique based on the Schauder theorem [see Schauder
(1930)] or the Tychonoff theorem [see Tychonoff (1935)]. For w-th order retarded
differential equations of some special forms necessary and sufficient conditions
are also given in order to have at least one (nonoscillatory) solution asymptotic to
Ltn~x as / -» oo for some nonzero real number L [see Coffman and Wong (1972),
Ladas (1971), MaruSiak (1973), Onose (1973) and Grammatikopoulos, Sficas and
Staikos (1978)]. The sufficiency in these papers was proved under a rather
restrictive assumption referred to the existence of a solution defined for all large t
and satisfying an initial value condition. For any integer m, 0 =£ m < n — 1,
Kusano and Onose (1975) give a necessary condition (depending on m) in order
for a class of retarded differential equations to have at least one (nonoscillatory)
solution asymptotic to Ltm as t -» oo for some L G R — (0). They also make the
conjecture that this condition is also sufficient. In this paper we deal, in a general
setting, with this conjecture and we prove that it is true. The results obtained
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include some recent ones by Philos (1978a) and, moreover, these are new even in
the case where r0 — r, = • • •= / • „_
paper are given in the last section.
the case where r0 — rt = • • • = / • „ _ , = !. More comments on the results of this

2. Main results

First of all, we shall prove a lemma, which is motivated by the following
elementary result: If lim,_00A(m)(f) exists in the extended real line R* = R U
{-oo, oo}, then so does liml^xm\h(t)/tm and, moreover, these limits are equal.

LEMMA 2.1. Let w, 0 < m < n — I, be an integer such that:
(C,) / / m > 0, then for every i = \,2,...,m

dt/•°° at
J rit]

= 00.

Moreover, let h be a function whose the r-derivative £)r
(m)/i exists in an interval

[ T, oo) T 3* t0. Then we have:
a) If\im,^x(D^m)hXt) exists in R* - (0), then

P) Ifm > 0 andD(
r
m)h is continuous on [T, oo), then

PROOF. We shall prove the conclusion ft) of the lemma, since a) has been
proved by Philos (1978b) for m > 0 while for m - 0 it is obvious. To this end, for
any integers / andy, 0 < / <j' ^ m, and every v, u with v > u > t0 we define

* , , ( » ; « ) = • n+l(si+l)Ju ri+2{si+2)

•dsi+2dsi+u \ii

Now, we assume that D}m)h is continuous on [T, oo) and lim,^00(/)r
(m'/!)(/) = 0.

Let any e > 0 and let T* > T be chosen so that

\(D<m)h)(t)\<e for every t> T*.
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For any / s* 7**, it is easy to derive the following generalization of the Taylor
formula

{D?»h)(t) = V (D^h)(T*)ROj(t; T*)

From this formula we obtain

for every t > T*. But, since from condition (C,) it follows that

lim RlJ(t;T*) = oo (0</<j<m),

lim Rim{t; t0) = oo (0 < / < m — 1),
<-»00

we can apply the De L'Hospital rule to verify that

lim —— = 0 ( / = 0 , 1 , . . . ,m — 1) and lim —2™_

Thus, we have

and consequently, since e is arbitrary,

lim ^°r " / w = 0.

To obtain our first theorem (Theorem 2.1) we shall apply the fixed point
technique based on the well-known Schauder theorem [see Schauder (1930)].

THE SCHAUDER THEOREM. Let E be a Banach space and X any nonempty convex
and closed subset of E. If S is a continuous mapping of X into itself and SX is
relatively compact, then the mapping S has at least one fixed point (that is there
exists an x £ X with x — Sx).

A set-1? of real valued functions defined on the interval [T, oo) is said to be
equiconvergent at oo if all functions in f are convergent in R at the point oo and,
moreover, for every e > 0 there exists a f > T such that, for all functions / in *$,

i — lim
s—* oo
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300 Asymptotic behavior 16]

Let, now, B([ T, oo)) be the Banach space of all continuous and bounded real
valued functions on the interval [T, oo), endowed with the usual sup-norm 11 ||.
We need the following compactness criterion for subsets of B([T, oo)), which is a
corollary of the Arzela-Ascoli theorem. For a proof of this criterion we refer to
Staikos (1976).

COMPACTNESS CRITERION. Let *% be an equicontinuons and uniformly bounded
subset of the Banach space B([T, oo)). / / 5" is equiconvergent at oo, it is also
relatively compact.

THEOREM 2.1. Let m, 0 < m < n — 1, be an integer such that the condition (C,)
and the following are satisfied:

(C2) There exists an n-times continuously r-differentiable function w on [t0, oo)
with D<n)w = b and such that

<oo.
Rm\t)

(C3) For some constant c with \c\> 2 A,

dt < oo, if m — n — 1

/
oo

rm+l(sm+[

R

dsmsm+l < oo, ifm<n-\.

Then for every number L with Lc> 0 and | c | /2 < | L \ < \ c \ —A there exists a
(nonoscillatory) solution x of the differential equation (E, 6) such that

lim = L

and, if m < n — 1,

lim = 0 ,...,n- 1).

PROOF. For m = 0 the theorem specializes to a theorem due to Philos (1978a).
So, we restrict ourselves in the case where m > 0.

Let L be a real number with Lc > 0 and | c | /2 < | L |< | c | —y4. Without loss of
generality, we suppose that c is positive, since the substitution z — -x transforms
(E, 8) into an equation of the same form satisfying the assumptions of the
theorem with -c in place of c. Moreover, we assume that
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B = sup

301

0
 Km\t)

for some To > t0. By conditions (i) and (C3), we choose a T > To so that

g , ( 0 > To for every t> T (i = 1,2,...,N)

and

(1)

• • • dsm+[ < c — L — B, if m < n — 1.

Let, now, the Banach space E = {h: roh/Rm G B([T, oo))}, endowed with the
norm \\ defined by

'HI*;
Moreover, let X be the set of all functions x G E with

- L c — L for every t > T.

Obviously, LRm/r0 6 £ and X = {x G £:fx - ZJ?m/rof< c - L} is a closed
ball in the normed space E. Therefore, X is a nonempty, convex and dosed subset
of£.

If x E X, by the definition of the set X, we obviously have

R
—-(t) for every t > TO,

where

f x ( / ) , if t>T

x(t) = {D^x)(T) Rm(t)
[ Rm(T) ro(t)

, if To < t > T

and consequently, in view of (ii) and the increasing character of the function F,
we obtain

(2) 0 *£ F(t; x(g(t)))
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for all t > T. Thus, because of condition (C3), for any x G X and every t > T

/

oo
F ( s ; x(g(s)))ds< o o , i f m = n - l ,

i

/
00 1 /-00 1

r (s ) • • ] - ( .

and so, it is easy to see that for t s* T the formula

{Sx)(t) = w{t)

«(-!)"

X ds2dsu \fm = n—

1 /•» 1

*m+l)

dsm+idsm • • • ds2dst, if m < n - \

introduces a mapping 5: A' -» £ . The mapping 5 satisfies the assumptions of the
Schauder theorem. Namely, it satisfies the following:

a) SX C X.
In fact, taking into account (2) and (1), for any x G X and every t > T we

obtain

- L

r2(s2)

/

CO

Xdsdsa_l • • • ds2dslt if m = n — 1

- i 1 r 0 0 1

rm{sm)JSm rm+](sm+l)

ds2dsu ifm<n— 1
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n=sa 1 p 1 /-J--2 1

303

X • • ds2dsx,

if m — n — 1

r2{s2)

^ - i 1 /-00 1

rm(sm) 'Sm rm+l(sm+l)

OO 1

/
OO

B

• ds2ds\

<B+(c-L-B)~c-L.

fl) SX is relatively compact.
Because of the fact that SX C X and the definition of the set X, for any x E X

and for/= (D<0)(Sx) - D?)w)/Rm we have

\{Df>\Sx))(t)\
t>T,

that is || / 1 | < c + B. Therefore, the set

} R Rm -

is a uniformly bounded subset or the Banach space B([T, oo)). Furthermore, if
x G X and / = (Dr

(0)(Sx) - D^w)/Rm, then, taking into account (2), for every
/ 2* 71 we obtain

1/(0-^1 = - L
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=*> 1 /*• 1

/•'=*<, 1 r5' 1 /-^-i

• • • r —̂ —x r *̂; i

[10]

i • • • ds2ds\, if m = n — 1

1 r 0 0 1

••• dsm+]dsm---ds1dsl, if

-Mt),

where

/2O2)

X /"" Fls; c—!i:zl(g(s)))dsdsn_, • • • ds2dsu if m = « - l,and

ro(t)JT r^)JTr2(s2) JT rm(sm) J,m rm+l(sn+l)

F(s' ^\ ro

if m < n — 1. Namely, for any/ G •JFand every t s* 7"

(3)

• ds2dsu

But,

(4)

Indeed, we have

l i m - ^ r A ( 0 = 0.
«-« Rm(t)

, if/n = » -

/

oo 1 r°° 1

—r—r-7 —r~
R

X dsdsn_l • • • dsm+,, if w < « — 1

https://doi.org/10.1017/S144678870002485X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002485X


un Asymptotic behavior 305

for all t > T. This gives

lim (Dj:m)h)(t) = 0

and so, by Lemma 2.1, we obtain (4). Because of (4), from (3) it follows that the
set "Jis equiconvergent at oo. Now, we shall prove that ^is equicontinuous. For
this purpose, it is enough to verify that for any / G 9 and every /,, t2 with

\f(h) -/('•) l<2 ( c^^g )K(^2) - RM].

F o r / = (£>/0)(5x) - D^w)/Rm, x G X, by taking into account (2) and (1), the
last inequality can be derived as follows

1 1

n,=s0 1 rs\ 1 rs

•'7- '•i(-Si) •'r r 2 ( j 2 ) JT

/

OO

' i = - s o J

•ds2dsu itm = n -

X ^ ; x(g(s)))

X dsdsn_| • • • ds2ds}, if m < « — 1

u tin = 2

M '•I(JI)- / 5 1 l-2(52) ^ - a ^ - l C ^ ,) A _ ,

X dsdsn_| • • • ds2ds\, if n > 2 and w = 1

X dsdsn_i • • • ds2ds\, if n > 2 and m = n — 1

'l rlV->lJ r ' 2 ^ 2 / T rm\Sm) sm 'm+lV^m+l/

1 />0°F(S;i<g(J)»<fcdS;i_.--.<fc2&1,

if 1 < m < n - 1
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^ Rm(t2) - Rm(tx) 1

[12]

x i

*„(') Rm('i)

1

,, if m = n - 1

•V '•,(^)-'r r2(j2) JT rm(sm)

/
OO J -00 1 /-00 I R

X.dsdsn_i • • • ds2dsx, if m < n — I

h r\\s\)Jsl

(<1 1 /-00

• ^ 2 ^ , , if « > 2 and w = 1

Xdsdsn_x • • • ds2dsx, if n > 2 and m = « — 1

1 fOO I R

] F\/

OO 1 fOO I R

-; r] F\s;C-^

if 1 < m < n - 1.

c- L- B
r2(s2)

ds2dsx][Rm(t2) - Rm(tx)]
J

c- L- B
i, if "i

r2(s2) JT rm(sj
dsm---ds2dsx,
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2c-L-B,

It has been proved that 'S is a uniformly bounded, equiconvergent at oo and
equicontinuous subset of the Banach space B([ T, oo)). So, by the given compact-
ness criterion, f i s relatively compact. This, because of the definition of the norm
| | in E and the boundedness of the function D^0)w/Rm, implies the relative
compactness of SX.

y) The mapping S is continuous.
Let x E X and (xr) be an arbitrary sequence in X with lim xy = x with respect

to the n o r m | | i n E. By (2), for all v and every O T w e have

and consequently, because of condition (C3), we can apply the Lebesgue
dominated convergence theorem to obtain for t s* T

/

OO /-00

F(s; xu(g(s)))ds = f F(s; x(g{s)))ds,
if m = n — 1, and

lim f0 } r - - - C ~ f°° F{s;xv(g(s)))dsdsn^l •••dsm+x

= r — r — r • • • r — r —

if m < n — 1. So, we have the pointwise convergence

lim (Sxr)(t) = (Sx)(t), t>T.
V

Now, in order to prove that

(5) | | - Iim5x, = Sx

we consider any subsequence (z^) of (5x,). Then, because of the relative
compactness of the set SX, there exist a subsequence (P X ) of (z^) and ay & E so
that

| | - Umi»A = ^.

Since | |-convergence implies the pointwise one to the same limit function, we
must always have y — Sx. Thus, (5) and hence the continuity of the mapping S is
proved.
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Finally, by the Schauder theorem, there exists an x & X with x = Sx. Then, in
view of condition (C2),

(D^x)(t) = (/><">*)(/) - 8F(t; x(g(t))) = b(t) - SF(t; x(g(t)))

for every t s* T. Therefore, the fixed point x of the mapping S is a solution on
[ T, oo) of the equation (E, S). Moreover, this solution is the required one, since

f°°F(s; x(g(s)))ds, if m = « - 1

7
rm+l\sm+l

if m < n — 1

-> 0 a s t -» oo

a n d , if m < n — 1, for j = m + 1 , . . . , « — 1

f™F(s;x(g(s)))ds, ify = n - 1

^ y • • f ^ ^j™ F(s; x(g(s)))dsdsn_l • • • dsJ+l,

if j <n-\

0 as oo.

COROLLARY 2.1. Let m, 0 < m < n — 1, Z>e an integer such that the condition
(C |) and the following are satisfied:

(C2) There exists an n-times continuously r-differentiable function w on [/0, oo)
with D<n)w = bandlim^niD^wXt) = 0.

(C3) For some nonzero constant c,

dt < oo, if m = n —

/

OO 1 y-00 1 1-00 I R \

T Vl J—\ F\s;C-f(g(s))\

•ds m+\ < oo, if m < n ~ \.

Then for every real number L with Lc > 0 a«rf | c | / 2 < | L | < | c | there exists a
(nonoscillatory) solution x of the differential equation (E, S) with

Urn (Dr
(m)x)(t) = L.
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PROOF. Since lim,_0O(Z),.<m)w)(0 = 0, by Lemma 2.1, we have

A = limsup — r - = 0.

So, the corollary follows immediately from Theorem 2.1

In particular, for b — 0 and w = 0, from Theorem 2.1 we can immediately
obtain the following result concerning the differential equation

(Eo, S) {D^x)(t) + SF(t; x(g(t))) = 0.

COROLLARY 2.2. Let m, 0 < m < n — 1, be an integer such that the conditions
(C,) and (C'3) are satisfied. Then for every real number L with Lc > 0 and
| c | / 2 < | L | < | c | there exists a (nonoscillatory) solution x of the differential
equation (Eo, S) such that

lira (Z)r
(m)x)(r) = L

t — <x

and, if m < n — 1,

lim (Dy>x){t) = 0, (j = m+ l,...,n- 1).
(—00

In order to obtain the next theorem (Theorem 2.2) we make use of the
following elementary lemma given by Philos (1978a), which is motivated by the
very simple result: If lim,^^, u(t) is finite and l i m ^ ^ u'(t) exists in R*, then
lim,..^ u'(t) = 0.

LEMMA 2.2. Let h be an n-times r-differentiable function on an interval [T, oo),
T> t0, such that D^n)h is of constant sign on [ T, oo). Moreover, letX,O^X<n —
2, be an integer so that

00 dt
7~T — 00.

7/lim,J0O(Z)r
(X)/iX0 is finite, then

lim (£>r
(A+1)A)(0 = 0.

r — oo

THEOREM 2.2. Suppose that:
( C 4 ) For every i = 1 , 2 , . . . , « — 1

r 0 0 dt
= oo.
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Let m,0 < m < n — I, be an integer such that the following condition is satisfied:
(C5) For every nonzero constant c there exists an integer k with m < k < n — 1

and such that

r
I R

m

1 Z"0 0

rk+i(sk+l) \_

dt = oo, ifk -

1 /•»

2rn_,(5n_,)4-, S' C r0 \ g ^ ^

••• dsk+i = 00, ifk<n—\.

Then for every nonoscillatory solution x of the differential equation (Eo, 6) with
x(t) = O(Rm{t)/r0(t)) as t^ co,

8(-\)"+mx(t)(D<m)x)(t)^0 for all large t

and

lim (Dy)x)(t) — 0 monotonically (j = m,m + l,...,n — 1).
(—00

PROOF. Let x be a nonoscillatory solution on an interval [ To, 00), To > t0, of the
equation (Eo, 6) with x(f) = O(Rm(t)/r0(t)) as ; -* 00. Without loss of general-
ity, we suppose that x(t) ^ 0 for every r > To. Furthermore, we can assume that
x is positive, since the substitution z = -x transforms (Eo, 8) into an equation of
the same form satisfying the assumptions of the theorem.

Next, by (i), we choose a T > To so that

g , ( f ) > r 0 f o r e v e r y / ^ T (i = 1,2,...,7V).

Then, in view of (ii), equation (Eo, S) yields

for all t s* T. Namely,

(6) 8{D(
r
n)x){t) < 0 for every / > 7.

Therefore, it follows that the functions Dr
o>x (j = m, m + \,...,n — I) are

eventually of constant sign. Without loss of generality, we can suppose that this
holds true on the whole interval [ T, 00).

By Lemma 2.1,

Hm ( jf*\(0 = lim (D<-»x)(t).

So, since x is positive and x(t) = 0(/?m(OAo(0) a s ' ~* 00, we have

(7) lim|(Dr<">x)(r)|<oo
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and consequently, in the case where m< n — 1, we can consecutively apply
Lemma 2.2 for A = m, m + 1,. . . ,n — 2 to obtain

(y = i n + ! , . . . , « - 1 ) .(8) lim (Z),(A>c)(f) = 0
/—00

We have

(9)

This follows immediately from (7) and

t>T.
rm+l\

Moreover, if m < n — 1, then for anyy' — m + \,...,n — 1 and every t>T

(10)

Indeed, for all u s» t

f\(Dyx)(s)\ds
i rj+i\s)

from which, by (8), we obtain (10). By using (9) and (10), it is easy to verify that

(11)

oo,

X0O 1

r i
yOO

• • • ds +, < o o , if m < n — 1.

Now, we shall prove that

(12) lim = 0.

To this end, we suppose the contrary, that is limr^00(Dr
(m)x)(f) > 0. Then, by

Lemma 2.1,

and consequently there exists a positive constant c such that

x ( 0 > c — ( f ) for every ? > TO.
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Thus, in view of (ii) and the increasing character of F, from equation (Eo, S) we
obtain

= F(t; x(g(t)))

for all t > T. So, because of (11), for the considered (positive) constant c we have

ififi = n -

/•OO 1

/ T
JT rm+](sm+]

R
F\s;c^(g(s))jdsdsn_r--

••dsm+]<oo, i f m < « — 1,

which contradicts (C5).

Finally, because of (12) and (8), we must always have

(Dl
r
j)x)(t)(Dy+l)x)(t)<0 f o r e v e r y / > r (j = m, m + 1,.. .,n - 1),

which, by virtue of (6), easily gives

8(-\)"+m(D<m)x)(t)^0 for every t> T.

Now, we state the following result by Philos (1978a) needed below in obtaining
Corollary 2.3, which constitutes a basic "if and only i f criterion.

THEOREM 2.3. Let the condition (C4) and the following be satisfied:

(C6) For every nonzero constant c there exists an integer k,Q < k < n — 1, such

that

/

oc / 1

F\t;c7(g{t))

/
OC J

dt — oo, ifk = « — 1

dsdsn-\

dsk + i = oo, ifk<n — \.

Then every solution x of the differential equation (Eo, +1) [respectively, of the
equation (E 0 , - l ) ] with x(t) = O(\/r0(t)) as t -» oo for n even [resp. odd] is
oscillatory, while for n odd [resp. even] is either oscillatory or such that

lim (D(
r
J)x)(t) - 0 monotonically (j - 0 , 1 , . . . , « - 1).
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COROLLARY 2.3. Let the condition (C4) be satisfied and let m,0 < m =£ n — 1, be
an integer. Then the condition (C3) is a necessary and sufficient condition in order
that the differential equation (Eo, 8) have at least one (nonoscillatory) solution x so
that the \imt^x(D

(
r
m)x){t) exists in R - {0}.

PROOF. The sufficiency of the condition (C'3) is contained in Corollary 2.2. On
the other hand, if x is any (nonoscillatory) solution of the equation (Eo, 8) such
that the lim,^00(£>r

<m>x)(r) exists in R — {0}, then, by Lemma 2.1, we obviously
have x(t) = O(Rm(t)/r0(t)) as t -» oo. So, the necessity of the condition (C'3) can
be obtained from Theorems 2.2 and 2.3.

3. Applications

Let the differential equation

(E, 8) [ r ( / y - - ' > ( r ) ] ( 0 + 8F(t; x(g(t))) = b{t),

where / is an integer with 1 < / < n — 1 and r a positive continuous function on
the interval [t0, oo). Obviously, this equation is obtained from equation (E, 8) by
setting

rt— 1 (/ = 0 , 1 , . . .,n — I; i ¥= n — I) and /•„_, = r.

With some manipulations we can formulate the results of Section 2 for the
differential equation (E, 8). We omit doing it here and we restrict ourselves in the
usual case where

in order to better clarify the relevance of our main results. We note that in this
case for any integer m,0=£ms£M— 1, the condition (C,) holds by itself and we
have

Rm(t) = (t-t0)
m/m\, t>t0.

Moreover, the condition (C4) holds too by itself. Corollaries 3.1, 3.2, 3.3, 3.4 and
3.5 below concern the differential equation

(£ ,«) x^(t) + 8F(t; x(g(t))) = b(t)

and follow from Theorem 2.1, Corollary 2.1, Corollary 2.2, Theorem 2.2 and
Corollary 2.3 respectively. All these corollaries are new.
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COROLLARY 3.1. Let m, 0 < m < w — 1, be an integer such that the following
conditions are satisfied:

(C2) There exists an n-times continuously differentiable function w on [ t0, 00) with
w(n) — b and such that

A = lim sup m < 00.

(C3) For some constant c with \ c \ > 2 A,

p"~l-m\F{r,c[gl(t)]
m,c[g2(t)]

m,...,c[gs(t)]
m)\dl<ao.

Then for every real number L with Lc > 0 and | c | / 2 < | L | < | c | — A there exists
a {nonoscillatory) solution x of the differential equation (E, 8) such that

lim [x(m)(t) - w(m)(0] = L/m\

and, if m < n — 1,

lim [xiJ)(t) - ww(t)] = 0 (y = m+ 1 , . . . , « - 1).

COROLLARY 3.2. Let m, 0 < m ^ n — 1, be an integer such that the following
conditions are satisfied:

(Cj) There exists an n-times continuously differentiable function w on [ t0, 00) with
w<n) = bandlim,^x w{m\t) = 0.

(C'3) For some nonzero constant c,

\F{t;c[gl(t)]
m,c[g2(t)]

m,...,c[gN(t)]m)\dt<oo.

Then for every real number L with Lc > 0 and \ c | / 2 < | L \ < \ c | there exists a
(nonoscillatory) solution x of the differential equation (E, S) with

lim x(m)(t) = L/m\.

COROLLARY. 3.3. Let m, 0 < m < n — 1, be an integer such that the condition
(C3) is satisfied. Then for every real number L with Lc > 0 and | c | /2 < | L | < | c |
there exists a (nonoscillatory) solution x of the differential equation (Eo, 5), that is
of the equation

(Eo,«) *( n )( ' ) + SF(t; x(g(t))) = 0,

such that
lim x{m\t) = L/m\

1—00

and, if m < n — 1,

lim x(j)(t) = 0 (j = m+ \,...,n - 1)./ — 00
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COROLLARY 3.4. Let m, 0 ^ m < n — 1, be an integer such that the following
condition is satisfied:

(C5) For every nonzero constant c,

fC°t»-<-\F{t;c[gl(t)]
m,c[g2(t)]'",...,c[gA')]m) | * = « .

Then for every nonoscillatory solution x of the differential equation (Eo, 8) with
x(t) = 0{tm) as t -» oo,

S(-l)n+mx(t)xlm)(t) ^ 0 for all target

and

lim xu)(t) = 0 monotonically (j — m, m + l,...,n — 1).
/— 00

COROLLARY 3.5. Le/ w, 0 < m =s M — 1, be an integer. Then the condition (C'3) is
a necessary and sufficient condition in order that the differential equation (Eo, 8)
have a (nonoscillatory) solution x so that the l i m ^ ^ x<m>(*) exists in R — (0).

In the case considered, that is the case where r0 = r, = • • • — rn_x = 1, the
conditions (C2) and (C'2) follow from (C2) and (C'2) respectively. Furthermore, we
have the formula

/.OO ( c — u)*1/•OO /-00 /.OO ( c — u)*

f [ (s-vrP(s)dsdv=f KS l \ p(s)ds,

where p is a continuous nonnegative function on [w, oo) and JX a nonnegative
integer. By this formula, it is a matter of elementary calculus to see that in the
considered case for any integer m, 0 < m < n — 1, the conditions (C3) and (C3)
follow from (C3) and (C'3) respectively as well as for any integer m, 1 < m < n — 1,
the condition (C5) follows from (C5).

4. Discussion

Let us consider, in particular, the ordinary differential equation

(D) x < " > ( 0 + f l ( 0 * ( * ( 0 ) = 0

and the linear equation associated with it

(d) x<-n\t) + a{t)x{t) = O,

where a is of constant sign and continuous on the interval [?0,oo) and $ is
defined at least on R — {0} and has the following sign property:

y ¥=0=>y<P(y) > 0.
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If the function $ is increasing and such that

max< lim sup —^-^ , lim sup >• < oo,
l. v -• oo y y—-oo y j

then, as it follows from Corollary 3.5, the condition

(H) y0 0/""1 | a ( r ) | ^ < oo

is a necessary and sufficient condition in order that for any integer m, 0 < m < n
— 1, the equation (D) have at least one (nonoscillatory) solution x so that the
lim,^00 x(t)/tm exists in R - {0}.

In particular, under condition (H), the differential equation (d) has n (nonoscil-
latory) solutions x, (( = 0 , 1 , . . . ,n — 1) on [t0, oo) with l i m ^ ^ x^t)/t' E (0, oo)
( / = 0, l , . . . ,n — 1), which obviously constitute a base of the space of the
solutions of (d). Thus, condition (H) ensures the nonoscillation of all (nontrivial)
solutions of the equation (d).

If the function $ is increasing and such that

mini lim inf ^ ^ , lim inf ^^-1 > 0
1 >-oo y .,.--oo y J

and the differential equation (D) admits at least one (nonoscillatory) solution x
with l i m , ^ x{t)/tm e R — {0} for some integer m, 0 < m =£ n - 1, then, by
Corollary 3.5, the equation (D) has at least one (bounded nonoscillatory) solution
x so that the lim,J00 x(t) exists in R — {0}.
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