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Introduction

Self-dual Kéahler surfaces have been considered in several recent works, in particular
in a paper by R. Bryant [13], where self-dual Kéhler surfaces appear as the four-
dimensional case of a comprehensive study of Bochner-flat Kidhler manifolds in all
dimensions, and in a paper by two of the authors [8], where a generic equivalence
has been established between self-dual Kéhler surfaces and self-dual Hermitian
Einstein metrics and where an explicit local description of the latter is provided.
Whereas self-dual surfaces are easily proved to be extremal, i.e., admitting a
Hamiltonian Killing vector field whose momentum map is the scalar curvature, it
was an a priori unexpected fact, independently discovered in the above works, that
they actually admit a second Hamiltonian Killing vector field; moreover, a crucial
observation of R. Bryant [13], is that the momentum map of the latter is the Pfaffian
of the normalized Ricci form. Since these Killing vector fields commute, this also
provides a link with the work of H. Pedersen and the second author [17], where
an explicit local classification of self-dual Einstein metrics with two commuting
Killing vector fields is obtained, without the hypothesis that they are Hermitian.

https://doi.org/10.1023/A:1022251819334 Published online by Cambridge University Press


https://doi.org/10.1023/A:1022251819334

280 V. APOSTOLOV ET AL.

In this paper, we show that we can relax the assumption of self-duality, and estab-
lish the same bi-Hamiltonian structure for weakly self-dual Kidhler surfaces, i.e.,
Kaéhler surfaces whose anti-self-dual Weyl tensor W~ is harmonic; this fact has its
origins in the basic Matsumoto—Tanno identity for such surfaces, recently redisco-
vered by W. Jelonek [32], and leads to a surprisingly simple explicit expression, gene-
ralizing an expression found by Bryant in the self-dual case. On the other hand, we
also observe that in Calabi’s family of extremal Ké&hler metrics on the first
Hirzebruch surface Fj, there is a unique (and completely explicit) weakly self-dual
metric up to homothety. This is in contrast to the self-dual case, where the compact
(smooth) examples are all locally symmetric [20].

Our results concerning weakly self-dual Kéhler surfaces may be summarized as
follows (definitions and more precise statements are given in the body of the paper).

THEOREM. Let (M, g, J, ) be a weakly self-dual Kdhler surface. Then (g,J) is a
bi-extremal Kdhler metric in the sense that the scalar curvature and the Pfaffian of the
normalized Ricci form of (g,J) are Poisson-commuting momentum maps for
Hamiltonian Killing vector fields K, and K, respectively. Furthermore, on each con-
nected component of M one of the following holds.

(1) K, and K, are linearly independent on a dense open set. Then (g,J, w) has the
explicit local form (41-45), depending on an arbitrary polynomial of degree 4
and an arbitrary constant which is zero if and onlyif g is self-dual, cf. Theorem 2.

(i) K, is nonvanishing on a dense open set, but K| A K, is identically zero. Then
(g, J, w) is locally of cohomogeneity one and is given explicitly by the Calabi con-
struction, cf. Theorem 4.

(iii)) K, and K, vanish identically. Then g has parallel Ricci curvature (hence is either
Kdhler—Einstein or locally a Kdhler product of two Riemann surfaces of constant
curvatures).

If (M, g,J,®) is compact and connected, then it necessarily belongs to case (ii) or
(iii) above, and in case (i) (M, g, J, ) is isomorphic to the weakly self-dual Calabi
extremal metric on Fy (see Theorem 5).

The path to proving this result touches upon various important themes in Kéhler
geometry, and along the way we introduce further ideas, results and examples.
A key aspect of our approach is to study weakly self-dual Kéhler surfaces within
a more general setting. The Matsumoto—Tanno identity for weakly self-dual Kdhler
surfaces is equivalent to the fact that the primitive part p, of the Ricci form p of
(g,J) satisfies an overdetermined linear differential equation. On the open set
where p, is nonvanishing, the equation means that p, defines a conformally Kéhler
Hermitian structure 7/ inducing the opposite orientation to J. Many of the properties
of weakly self-dual Kéhler surfaces are simple consequences of the fact that the p is a
closed J-invariant 2-form, whose primitive part satisfies this equation. In particular,
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we prove in Proposition 2 that two of the algebraic invariants (essentially the trace
and the Pfaffian) of any such 2-form ¢ are Poisson-commuting momentum maps for
Hamiltonian Killing vector fields. Therefore, throughout the work, we develop the
theory of Kahler surfaces with such ‘Hamiltonian’ 2-forms ¢, which include other
interesting examples in addition to weakly self-dual Kéhler surfaces.

First of all we study the generic case that the Hamiltonian Killing vector fields
are linearly independent. This means that the Kéihler structure (g, J, w) is toric,
and in Theorem 1 we characterize the class of toric Kéhler structures arising in this
way from Hamiltonian 2-forms. Whereas toric Kéhler surfaces in general depend
essentially on an arbitrary function of two variables [1, 29], our toric surfaces, which
we call ‘ortho-toric’, have an explicit form—given in Proposition 8—depending only
on two arbitrary functions of one variable. This has the practical advantage that
curvature conditions lead to ordinary differential equations for these functions. In
particular, we are able to obtain explicitly all of the extremal toric Kéhler structures
in our class, including some new examples of Ké&hler metrics which are conformally
Einstein, but neither self-dual nor anti-self-dual, and also some explicit Ké&hler—
Einstein metrics. The weakly self-dual metrics in this family are classified in
Theorem 2.

The case that the Hamiltonian Killing vector fields associated to a Hamiltonian
2-form ¢ are linearly dependent, but not both zero, is closely related to the Calabi
construction of Kdhler metrics on line bundles over a Riemann surface [14]. We pro-
vide, in Theorem 3, a geometric local characterization of these Kéhler metrics: they
are the Kéhler metrics (g, /), with a Killing vector field K such that the almost
Hermitian pair (g, ), where [ is equal to J on span of {K, JK} but —J on the ortho-
gonal distribution, is conformally Kéhler. Over a fixed Riemann surface X, the gen-
eral form of these Kéhler metrics ‘of Calabi type’ again depends essentially only on
functions of one variable from which it is easy to recover the Calabi extremal
metrics. We present these in Proposition 14: the Riemann surface £ has constant cur-
vature, and the metrics have local cohomogeneity one under U(2), U(1,1) or a central
extension of the Heisenberg group Nil. The weakly self-dual Calabi extremal metrics
are classified in Theorem 4: there is a four parameter family, one of which is globally
defined on the first Hirzebruch surface. The existence of such a metric has been inde-
pendently observed by Jelonek [33].

The proof of the above theorem is completed by classifying the compact weakly
self-dual Kahler surfaces. A partial classification for real analytic Kéhler surfaces
has been recently obtained by Jelonek [32], but we improve it in two respects: first,
as speculated by Jelonek, we are able to remove the assumption of real-analyticity;
second we prove that the only (non-product non-Kéhler—Einstein) weakly self-dual
Kéhler metric on a ruled surface, is the Calabi extremal example on the first
Hirzebruch surface Fj.

The paper is organized as follows. In the first section, we establish some basic facts
concerning weakly self-dual Kédhler surfaces; in particular, using general properties of
Hamiltonian 2-forms, we show that weakly self-dual Kédhler surfaces are bi-extremal
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and that their anti-self-dual Weyl tensor is degenerate (some facts proved in this section
also appear in Jelonek’s paper [32]). We also present the rough classification, Proposi-
tion 6, that allows us to deduce the above theorem from Theorems 2, 4 and 5. The gen-
eric, toric case, and Theorem 2, are described in the second section, whereas the third
section treats the Calabi examples and Theorem 4. The classification of compact
weakly self-dual Kéhler surfaces is given in Section 4.

In the final section we show that some of our results generalize to the class of
almost Kéhler 4-manifolds (M, g, J, ) whose Ricci tensor is J-invariant. We first
observe that the Calabi construction gives rise to new (local) examples of self-dual,
Ricci-flat almost Kédhler 4-manifolds (see Example 2), which provide further local
counterexamples (cf. [9, 44]) to the still open Goldberg conjecture which states that
a compact Einstein almost Kédhler manifold must be Kédhler—Einstein. Next we
consider compact almost Kéhler 4-manifolds with J-invariant Ricci tensor which
are weakly self-dual, i.e., have harmonic anti-self-dual Weyl tensor. We show in
Theorem 6 that weak-self-duality has strong consequences for the integrability of
the corresponding almost complex structure, providing another interesting link with
the Goldberg conjecture. As an application of this global result, we prove that a
compact almost Kihler 4-manifold has constant sectional curvatures on the
Lagrangian 2-planes if and only if it is a self-dual Kéhler surface (see Corollary 1).

1. Weakly Self-dual Kihler Surfaces
1.1. THE MATSUMOTO-TANNO IDENTITY

A Kdhler surface (M, g,J) is an oriented Riemannian four-dimensional manifold
equipped with a self-dual complex structure J, such that VJ = 0, where V denotes
the Levi-Civita connection of g. The Kéhler form is the J-invariant self-dual 2-form
(-, ) =({J-); wis closed and (M, w) is a symplectic manifold.

The vector bundle ATM of self-dual 2-forms is the orthogonal direct sum of the
trivial bundle generated by w and of the bundle of J-anti-invariant 2-forms, whereas
the bundle A~ M coincides with the bundle of primitive — or trace-free — J-invariant
2-forms.

We denote by R, Ric, Ricy, Scal, W = W' + W, the curvature, the Ricci tensor,
the trace-free part of Ric, the scalar curvature (i.e., the trace of Ric), and the Weyl
tensor, expressed as the sum of its #-self-dual components W=,

The Ricci form, p, of a Kidhler surface is the J-invariant 2-form defined by
p(-,-) = Ric(J-, -); p is closed and, up to a factor 2z, is a representative of the first
Chern class of (M, J) in de Rham cohomology; the trace-free part of p is denoted

by py.
DEFINITION 1. A Kihler surface (M, g, J) is weakly self-dual if its anti-self-dual

Weyl tensor W~ is harmonic, i.e., satisfies 6° W~ = 0, where the codifferential 6% acts
on W~ as on a 2-form with values in A~ M.
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Because of the Bianchi identity, the weak self-duality condition can also be defined
in terms of the Ricci tensor; from this point of view, it can also be considered as
a weak Einstein condition, in the sense that every Einstein metric is weakly self-dual.
The link is provided by the Cotton—York tensor Cy, y(Z) of the Riemannian metric g.
Recall that the Cotton—York tensor is defined by

Cx.v(2) = =(Vul)(Y, Z) + (VYI)(X, Z),

where i = JRicg + 5; Scal g denotes the normalized Ricci tensor of g.

The normalized Ricci tensor is the form in which the Ricci tensor appears in the
well-known decomposition of the Riemannian curvatureR = h A Id + W (cf., e.g.,
[12]); therefore, via the (differential) Bianchi identity, the +-self-dual components,
C*, of the Cotton—York tensor are linked to the %-self-dual components of the Weyl
tensor by Wt = C* and W~ = C".

Definition 1 can thus be rephrased as follows:

DEFINITION 2. A Kihler surface is weakly self-dual if its Cotton—York tensor is
self-dual.

The normalized Ricci tensor plays a natural role throughout this work. For this
reason, to simplify formulae, we write s = %Scal for the normalized scalar curvature,
which is the trace of 4.

LEMMA 1 ([43,32]). For any Kdhler surface (M, g, J, w) we have
Vxpy = —2C(JX) —1ds(X)o + Xds A JX* — Jds A X°). (1)
In particular, the Kdhler surface (M, g, J, o) is weakly self-dual if and only if the
following Matsumoto—Tanno identity
Vipo = —1ds(X)o + Xds A JX* — Jds A X°) ®)
is satisfied (_for any vector field X).
Proof. Since 2h = Ric — sg, the Cotton—York tensor of any Kédhler surface can be
written as follows:
2Cx (Z2) = =2(Vxh)(Y, Z) + 2(Vyh)(X, Z)
= —(VxRic)(Y, Z) + (VyRic)(X, Z) + ds(X )(Y, Z)—ds(Y ){X, Z)
= —(Vxp)(Y,JZ) + (Vyp)(X, JZ) + ds(X (Y, Z) — ds(Y )(X, Z)
(Vizp)(X, Y) +ds(X)(Y, Z) — ds(Y (X, Z).

(In order to obtain the last line from the preceding one, we use the fact that dp = 0.)
We then have

(Vzp)(X, Y) = =2Cx y(JZ) — ds(X)(JY, Z) + ds(Y)(JX, Z),
or, equivalently,

(Vzpo)(X, Y) = =2Cx y(JZ) — 3ds(Z)(JX, Y)—
—ds(X)(JY, Z) + ds(Y )(JX, Z). 3)
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The anti-self-dual component of (3) gives identity (1); the last statement follows
immediately. O

1.2. TWISTOR 2-FORMS AND KAHLER METRICS

On any Riemannian manifold (M, g), if ®@ is an anti-self-dual 2-form, i.e., a section
of the vector bundle A~ M, then VO is a section of the vector bundle 7*M Q A~ M.
This bundle has an orthogonal direct sum decomposition

T*"MA M=VOMo 1M, 4)

in accordance with the algebraic decomposition R* @ A"R* = R* @ (2, ® =%) into
irreducible sub-representations under the action of the orthogonal group. In (4),
VOM corresponds to the factor R*, hence is isomorphic to T*M, whereas V)M
corresponds to the factor £, ® X3, so it is the kernel of the natural contraction
T*M ® A~ M — T*M. The projection of the connection to V¥ M may be identified
with the exterior derivative or divergence on anti-self-dual 2-forms (which are related
by the Hodge * operator), while the projection to VM is often called the twistor or
Penrose operator on anti-self-dual 2-forms.

DEFINITION 3. An anti-self-dual 2-form ® is called a twistor 2-form if V® is a
section of the sub-bundle VOM of T*M @ A~ M.

Any nonvanishing section ® of A~ M can be written uniquely as ® = A w;, where
J.=|®|/+/2 is a positive function and w; is the Kihler form of an anti-self-dual
almost-complex structure / on (M, g).

LEMMA 2 ([45]). If ® = /. wy is a nonvanishing section of A~ M, then ® is a twistor
2-form if and only if the almost-Hermitian pair (§ = A~%g, 1) is Kdhler, with Kdihler
form @ = i 2w, = 273,

Proof. @ is a twistor 2-form if and only if there exists a 1-form 7y such that, at each
point of M, V® = Z?:l I;y ® w;, where the triple (I, I, Is = I 1) is any positively
oriented, orthonormal frame of (anti-self-dual) almost-complex structures at that
point, and w; is the Kédhler form of I;.

If ® = Aw; is a nonvanishing twistor 2-form on M, then, by choosing I} = I,
we have

NVI=y—d) QI+ Ly L+ Ly® L.
Since the norm of 7 is constant, this equality implies that Iy = dA. Now observe that
the equation

AVI=hLdI@hL —LdA® I3 (5)
is equivalent to I being parallel with respect to the Levi-Civita connection of
g = 2"%g. Hence, if ® is a twistor 2-form (g, I) is Kihler. Conversely, if (g, I) is

Kaéhler then (5) holds, from which it follows that V® = V(1 w;) is the section of
VO M corresponding to the 1-form y = —IdA. O
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If (M, g, J, w) is a Kédhler surface then a 2-form is anti-self-dual if and only if it is
trace-free and J-invariant, and there is the following reformulation of Definition 3.

LEMMA 3. Let (M, g,J,w) be a Kdhler surface and let ¢, be an anti-self-dual
2-form. Then @, is a twistor 2-form if and only if there is a 1-form p such that

Vypy = —BX)o+BAIX —JBAX (6)

for any vector field X.
Proof. Ttis easily checked that the right-hand side of (6) is (the contraction with X
of) the general form of a section of VOM >~ T*M. O

By the contracted Bianchi identity, C~ is a section of V)M, and so the last state-
ment of Lemma 1 can be rephrased as follows.

LEMMA 4. A Kdhler surface is weakly self-dual if and only if the trace-free part py of
the Ricci form p is a twistor 2-form.

Together with Lemma 2, this implies:

PROPOSITION 1. On the open set My where py = Awy does not vanish, a Kdhler
surface (M, g, J, ) is weakly self-dual if and only if the pair (3 = 2 %g, I) is Kdhler.

In particular it follows that on M|, the self-dual Weyl tensor of g, with the orien-
tation induced by 1, is degenerate, and equal to %5 o ®o ®, where 5 is the (normalized)
scalar curvature of g, ® = 72w, and @ ®y @ stands for the traceless part of ® ® @
viewed as an endomorphism of AT M. By the conformal covariance of the Weyl ten-
sor, it follows that on M, the anti-self-dual Weyl tensor of g (using the orientation
induced by J) is given by

3
W™ = zor ®o wr, (7
where
K =572 (8)

is the conformal scalar curvature of the Hermitian pair (g, 7), which is related to the
Riemannian scalar curvature of g by

K—s=00—101% ©)

here 0 denotes the Lee form of the pair (g, I), defined by dw; = =20 A wy, see [21, 7].
Note that we have normalized the conformal scalar curvature by a factor % to be con-
sistent with our normalization of the scalar curvature s.

Notice that this only uses the fact that M admits a nonvanishing twistor 2-form,
namely p,. On the other hand, p,, is not anarbitrary twistor 2-form: by Lemma 1, the
1-form f defined by Vp, using (6), is equal to %ds, and so is exact. This fact, which is
equivalent to the fact that the Ricci form p = p, + %sa) is closed, will be exploited in
the next subsection.
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1.3. HAMILTONIAN 2-FORMS

DEFINITION 4. A Hamiltonian 2-form on a Kéhler surface (M, g, J, ®) is a closed
J-invariant 2-form ¢ whose trace-free (i.e., anti-self-dual) part ¢, is a twistor 2-form.

On a weakly self-dual Kéhler surface the Ricci form p is Hamiltonian. In general,
Hamiltonian 2-forms are characterized by an analogue of the Matsumoto—Tanno
identity (2).

LEMMA 5. Let (M,g,J,w) be a Kdhler surface. Then a J-invariant 2-form
=@+ %aa) is Hamiltonian if and only if

Vxp, = —%da(X)a)+%(da/\JX*J —Jdo A X) (10)

for any vector field X.
Proof. This is immediate from Lemma 3: in (6), do, = —%do A w if and only if
p= %da. O

In order to explain the use of the term ‘Hamiltonian’, we recall the following
definition.

DEFINITION 5. A real function f on a Kédhler manifold (M, g, J, w) is a (real)
holomorphy potential if the gradient grad,f is a holomorphic vector field, i.e., pre-
serves J; equivalently, f'is a holomorphy potential if Jgrad,/'is a Killing vector field
with respect to g.

A holomorphy potential f'is therefore a momentum map for a Hamiltonian Kill-
ing vector field with respect to the symplectic form w.

To any J-invariant 2-form ¢ = ¢, + %aw, we may associate a normalized 2-form
¢ =3¢, + Lo w. For example, if ¢ is the Ricci form p, then ¢ is the 2-form p asso-
ciated to the normalized Ricci tensor: p(-, -) = A(J-, ).

We are going to show that if ¢ is Hamiltonian, then the trace and Pfaffian of ¢ are
holomorphy potentials.

Recall that, in general, the Pfaffian pf(y/) of a 2-form y is defined by % pf(y) =
*(f A ), where x is the Hodge operator; alternatively, y Ay = %pf(lp)w A .

Since ¢ =1 ¢y + o, its Pfaffian = is given by

g \/(O

n=1lo’ ~doo = (3+2)(5—2). (11)
where . = |@y|/+/2. We write this product as 7 =¢n so that ¢ =¢+# and
=35 —n).

PROPOSITION 2. Let (M, g,J,w) be a Kdihler surface and let ¢ = @, —i—%ow be
a Hamiltonian 2-form. Then the trace o and the Pfaffian n of ¢ = %(po +%aw are
Poisson-commuting holomorphy potentials.
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Proof. (1) Identity (10) can be written in terms of ¢ as
Vx¢ = Xdo A JX* — Jdo A X°). (12)
Differentiating again and skew-symmetrizing, we get

Ryy @ =[Ryy, @] =4 Vydo AJX  —Vydo AJY’ —JVydo A X’ +JVydo A Y’).

Since [Ry,y, @] is J-invariant in X, Y, it follows that

Vydo AJX —JVyde AX —Vydo AJY +JVydo A Y
=—-Vydo AX —JVyydo AJX 4+ V,xdo A Y+ JV,xdo AJY,

hence
SYYAIJX —JS(Y)AX—=SX)AJY+IS(X)AY =0, (13)

where S(X') = Vydo + JV,xdo.

As an algebraic object, S is a symmetric, J-anti-commuting, endomorphism of
TM; hence by contracting (13) with a vector field Z and taking the trace over Y
and Z, we see that S = 0, and therefore, ¢ is a holomorphy potential.

(i1) From (12) we derive (Vx@) A ¢ = %(X/\ Jda A @), hence

dn = =2 x(Jdo A ). (14)
From this, we infer (again using (12)):

Vydn = =2 % (JVXdO' A (~p + Jdo A V)([p)

15
:—2*(JVXdaAq~D+}¢JdJAd0AJX). (15

The second term of the right-hand side of (15) is clearly J-invariant; the first term is
J-invariant as well since ¢ is a holomorphy potential and ¢ is J-invariant. Hence 7 is
also a holomorphy potential.

(ili)) By contracting Equation (14) with Jdg, we see that ¢ and = Poisson-
commute. ]

Since ¢ and 7w Poisson-commute, the Killing vector fields K; := Jgrado and
K, := Jgrad ® commute. Also w(K;, K;) = 0.

Remark 1. The Killing vector fields K; and K, need not be nonzero or inde-
pendent in general. In particular K| and K, both vanish if ¢ is constant, since ¢ is
then parallel by (10).

Notice, however, that K%’O, K;O, and hence K%’O A K;O, are holomorphic, so that
on each connected component of M there are three possibilities: O

(1) K| A K; is nonvanishing on a dense open set.
(i) K, is nonvanishing on a dense open set, but K; A K, vanishes identically;
(iii)) K; and K, vanish identically;

One consequence of this remark is the following lemma.
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LEMMA 6. If ¢ is a Hamiltonian 2-form on a Kdhler surface M, then the open set
My, where @, is non-zero, is empty or dense in each connected component of M.
Proof. On each component of M where K| = Jgrad,o is nonzero, the set U where
do is nonvanishing is dense, hence V¢, is nonvanishing on U and so the complement
of the zero set of ¢ is dense in this connected component. On the other hand, if K| is
identically zero on a component, then ¢, is parallel on that component, hence
identically zero or everywhere nonzero. O

When K, and K, vanish identically, ¢ does not contain much information about
the geometry of M (it could be just a constant multiple of w, even zero). In the other
two cases, however, we shall obtain an explicit classification of Kédhler surfaces with
a Hamiltonian 2-form. The keys to these classifications are Proposition 2 and the fol-
lowing observation.

PROPOSITION 3. Let ¢ be a Hamiltonian 2-form on a Kdhler surface M and write
0 =¢+n and © = & for the trace and Pfaffian of ¢.

Then on each connected component of M where ¢, is not identically zero, d¢ and dn
are orthogonal.

Proof. The contraction of (10) with ¢, yields

(Vx@g, 9o) = 3(@o(da, JX) — @y(Jda, X)) = —py(Jda, X)
and, hence,

27.di = d(2%) = Hd(Ipol*) = —py(Jdo). (16)
Since (¢ o J)* = 2*Id, we deduce that @o(JdA) = —%ida and therefore

do do . do do .
S TR (IR N L WY )

This means that the 1-forms d¢ and dy, wherever they are nonzero, are eigenforms
for the symmetric endomorphism —¢, o J, corresponding to the eigenvalues 4 and
—1, respectively; in particular, they are orthogonal on the open set M, where A
(i.e., ¢,) is nonzero. However, by Lemma 6 this open set is empty or dense in each
connected component of M, and the result follows. O

Remark 2. On the open set M, where 4 is nonzero, so that ¢, = 1w/, observe that
Equation (16) may be rewritten

Ido = 2Jd. (17)
Indeed, supposing only that ¢, is a twistor 2-form, o = 2_3q)0 is closed, and so, if
@ = @)+ %U(D,

do = d(¢g +30w) =32dAAd +3do A w = 3(di A o+ 1do A w).

Hence, Equation (17) holds if and only if ¢ is closed. O
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1.4. BI-EXTREMAL KAHLER SURFACES

In the case that (M, g, J, ®) is weakly self-dual and ¢, = p,, we can take ¢ = p, so
that ¢ is the (normalized) scalar curvature s, and =, the Pfaffian p of the normalized
Ricci form p(-, -) = h(J-, -); evidently, p =1p, +1so.

Recall that a Kdhler metric is said to be extremal if the scalar curvature is a holo-
morphy potential.

DEFINITION 6. A Kihler metric is called bi-extremal if both the (normalized)
scalar curvature s = tr,p and the Pfaffian p = pf(p) of the normalized Ricci form p
are holomorphy potentials.

Note that the potential function p appearing in the above definition is not the Pfaf-
fian of the usual Ricci form p = p, + %sw; thus, our definition for bi-extremality dif-
fers from the one given in [42, 31] (compare Theorem 5 below and [31, Th. 1.1 &
Prop. 3.8]).

Proposition 2 immediately implies:

PROPOSITION 4. 4 weakly self-dual Kdhler metric is bi-extremal.

On a bi-extremal Kéhler surface, the holomorphy potentials s and p automatically
Poisson-commute, since K, preserves g, hence s, so that ds(K;) = 0.

For a weakly self-dual Kéhler surface, Proposition 3 generically implies that d¢
and dn are orthogonal, where s = ¢ 4+ 7 and p = n. We shall see in Sections 2 and
3 that a bi-extremal Kéhler surface satisfying this orthogonality condition is weakly
self-dual.

1.5. THE BACH TENSOR

The Bach tensor, B, of an n-dimensional Riemannian manifold (M, g) is defined by
n

Byy =Y (Ve Q) x(Y) + (We xh(e), Y)), (18)
i=1

where, we recall, C is the Cotton—York tensor and /4 is the normalized Ricci tensor
(here, {e;} is an arbitrary g-orthonormal frame). When n = 4, the Bach tensor is con-
formal covariant of weight —2, i.e., B¢ = $?B%, and B can be indifferently expres-
sed in terms of W™ or of W~. Specifically

n

Byy =2 (=(Vo,C) x(Y) + (W xhlep), V)
i=1
B (19)
=23 (Ve C ¥ + (W, yh(ep). Y)):

i=1

in particular, the Bach tensor vanishes whenever W+, W~ or Ricy vanishes.
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If (M, g,J) is a Kédhler surface, the Bach tensor is easily computed by using the
above identity and the fact that W+ = %sw ®o w. Indeed, if B* and B, denote the
J-invariant and J-anti-invariant parts of B, we get

Bt = sRicy + 2(Vds){, B~ = —(Vds)™, (20)

where (Vds)j is the J-invariant trace-free part of the Hessian and (Vds)~ is the
J-anti-invariant part. (This formula is due to Derdzinski [21], where it was obtained
by a different argument.)

It follows that B is J-invariant if and only if (M, g, J) is an extremal Kéhler sur-
face; moreover, if this holds, we get B = s Ricy 4 2(Vds),. On the open set U where s
has no zero, the vanishing of B then means that the conformally related metric
g = s~ 2g is Einstein. Therefore, on U, the following two statements are thus equiva-
lent (see also [21]):

(1) The Bach tensor of the Kéhler surface (M, g, J) vanishes;
(ii) (M,g,J) is extremal and the conformally related metric § = s—2g is Einstein.

Note also that when B is J-invariant, it is determined by the associated anti-self-dual
2-form B(-,-) = B(J-, -), which is also given by

B = (dJds), + spq. 1)

On a weakly self-dual Kéahler surface, C~ = 0, while W~ = %le ®o wy. It follows
that B is a multiple of xp,, which vanishes if and only if W~ =0 or p, = 0.

PROPOSITION 5. A4 weakly self-dual Kdhler surface is Bach-flat (i.e., has vanishing
Bach tensor) if and only if it is self-dual or Kdhler—Einstein.

1.6. ROUGH CLASSIFICATION OF WEAKLY SELF-DUAL KAHLER SURFACES

We have seen in Lemma 6 that the open-set My, on which the trace-free part ¢, of
a Hamiltonian 2-form is nonzero, is empty or dense in each connected component
of M. For a weakly self-dual Kéhler surface (M, g, J, ), the Ricci form p is
Hamiltonian, and M is the set of points at which g is not Kédhler—FEinstein. Because
p is closely linked to the anti-self-dual Weyl tensor of M, we can obtain more infor-
mation about M, except when g is self-dual.

We first recall the general fact, first observed by A. Derdzinski in [21], that for any
Kaéhler surface (M, g,J) with nonvanishing scalar curvature s, the conformally
related metric § = s 2g satisfies 6°W* = 0; moreover, up to rescaling, g is the
unique metric in the conformal class [g] that satisfies this property. This follows from
the fact that the self-dual Cotton—York tensor C* of any Kéihler surface can be
written as

CHX) = —W+ (% A X); (22)
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on the other hand, the self-dual Cotton—York tensors of two conformally related
metrics g and f~2g are related by

C+=fL2g(X) =CH8X)+ Wt (deA X);

it follows from (22) that the self-dual Cotton—York tensor of the metric s~2g vanishes
identically; moreover, as W+ has no kernel (for s nonvanishing), the latter property
characterizes s~2g up to a constant multiple.

LEMMA 7. On each connected component of the open set My where p, does not
vanish, the scalar curvature 5 of g is a constant multiple of 77", i.e.,
s=c)7, (23)
where 1 is the positive eigenvalue of Ricy and c is a constant.
Proof. We apply the preceding argument to the Kéhler pair (g, I) on Mj and to
g = J*g; by hypothesis, g satisfies 0 W~ = C~ = 0, where W~is actually the self-dual
Weyl tensor of g for the orientation induced by I7; from the above mentioned
uniqueness property, it follows that, wherever 5 is non-zero, g coincides with §72g up
to rescaling, i.e., that § is a locally constant multiple of /7' However, the same holds
on the interior of the zero set of 5. Hence by the continuity of § on My, 5§ = ¢4~ for
some constant ¢ on each connected component of M. O

A more global statement may be obtained using the conformal scalar curvature
k = 572, Since the anti-self-dual Weyl tensor of g is given by W~ = %Kan R0 Wy,
it follows that 2 is equal to |W~|*> on My, up to a numerical factor, and hence
we may extend x continuously to the closure of M. Also 4 is globally defined and
continuous.

Therefore, using the fact that the closure of M, is a union of connected compon-
ents by Lemma 6, we can rewrite Lemma 7.

LEMMA 8. Let (M, g,J,w) be a weakly self-dual Kdihler surface. Then, on each
component of M where py is not identically zero, the conformal scalar curvature x of
(g, D) is linked to A by

kA =e¢, (24)
where ¢ is the constant of Lemma 7. Moreover, ¢ =0 if and only if W~ =0 on that
component.

This lemma yields the following rough classification of weakly self-dual Kéhler
surfaces (see also [32]).

PROPOSITION 6. Let (M, g, J, w) be a weakly self-dual, connected, Kdhler surface.
Then either:

(1) py is identically zero so (g,J) is Kdhler—Einstein; or
(1) the scalar curvature s of g is constant, but p, is not identically zero, then, (g,J) is
locally the Kdhler product of two Riemann surfaces of constant curvatures; or
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(iii) s is not constant and g is self-dual; or
(iv) W~ and py have no zero: then, the Kdhler metric (g = 272g. 1) of Proposition 1 is
extremal and globally defined on M, in particular, W~ is degenerate everywhere.

Proof. 1f s is constant, then by (2) the Ricci form is parallel. Hence either g is
locally irreducible, and is Einstein, or (g, J) is locally the Kéhler product of two
Riemann surfaces of constant curvatures.

If s is not constant, then by Lemma 6 the open set M, where p, does not vanish is
an open dense subset of M. However, by Lemma 8, x> is constant. If this constant is
zero, then x must vanish identically and M is self-dual; otherwise x and 4 have no
zero on M, so My = M, the Kihler pair (§ = A™>g, ) is defined on M and W~ is
degenerate, but nonzero everywhere. As observed in Section 1.5, for a weakly self-
dual Kihler surface the Bach form B is a multiple of ;. Since B is a conformally
covariant tensor, it follows that the Bach tensor of g is /-invariant, showing that
(g, I) is an extremal Kéhler metric. O

Kéhler—Einstein metrics and Kéhler products of Riemann surfaces clearly are
weakly self-dual. Since these are well studied, we henceforth assume that s is not con-
stant (on any component), i.e., K; is nonvanishing on a dense open set. In Section 2,
we analyse the generic case that K; and K5 are independent, while Section 3 is devo-
ted to the case that K| A K, vanishes identically (but K; is non-zero). In both sec-
tions, we obtain an explicit local classification within the more general framework
of Kéhler surfaces with a Hamiltonian 2-form.

2. Ortho-toric Kahler Surfaces
2.1. TORIC KAHLER SURFACES

We have seen in Section 1 that on a Kédhler surface with a Hamiltonian 2-form ¢—in
particular on a weakly self-dual Kéhler surface—the trace ¢ and the Pfaffian = of the
associated normalized 2-form ¢ are holomorphy potentials for Hamiltonian Killing
vector fields K; = Jgrado and K, = Jgradn. Furthermore, ¢ and n Poisson-
commute, i.e., w(K;, K3) = 0.

A (usually compact) Kéahler surface (M,g,J, w), with holomorphic Killing
vector fields K; and K, which are independent on a dense open set and
satisfy w(Kj, K;) =0, is said to be roric. We begin this section by recalling the
local theory of such surfaces, and we therefore assume that K; and K, are every-
where independent and that x; and x; are globally defined momentum maps for
K] and Kz.

The condition w(K;, K;) = 0 is equivalent to the fact that x; and x; commute
for the Poisson bracket determined by w. Hence, also [K|, K;] = 0, and since K,
K;, JK; and JK, are all holomorphic, they all commute. In particular the rank 2
distributions Il, generated by K| and K;, and JII, generated by JK; and JK,, are
integrable.
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These distributions IT, JII are also orthogonal, since (JK;, K>) = 0. It follows that
K, K>, JK, and JK; form a frame. Since they commute, the 1-forms in the dual
coframe are closed, and may be written d¢, dt,, Jd¢;, Jdt,, where ¢; and ¢, are only
given locally and up to an additive constant. Now observe that

Ky PPdxy — (K, Kp)dx)

Jdy = 3 s
K1 A K|
Jd, = Kil’dx: = (K1, Ka)dx,
|y A Kol ’
and so
Jdy =Y Gydx;  (i=1,2),

j=12

where Gj; is a positive definite symmetric matrix of functions of x; and x, (note that
K; = 9/0t;). These 1-forms are closed if and only if G;; is the Hessian of a function of
x1 and x,. The following well-known explicit classification is then readily obtained
(see [1, 29]).

PROPOSITION 7. Let Gy be a positive definite 2 x 2 symmetric matrix of functions
of 2-variables x1, x; with inverse G¥. Then the metric

Z(Gi,-dxidx,- + Gijdl,‘dlfi)
i.j
is almost-Kdhler with Kdhler form
o =dx; Adt; +dxy Adty

and has independent Hamiltonian Killing vector fields 9/0t;, d/dt, with Poisson-
commuting momentum maps x| and x,. Any almost Kdhler structure with such a pair
of Killing vector fields is of this form (where the t; are locally defined up to an additive
constant), and is Kdhler if and only if Gj; is the Hessian of a function of x| and x».

2.2. THE ORTHO-TORIC CASE
Propositions 2 and 3 motivate the following definition.
DEFINITION 7. A Kihler surface (M, g,J, w) is ortho-toric if it admits two

independent Hamiltonian Killing vector fields with Poisson-commuting momentum
maps &y and & + i such that d¢ and dy are orthogonal.

An explicit classification of ortho-toric Kdhler metrics follows from Proposition 7
by changing variables and imposing the orthogonality of d& and dn. However,
since the coordinate change is awkward, and we have not spelt out the proof of
Proposition 7, we give a self-contained proof of this classification.
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PROPOSITION 8. The almost-Hermitian structure (g, J, w) defined by

2 2
=@ =05 o)+ O ndF = GO+ d2), @9

79 am) e
RO e ndy
dé = d d dt=—-—>> -7
ezl =T Gy 6
(’7) _dc  dn
Jdn = - é(dt—i-fd z), Jdz = F(é)+G( )’
w = d& A (df +nd2) + dn A (di + Ed2) 7)

is an ortho-toric Kdhler structure for any functions F, G of one variable. Every ortho-
toric Kdhler surface is of this form, where t, z are locally defined up to an additive con-
stant.

Proof. (1) The Kéhler form may be written

o =d(&+n) Adt+d(E) Adz

which is certainly closed. If is also immediate that 9/9¢ and 9/9z are Hamiltonian
Killing vector fields with Poisson-commuting momentum maps & 4+ 1 and £x. Since
dt + iJdt and dz + iJdz are closed, J is integrable, and the Kéhler surface is clearly
ortho-toric.

(i1) Conversely, suppose that (g, J, w) is an ortho-toric Kdhler surface with Killing
vector fields K, K>. Since the dual frame to K, K», JK;, JK> consists of closed
1-forms, we may write it as d¢, dz, Jdt, Jdz, where ¢ and z are locally defined up
to an additive constant. Note also that d¢,dn, dr, dz are linearly independent
I-forms—where & + 5 and &y are the momentum maps of K} and K,—so we may
use (&, n, t, z) as a coordinate system.

Since (Jdz)(K;) = 0 and (Jdz)(K;) = 0 we may write

d¢ dn

Jz ==+

for some functions F and G (of ¢ and #). The equations

0 = (Jd2)(JK)) = —(Jdz, d& + dn)
and
1 = (Jd2)(JK,) = —(Jdz, nd& + &dp)

give F=|dé|*(¢ —n) and G = |dy|>(n — &), using the fact that d¢ and dy are ortho-
gonal. A similar argument tells us that
¢df _ndy

Jdr = — S8 _nn
! F G-
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for the same functions F and G. Now since Jd¢ and Jdz are closed, we obtain
(E—nF,=0and (n — &G =0, so that F = F(¢) and G = G(n). The Kéhler form
w is evidently given by (27), and since we know Jd¢ and Jdz, we readily obtain
(26), and hence the metric (25). O

Any ortho-toric Kéhler surface (M, g, J, ) comes equipped with an anti-self-dual
almost-complex structure, I, whose Kéhler form, wj is defined by

_dEAJAE dn AJdy

Wy = -

déf? |dn|?
=d& A (dt +ndz) —dn A (dt + &dz); (28)
equivalently
F($) EdE ndp
Id¢é =Jdé =—~(d dz), di= —=——2+4+-—,
sEAe s = s G o0
G(nn) dé dn
Idy = —Jdn = ———=(d dz), Idz = -
L S 3 BT

PROPOSITION 9. For any ortho-toric Kdhler surface, the almost-Hermitian pair
(&= (& —n)g D is Kdhler.

Proof. Clearly Idt and Idz are closed, so [ is integrable. From (28), we easily infer
that the Lee form 0 of the Hermitian pair (g, /), defined by dw; = —20 A wy, is

0 = —dlog|& — . (30)
It follows that @ := (¢ —n) 2w, is closed, i.e., the pair (g=(£—n)"2g 1) is
Kihler. O

In particular, on any ortho-toric Kéhler surface, the anti-self-dual Weyl tensor—
which is the self-dual Weyl tensor of g for the orientation induced by I—is degene-
rate: W~ = kw; ®y w;, where k is the conformal scalar curvature of the Hermitian
pair (g, ).

Remark 3. The vector fields K; and K, are still Killing with respect to g and
Hamiltonian with respect to @, with momentum maps —(1/&—1#) and
—(&4+1)/(2(& — n)) respectively. However, the Kédhler metric (g, /) is not ortho-toric
in general, as it can be checked using Lemma 9 below.

Combining Propositions 2, 3 with § and 9, we obtain the following theorem.

THEOREM 1. A Kdhler surface is ortho-toric if and only if it admits a Hamiltonian 2-
form whose associated Killing vector fields are independent. The Kdihler structure is then
given explicitly in terms of two arbitrary functions F, G of one variable by (25)—(27).

Indeed, using (28)—(29), notice that, by definition, Jd(¢+ #) = Id(¢ —1#), cf.
Remark 2, so the Hamiltonian 2-form ¢ is %(f —no;+ (E+ no.
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2.3. ORTHO-TORIC WEAKLY SELF-DUAL KAHLER SURFACES

The curvature of an ortho-toric Kéhler surface is entirely determined by the scalar
curvature s of g, the conformal scalar curvature x of the Hermitian pair (g, 1),
and the trace-free part p, of the Ricci form of (g, J).

LEMMA 9. For any ortho-toric Kdhler surface (M, g, J, w), py is a multiple p of the
Kdhler form w; of the Hermitian pair (g, 1), and u, s, k are given by

_F' =G _F'(O+6"(n

2 —n)? 4&—-n) o
__FO-6¢"
T eE—n (32)
__FO-6"W  FO+GMm _2FE—GMm) (33)
6(6—n) E—n)? & —n)’

In particular, on the open subset of M where u has no zero, the anti-self-dual almost-
complex structure determined by p,, is equal to I.
Proof. From (27), we infer that the volume-form v, = %w A o of g is given by

vg =—(&—ndéAndnpandtadz,

since ¢ and z are the real parts of J-holomorphic coordinates. By putting vy = dzA
Jdt Adz A Jdz, we have p = —1dJd log v,/vo. Now according to (26),

s
FOG(1n)

and, hence, ve/vo = F()G(n); this implies
p = —3dJdlog|F(&)| — 3dJd log |G(n)|.

from which (31) and (32) follow easily.
From (9) and (30), we get
_ S ldEP+dn? AC—n)
=5—2 5— — ;
() c—n
on the other hand, we compute that
F'($) G'(n)
_ ) Ay =—~".
<—n L
and we obtain (33). O

vy = dé Adn AdtAdz,

AE =

PROPOSITION 10. An ortho-toric Kdhler surface M is extremal if and only if F and
G are of the form

F(x)=kx* 40X+ Ax> + Bix+ C1, G(x) =kx* +£x° + AX* + Box+ C, (34)
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in which case
s = =2k +n)—¢, (395

and (g = (£ —n)2g, I) is an extremal Kdihler metric as well.
Moreover, M is

e Bach-flat if and only if 4k(C) — Cy) = (B — By)¢;
e of constant scalar curvature if and only if k = 0;
o scalar-flat (i.e., anti-self-dual) if and only if k = £ = 0.

Proof. Since the scalar curvature s is a function of ¢ and 5, J grad, s belongs to the
span of the Killing vector fields K; and K, and commutes with them; if it is itself
a Killing vector field, it has to be a linear combination of K; and K, with constant
coefficients, i.e. s = a(é+n)+ bén+ ¢, where a, b, ¢ are constants. By (32), this
implies (34). Finally, using (21), we easily compute that the anti-self-dual 2-form
associated to the Bach tensor of an ortho-toric extremal Kéhler surface is

4k(Cy — C) — (B — Bz)fw

E =
2¢E—n)

Since B is also [-invariant, the Kéhler metric (g, ) is extremal as well (see
Section 1.5). O

EXAMPLE 1. For k # 0 and 4(C; — C3) = (B) — B»)¢/k, we obtain explicit Bach-
flat Kédhler surfaces with nonconstant scalar curvature. These metrics are therefore
not anti-self-dual, and for B # B, they are not self-dual either (note that a self-dual
Kaéhler surface is bi-extremal and see the next Proposition). According to Section 1.5,
the metric § = (2k(¢ + ) 4+ £) g, which is defined on the open subset where
2k(E+ 1)+ € # 0, is Einstein, Hermitian (but non-Kéhler) with a locally defined
toric isometric action.

PROPOSITION 11. An ortho-toric Kdhler surface M is bi-extremal if and only if
F and G are of the form

F(x) = kx* +¢x3 + Ax> + Bx + C4,

(36)
G(x) = kx* + €x* + Ax* + Bx + C3,

in which case the Ricci form is given by p = —2k¢ — Lw. Hence M is weakly self-dual
and is
o self-dual if and only if C, = Cy;

o Kdhler—FEinstein if and only if k = 0,
® Ricci-flat if and only if k =€ = 0.
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Proof. Since a bi-extremal surface is extremal, we may apply Proposition 10. We
then compute
B — B,

=—k(E-N+—, 37
u (¢ 17)+2(é_17)2 (37

2 _ _ 2
p:4k2§17+k£(£+n)+%—k31 B B =B

E—n o 4g-nt

(38)

As in the proof of Proposition 10, p cannot be a J-holomorphy potential unless it is
a linear combination of ¢ 4+ 1 and &y with constant coefficients; this in turn is equiva-
lent to the condition B; = B;. Since u = —2kA and s = —2ko — £ it follows that
p = —2ko — Lw. Hence p is a Hamiltonian and so M is weakly self-dual by (4).

By substituting in the expression of x given by (33) we get k=
—(2(Cy = C2)/((¢ = n)®); since the condition W~ =0 is equivalent to x =0, the
characterization of the self-dual case follows. Also M is Einstein if and only if
u =0, and so the last two assertions are immediate. OJ

Remark 4. For k # 0, we can set k = —} and £ =0 by a simultancous affine
change of & and 5. In this case p = ¢, and so the ortho-toric reduction is defined by
p. However, not all weakly self-dual Kéhler surfaces can be put in ortho-toric form;
for example weakly self-dual metrics belonging to the general family of cohomo-
geneity-one extremal metrics considered by E. Calabi [14] are not in general ortho-
toric, since K; and K, are then collinear. We discuss this case in Section 3.

On the other hand, the examples with £ = 0 in the above Proposition show that
among Kéhler—Einstein metrics (which are weakly self-dual), there are some which
can be put into ortho-toric form, because even though p does not define an ortho-
toric reduction, there happens to be another Hamiltonian 2-form ¢. If additionally
A=4£=0 or C; = (C,, these examples in fact have cohomogeneity one and their
ortho-toric form arises from a choice of maximal torus inside the isometry group.
However, the other examples do not have additional symmetries and therefore
appear to be new.

PROPOSITION 12. On an ortho-toric extremal Kdhler surface M, the space of
infinitesimal symmetries of the Kdhler structure is generated by K, and K, (and infi-
nitesimal rotations in this plane if they are globally defined), except in the following two
cases:

(1) M is locally a complex space form, i.e., Kdhler—Einstein and self-dual; or
(1) M is Ricci-flat (hence, anti-self-dual) and, locally, of cohomogeneity one.

In terms of F and G, these two cases are respectively described by

F(x) = G(x) = x> + Ax* + Bx + C; (39)
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and
F(x) =Bx+ Cy, G(x) = Bx + C,. (40)

Proof. Suppose there exist a third infinitesimal symmetry of M, say K3, which
does not lie in the plane spanned by K; and Kj;; then, we must have ds(K;) = 0 and
du(K;) =0, for i = 1, 2, 3; this implies that ds and du are colinear; we then infer from
(35) and (37) that we have k = 0 and B; = B, in (34), so that M is K&hler—Einstein
by Proposition 11.

If, in addition, W~ = 0, we obtain (39) and g is then a self-dual Kihler—Einstein
surface, i.e., a complex space form.

If W~ does not vanish identically, on the open set where W~ # 0, the Hermitian
pair (g, /) is invariant under the action of the Killing vector fields K;’s, as [ is deter-
mined by the eigenform of W~ corresponding to its simple eigenvalue, cf. [21, 7];
then, x (a constant multiple of the simple eigenvalue of W~), the square-norm |0}
of the Lee form 0 of the pair (g, 7) as well as 00 are also invariant under the action
of K’s, i = 1,2, 3; we then have d|0]> A dk = 0; by using (30) and Lemma 9, we can
check that this implies that F and G satisfy (40); by Proposition 10, the correspond-
ing ortho-toric Kihler surface is Ricci-flat and k = —(2(C; — C2))/((¢ — )*); it then
follows from (30) that 0 = %d In |x|; in particular, d|0]> A 0 = 0; by [8, Theorem 1],
this implies that the metric is of cohomogeneity one. Since x is non-zero, it is not
constant, and so the metric is not homogeneous.

Evidently the two cases overlap when C; = C; and 4 = ¢ =0, in which case g
is flat. O

Remark 5. In fact we do not need to assume a priori that M is extremal in the
above proof, as long as we assume that the additional symmetry preserves ¢, hence
& —#n. Then ds and d¢ — dn are collinear, from which it is easy to deduce that M is
extremal.

Let us now collect the results we have established so far about weakly self-dual
Kaihler surfaces.

THEOREM 2. Let (M, g, J, w) be a weakly self-dual Kdhler surface. Denote by s, 4,
and p = ((s/2) + A)((s/2) — A), the (normalized) scalar curvature, the positive eigen-
value of the trace-free Ricci tensor Ricy, and the Pfaffian of the normalized Ricci
tensor, respectively. Then,

() K :=Jgrad, s and K, := J grad,p are commuting Killing vector fields, and on any
simply connected open subset where K| and K, are linearly independent, the functions
Ei=(s/2)+ 4, n:=(s/2)— A, t, z form a globally defined coordinate system with
respect to which the Kdhler structure (g, J, ®) is

dé?  di? 1

= — —_— -_— ZZ— Z2 41
e =05 i) 5 (RO 002y = Gl + 0z7), 41
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Jdé =§(—_527(dt+ndz), Jdr = —%—%, -

Jdn = %(dw édz),  Jdz= %Jr%,

o = dé A (dt 4 ndz) + dny A (dr + Edz), (43)
where

F(x) = kx* + £x° + Ax* 4+ Bx + Cy, (44)

G(x) = kx* + €x* + Ax> + Bx + C>. (45)

(i1) Conversely, each almost Kdhler structure (g, J, ) described by (41)—~(45) is Kdhler
and weakly self-dual with

EZ
s==2k(E+n)—¢ p =4k2§n+kz(i+n)+z,

so that K| = 9/dt and K, = 9/0z.
(iil) The Kdhler structure described by (41)--(45) is self-dual if and only if C, = C,.

In the self-dual case, we recover the general expression found by Bryant [13,
Section 4.3.2] depending on an arbitrary polynomial of degree 4.

3. Kihler Surfaces of Calabi Type
3.1. HAMILTONIAN 2-FORMS AND THE CALABI CONSTRUCTION

In this section we classify weakly self-dual Kdhler surfaces of nowhere constant sca-
lar curvature s, but for which p and s are not independent. As in the previous section
(when we assumed p and s were independent) we do this by finding an explicit for-
mula for a Kihler surface (M, g, J, ®) with a Hamiltonian 2-form ¢ = ¢, + %aw such
that K; := Jgrad,o has no zero, but K; := Jgrad,n = bK,, where = is the Pfaffian of
@ and b is (necessarily) constant.

The general theory of Kéahler surfaces with a Hamiltonian 2-form, described in
Section 1, applies equally to this case. In particular, since K; has no zero, we may
still write 7 = i and ¢ = ¢ 4 5 for the trace and Pfaffian of ¢, and d¢ and dn are
orthogonal by Proposition 3.

On the other hand, the constructions of Section 2 definitely fail, because K; and K,
are no longer independent: « is an affine function of ¢, so ¢ and # are not indepen-
dent functions. Therefore, d¢ and dz, in addition to being orthogonal, are collinear!
This is not a contradiction: we deduce that either ¢ or n is constant. Since
n = &(o — &) =n(e — n), this constant is the constant b above, so that =7 = b(c — b)
and 2 = +1(c —2b).

We observe that K is an eigenvector of —¢, o J, for the eigenvalue A, and the
conformally Kédhler anti-self-dual complex structure [ is characterized as follows:
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I coincides with J on the distribution generated by K; and JK;, but with —J on the
orthogonal distribution. Hence, we are in the following situation.

DEFINITION 8. A Kihler surface (M, g, J, ) is said to be of Calabi type if it
admits a nonvanishing Hamiltonian Killing vector field K such the almost-Hermitian
pair (g, I —with I equal to J on the distribution spanned by K and JK, but —J on the
orthogonal distribution—is conformally Kéhler.

It is straightforward to obtain an explicit formula for Kéhler metrics of Calabi
type, using the LeBrun form of a Kéhler metric with a Hamiltonian Killing vector
field [37].

PROPOSITION 13. Let (M, g,J, w) be a Kdhler surface of Calabi type. Then the
Kdhler structure is given locally by

g = (az — b)gs + w(z)dz?> + w(z) "' (dr + «)?, (46)

w = (az — b)wy +dz A (dt + o), 47)
where z is the momentum map of the Killing vector field K, t is a function on M with
d«(K) =1, w is a function of one variable, gs is a metric on 2-manifold X with area
form wy, o is a 1-form on  with do = awsy, and a, b are constant. Conversely equations
(46)—(47) define a Kdhler structure of Calabi type with K = d/dt, for any gz and V.

Proof. The proof follows LeBrun’s description [37] of Kéhler metrics with a

Hamiltonian Killing vector field K. Supposing first that (g, J, w) is only almost
Hermitian, with a Killing vector field K = Jgradz, and that K — iJK is holomorphic,
so that the complex quotient is locally a Riemann surface X. Introducing a local
holomorphic coordinate x + iy on X, we may write

g =e'w(dx® +dy?) +w d22 + wldr + )2,

Jdx = dy, Jdz = w™l(dt + ),

w=¢"wdx Andy+dzA(dt+ a).

where d#(K) = 1, o is an invariant 1-form with a(K) = 0, and u, w are functions of
X, y, z. The almost Hermitian structure / is given by

Idx = —dy, Idz = wi(dt + o),
with Kédhler form
w; = —e"wdx Ady +dz A (dt + ).

We now impose the condition that (g, J, w) and (§ = A %g, I, ® = . >w;) are Kihler
for some nonvanishing function 4. Now dw = 0 if and only if

(e"w).dzAdx Ady =dz Ada, (48)
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while A7%w; is closed if and only if

Adz Ada 4+ ((e"w).A — 22e"w)dz A dx A dy+
+24dx AdzA(dt+ o)+ 24, dy AdzA(dt+a)+24dtAw; =0, (49)

In the presence of (48), (49) is equivalent to
(e"w).A = A.e"w, Ix =24y =2, =0, (50)

which holds if and only if 2 = A(z) and e“w = A/ for some function A(x, y).

Let 0 be the complex 1-form w dz + i(dz 4+ «). Then, since dx £ idy is closed, the
complex structures 7 and J are integrable if and only if df belongs to the ideals gen-
erated by {0, dx — idy} and by {6, dx + idy} respectively. Since d6(d/0z, -) = 0, these
conditions force (dx — idy) A df and (dx + idy) A d6€ to vanish. Hence [ is integrable
if and only if

do = —w,dy Adz +wydx Adz + fdx Ady (51)
while J is integrable if and only if

do = wydy Adz —wydx Adz + fdx A dy; (52)
here f'is an arbitrary function. Hence / and J are both integrable if and only if

wy=w, =0 and do=fdxAdy (53)

and f'is necessarily a function of x, y only.

Putting together (48), (50), and (53), we see that (g, J, w) is of Calabi type, with
Killing vector field K, if and only if e“w = h(x, y)A(z), with do = h(x, )., A.. =0
and w, =w), =0, so that A = az — b for constants a, b and w = w(z).

Using the freedom in the choice of ¢, we may then assume o is a 1-form on X, while
gs = h(x, y)(dx? + dy?) is a metric on X, and the result follows. O

This Proposition shows that Kdhler metrics of Calabi type are essentially the same
as metrics arising from the well-known Calabi construction [14] of metrics on the
total space of a Hermitian line bundle over a Riemann surface. In this interpretation,
the Killing vector field K generates the natural circle action on the line bundle and
the Kéhler form is

ws + dJdf (54)

for a function f of the fibre norm r. Since —dJdlogr is the curvature of the line bun-
dle, which is basic, the momentum map z of K is also a function of r. Hence we may
locally view f as a function of z, so that, if we write Jdz = d¢ + « where d#(K) =1
and o is basic,

/ 4
ardf= (LY dz ndr+ o)+ do. (55)
w(z)/ . w(z)
Therefore, in Proposition 13, setting b = —1 without loss of generality, we have

f(2) = zw(z2).
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The metrics of Proposition 13 certainly admit a Hamiltonian 2-form, namely
@ = (az — b)w; + 3azw. Hence, 0 = 2az and A =az— b, so that £ =2az— b and
n = b. The Hamiltonian Killing vector fields associated to ¢ both vanish when
a = 0. On the other hand, for ¢ nonzero, we can use the freedom in the choice of
ztoseta=1and b =0.

THEOREM 3. A4 Kdhler surface is of Calabi type if and only if either:

(1) it is locally a Kdhler product of two Riemann surfaces, one of which admits a
Killing vector field; or

(i) it admits a Hamiltonian 2-form whose associated Killing vector fields are depen-
dent but not both zero.

The Kdhler structure is then given explicitly by the Calabi construction (46)—(47): in
case (1) a = 0, while in case (ii) we may take a =1, b = 0 without loss of generality.

3.2. WEAKLY SELF-DUAL KAHLER SURFACES OF CALABI TYPE

We begin this section by computing the curvature of a Kédhler surface of Calabi type
which is not a local Kédhler product. Therefore we set a =1, b =0, and write
w(z) = z/V(z), so that the Kéhler structure is

V(z)

_ £ g2 2
g=1zgs + 75 dz= + - (dz + o), (56)
o=z wy+dzA(dt+ a), (57)

As with ortho-toric Kéhler surfaces, the curvature is entirely determined by the
scalar curvature s of g, the conformal scalar curvature x of the Hermitian pair
(g, 1), and the trace-free part p, of the Ricci form of (g, J).

LEMMA 10. For a nonproduct Kdihler surface (M, g, J, w) of Calabi type, given by

(56)—(57), py is a multiple u of the Kdhler form wy of the Hermitian pair (g, 1), and
W, s, K are given by

f= —41—2 <sz + <g> z2>, (58)

s==_ = (59)

e (2)

where sy is the scalar curvature of . In particular, on the open subset of M where u
has no zero, the anti-self-dual almost-complex structure determined by p is equal to 1.
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Proof. The Ricci form p is given by p = py — %d]d log V. The first term is %szwz,
and we compute the second term as follows:

dJdlogV = d(II//Zsz) = d(%(dt + oc))

szdz/\(dt—i—oc)—}— V_,(lwz —lzdz/\(dt—i—oc)).
z z z

Evidently we may write this as a linear combination of w and w;, and we readily
obtain (58) and (59).

The conformal scalar curvature is most easily computed by noticing that the con-
formal Kihler metric g¢=z"2g is also of Calabi type, with z=1/z and
V(z) = 2*V(1/2) = V(z)/z*. Hence, its scalar curvatures are

SZ—I;'EZ_E o 2(V
e =alo7(2(5))

from which (60) follows, since k = z7%5. O

PROPOSITION 14. Let M be a nonproduct Kdhler surface M of Calabi type, with
Killing vector field K. Then the scalar curvature of M is a momentum map for a
multiple of K if and only if gs has constant curvature k and V' is of the form

V(z) = Ai2* + 4223 + k2% + A3z + Ay, (61)

Any Kdhler surface given by (56)—~(57) is extremal, with Ricci form pw;+ %sw, where
A3

ﬂ:—Alz‘i‘?, (62)

S = —2A1Z — Az.; (63)

also the conformal scalar curvature of (g, 1) is

A; 24

K=— 723 - 74 (64)

Hence:

(1) g has constant scalar curvature if and only if A} = 0;
(i) g is scalar-flat (i.e., anti-self-dual) if and only if A} = A, = 0.
(i) (g, J) is Kdhler—FEinstein if and only if Ay = A3 = 0;
(iv) g is weakly self-dual if and only if A5 = 0.
(v) g is self~dual if and only if Az = A4 = 0.
(vi) (g,J) is bi-extremal if and only if g is weakly self-dual;
(vil) the Bach tensor of g vanishes if and only if 441 A4 — A2A3 = 0.

Proof. From (59), we have
6zs + V., = s5.
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If 5 is an affine function of z, then both sides of this equation must be constant.
Hence ss = 2k and ¥ must be a quartic in z with quadratic term kz>. The formulae
for u, s and x are immediate, as are (i)—(v). (For (iv) we use the fact that 7 is inte-
grable and z 2wy is closed, so that weak self-duality is equivalent to the equation
ds =2du.)

(vi) The Pfaffian p of the normalized Ricci form is given by

p:( 2412 = 32 + 25 2)( %Az—%) (65)

in particular, p is a rational function of z; since z is a holomorphy potential, p is
a holomorphy potential if and only if it is an affine function of z, if and only if
A3 =0; p is then equal to — 3 A4>(s + 5 45).

(vii) For any extremal K&dhler surface the Bach tensor is J-invariant and the cor-
responding anti-self-dual 2-form, is expressed by (21) which yields

B (41‘111442; ArA3) o, B

This family of extremal Kédhler metrics has been considered in many places. In
particular, it includes the extremal Kéahler metrics of cohomogeneity one under
U(2) constructed by Calabi in [14]; more generally, it turns out that these metrics
all have cohomogeneity one under a (local) action of a four-dimensional Lie group,
locally isomorphic to a central extension of the isometry group of a surface of con-
stant curvature k. We refer to these metrics as extremal Kdhler surfaces of Calabi type
and briefly recall how they may be realized as diagonal Bianchi metrics, of class IX,
VIII or II, according to whether k is positive, negative or zero.

Up to rescaling, we can—and will—assume that k = ¢, with e = 1,0 or —1. As is
well known, we can now write df + « = g3 and introduce t-dependent 1-forms oy, o,

on X with gs = 67 + 03, 01 A 62 = ws and
d0'1:80'2/\0'3, d0'2:803/\01, d0'3:O'1/\O'2. (66)

By substituting o1, g,, o3 in (56)

( ) o2
g= dz? + z(6} 4+ 03) + —= (67)
V( ) ( 1 2
the complex structure J is determined by
Joi =0y Jdz=V9g (68)
while the Kédhler form w is
o =dz A o3+ zo| A gy = d(zo3). (69)

We here recognize bi-axial diagonal Bianchi metrics of class IX, VIII or 11, accord-
ing as ¢ is equal 1, —1 or 0; these admit a cohomogeneity one local action of SU(2) if
e =1, of SU(1, 1) if ¢ = —1, of the Heisenberg group Nil if ¢ = 0, and the orbits are
level sets of z. This can be seen as follows: denote by (Z1, Z,, Z3 = K) the triplet of
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vector fields determined by ¢;(Z;) = d;; and dz(Z;) =0, i,j = 1, 2, 3, where J; is the
Kronecker symbol. Then, for each value of z, Z,, Z,, Z; are tangent to the corre-
sponding orbit M, and generate a Lie algebra isomorphic to s1(2), su(l, 1) or
nif® according as ¢ is equal to 1, —1 or 0; therefore, each orbit can be locally identi-
fied to the corresponding Lie group and we can locally construct a new triple of inde-
pendent vector fields, (Z,, Z», Z3), such that [Z;, Z]=0and dz(Z) =0,i,j=1,2,3
(for each orbit, if (Z, Z,, Z3) is a basis of left-invariant vector fields, (Zl, 75, 23) is
a basis of right-invariant vector fields); Z;, Z», Z5 are clearly Killing with respect to g
and all commute with Kj.

Ife #0, K, Z\, Z», Zs generate a four-dimensional Lie algebra, corresponding to
a local action of U(2) if e =1, of U(1,1)if e =—1. If e =0, Zs equals K, up to a
constant factor; on the other hand, we get an additional Killing vector field K| gen-
erated by the rotations around the origin in the Euclidean 2-planeF* of x, y; then,
Ky, K, Zl, Z, generate a four-dimensional Lie algebra, say g, corresponding to a
local action of the group, G, obtained by forming the semi-direct product of Nil
by S' for the natural action of S' on Nil by (outer) automorphisms; the centre of
G = Nil xS' coincides with the centre of Nil; the latter is one-dimensional again
and the quotient of G by its center is isomorphic to Isom(i?); in other words, G
is isomorphic to a (nontrivial) one-dimensional central extension of Isom(E?).

If we concentrate our attention on weakly self-dual Kéhler surfaces, we readily
infer from the foregoing:

THEOREM 4. Let (M, g,J) be a weakly self-dual Kdhler surfaces. Denote by s the
scalar curvature and by p the Pfaffian of the normalized Ricci form; let Ky = J grad,s
and Ky = J grad,p be the associated Killing vector fields and assume that K has no
zero and that Ky = bK,, where b is a real constant (possibly zero).

(1) Then (M, g, J) admits a local action of cohomogeneity one of G = U(2),U(1, 1) or
Nil xS' and is locally isomorphic to a diagonal Bianchi metric of class IX, VIII or IT
respectively.

More precisely, let 61, 02, a3 denote the (local) 1-forms on M induced by this action,
corresponding to a triple of G-invariant 1-forms on G, so that doy = | A 02, doy =
eo3 A ay, doy = ¢eoy A a3, where e =1,—1 or 0 according as G = U(2), U(1,1) or
Nil xS'; then, the Kdéhler structure (g,J) can be put in the form (67)—~(68), where z
is an affine function of s and V(z) is of the form

V(z) = A12* + 422 + 62 + A4, (70)

(i1) Conversely, each Kdhler surface of the form (67)—(68), with V given by (70) is
weakly self-dual.
(i) This Kdhler structure is self-dual if and only if A4 = 0.

Remark 6. By substituting 43 = 0 in (62) and (64), we readily infer that 44 and
the constant ¢ appearing in (23) and (24) are linked together by

c=24344; (71)
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moreover, A # 0, as s is nonconstant, so that 44 = 0 if and only if ¢ = 0; as we
already know, both conditions are equivalent to g being self-dual. O

3.3. THE WEAKLY SELF-DUAL KAHLER METRIC ON THE FIRST HIRZEBRUCH SURFACE

We close this section by providing an example of a compact weakly self-dual Kahler
surface (M, g, J); this belongs to the family of extremal metrics constructed in [14] by
E. Calabi on the first Hirzebruch surface Fy, viewed as the compactification of the
total space of the tautological line bundle L = O(—1) over the complex projective
line CP' = P(C?) obtained by adding a section at infinity, say Ca; then, the zero sec-
tion, Cy, has self-intersection —1 and F; can also be considered as a blown up of the
projective plane CP? at some point, with exceptional divisor Cy, and F; — Cy =
C? = {(0,0)}.

We here recall the main features of Calabi’s construction from [14]. Let r be the
usual norm in C? and, for convenience, introduce the function ¢ defined on
C? —{(0,0)} by e’ = r%; the group U(2) naturally acts on F;, by preserving Cy and
Cso; by [15], the connected group of isometries, Isomgy(M, g), of any compact extre-
mal Kihler surface (M, g, J) is a maximal compact subgroup of the connected group
of holomorphic transformations Auty(M, J); it follows that any extremal metric on
F is isometric to a U(2)-invariant metric, in particular has a globally defined poten-
tial on the open set My = F, — Cy = C> — {(0, 0)} of the form u = u(¢); the Kéhler
form is thus given by o = y(1)dd“r + /'()dr A d°t, where Y (7) := /(¢); conversely,
any such Kéhler metric extends to F; if and only if (¢) extends to a C* function
of e’ in the neighbourhood of ¢t = —oo and to a C* function of ¢~ in the neighbour-
hood of ¢t = oo; in particular, ¢ has a limit @ when t — —oo and a limit, b, when
t — oo,with 0 < a < b; the corresponding Kihler class [w] is then equal to
4n(—a[Co] + b[Cwo]), where [Cp] and [Coo] denotes the Poincaré dual of Cy and simi-
larly for [Cy]; conversely, each Kéhler class on F; is of this form, for some pair
0 <a < b; it is easily checked that the Ricci for is given by p = dd‘v, with
v=1—1logy —Ltlogy/, so that s =2((//y) + (v /})); on the other hand, such a
metric is extremal if and only if s is an affine function of y; by easy successive partial
integrations, we infer that this metric is extremal if and only if  satisfies the follow-
ing differential relation: Yy’ = V(y), where V is a polynomial of the form (61); more-
over, the extremal metric is actually defined on F; and has its Kihler class para-
meterized by the pair (a, b) as above if and only if the coefficients of V" are given by

4= —2a A — (3a® — b?)
"7 (b= a)@® + 4ab + b?)’ T (b—a)a +dab+ b?)’ 72)
2 72 _".312
4 ab(3a*> — b?) Ay 2a°h

b —a)d® +dab + 1)’ ~ b —a) @+ dab+ 1)

we thus get an extremal Kdhler metric, say g(,,»), in each Kéhler class of F; (we have
a similar construction for the other Hirzebruch surfaces Fj [14]; the coefficients of V
are then given by (76) below).

https://doi.org/10.1023/A:1022251819334 Published online by Cambridge University Press


https://doi.org/10.1023/A:1022251819334

308 V. APOSTOLOV ET AL.

All these metrics are of cohomogeneity one under the action of U(2) and can also
be put in the form (67)—(68), with the same parameter iy, the same polynomial V(y),
d‘s =03 and dd‘t = 61 A g2; in particular, according to Proposition 14, g if
weakly self-dual if and only if 43 = 0, and this happens if and only if « and b are
related by

b =3d%; (73)

in this case, 4> =0 as well, meaning that p =0, and V() = A1w4 + lﬂz + Ay is a
function of y?; in particular, Yy’ = V(y) is easily integrated into

1
14 3e0\T (14 3¢02)?
v = a<71 +e,+,0) _ a<71 +e,0r2) , (74)

where £ is a constant; the latter can be made equal to zero without loss of generality
by a mere translation of the parameter ¢, i.e. a rescaling of r; then, up to rescaling, the
Kaéhler form is given by

1
o=0F3 e < dinder. (75)
(1+eh)2 (1 +eH2(1 + 3e)?
In the sequel, the Kéhler metric given by (75) will be referred to as the Calabi
weakly self-dual Kdhler metric of Fy. It may be noticed that, according to (72), the

scalar curvature s = —2A4y is nonconstant and (strictly) positive.
In the next section we show that, conversely, each compact weakly self-dual Kéahler
surface with nonconstant scalar curvature is, up to rescaling, isomorphic to the first

Hirzebruch surface equipped with the Calabi weakly self-dual Kédhler metric.

4. Compact Weakly Self-dual Kihler Surfaces

Compact self-dual Kédhler surfaces have been described by B.-Y. Chen in [20]: these
are locally symmetric, hence of constant holomorphic sectional curvature or, locally
the product of Riemann surfaces of opposite constant curvature (see [13] for a
higher-dimensional generalization).

In [32], W. Jelonek proved that compact real analytic weakly self-dual Kdhler sur-
faces are either Kdhler—Einstein, or locally the product of two Riemann surfaces of
constant Gauss curvatures, or biholomorphic to a ruled surface.

We show that the hypothesis of real analyticity can actually be removed and that,
except in the case when the scalar curvature is constant, the only weakly self-dual
Kéhler ruled surface is the first Hirzebruch surface F; equipped with the Calabi
weakly self-dual Kidhler metric, as described in the preceding section (up to rescal-
ing). More precisely, we have the following result.

THEOREM 5. Let (M, g,J) be a compact weakly self-dual Kdhler surface. Then
(M, g, J) is either
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(1) Kdhler—Einstein; or
(i1) locally isomorphic to the product of two Riemann surfaces of constant Gauss cur-
vatures, or
(iii) up to rescaling, isomorphic to the first Hirzebruch surface F equipped with a
Calabi weakly self-dual Kdhler metric.

Proof. By Proposition 6, we know that g is either self-dual, hence, by the above
mentioned result of B.-Y. Chen, described by (i) or (ii), or of constant scalar cur-
vature, hence, again, described by (i) or (ii), or of nonconstant scalar curvature. In
the latter case, the (negative) Kéhler structure (g, 7) is globally defined; it then fol-
lows from a result of Kotschick [36] that the signature of M is zero [36]; moreover,
since the (real) holomorphic field K; = Jgrad, s has nonempty zero set, we know by
[19] that the Kodaira dimension of the Kéhler surface (M, J) is —oo, hence (M, J) is a
ruled surface which is the projectivization P(E) of a rank 2 holomorphic vector
bundle E over a compact complex curve X [11].

If ¥=CP',(M,J) is a Hirzebruch surface F, = P(O & O(—k)), where k is a
positive integer, or the product CP! x CP!; the only extremal Kihler metrics
of CP! x CP! are the (symmetric) product metrics, which are of constant scalar cur-
vature; on the other hand, any maximal compact subgroup of Auty(M, J) is conju-
gate to U(2), and therefore any extremal Kédhler metric must be a cohomogeneity-
one U(2) metric [15], hence, locally of the form (67) with e = 1 (cf. the end of the pre-
ceding section for the case when k = 1); as shown by E. Calabi in [14], for each k > 0,
any Kéhler class of F carries a unique extremal Kédhler metric (up to a reparameter-
ization); each one can be put in the form (67), where the polynomial V, in the nota-
tion of (61), is determined by

4, — k+Da+(k—1Db 4, — 2=0b — (k+2)a
"7 (b= a)(d® + bF + 4ab)’ 27 (b= a)(d® + b7 + 4ab)’ 6
R (e kb2 — (k + 2)a?) 4, — @D ((k+ Da+ (k= 1Db)

(b — a)(@® + b + dab) (b — a)(@ + b + 4ab)

where 0 < a < b are the parameters of the Kéhler class; according to Proposition 14,
g is weakly self-dual precisely when 43 = 0; in the present situation, this is equivalent
to A, = 0 and happens if and only if k = 1 and u:=a/b = 1//3, ie. if (M, g, J) is
the first Hirzebruch surface equipped with a Calabi weakly self-dual Kéhler metric.
We now show that a compact ruled surface (M, J) whose base X is a compact com-
plex curve of genus g(X) at least 1 does not carry weakly self-dual Kdhler metrics of
non-constant scalar curvature. We thus assume that (M, J) = P(FE) carries a weakly
self-dual Kédhler metric of non-constant scalar curvature to get a contradiction.
Using an argument from [38, 49], we first observe that the rank two vector bundle
E splits as E = O @ L, where O stands for the trivial holomorphic line bundle and L
is a holomorphic line bundle L of degree deg(L) > 0. Indeed, recall the already men-
tioned result of E. Calabi [15] that the connected component of the isometry
group Isomy(M, g) is a maximal compact subgroup in Auty(M, J); according to
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M. Maruyama [41], the group of automorphisms of ruled surfaces can be described
as follows: If g(X) > 1, there exists an exact sequence

{1} - Autz(P(E)) — Aut(P(E)) — Aut(X), (77)

where Auts(P(E)) denotes the group of relative automorphisms of the bundle
P(E) — X, and Aut(X) is the group of automorphisms of X (of course, Aut(X) is
finite if g(X) > 2); on the other hand, the (nontrivial) homomorphic vector field
E; = K; — iJK; whose real part is the Killing vector field K| = Jgrad, s has a
nonempty zero set; since Z; preserves the (unique) ruling M = P(E) — X, it projects
onto a holomorphic vector field on the base X; since Z; has at least one zero, the
induced vector field on T vanishes; it follows that Z; is tangent to the CP! fibers
(equivalently, E; belongs to the Lie algebra of Autz(P(E))); this shows that the ker-
nel of the group homomorphism f: Isomy(M, g) — Auty(Z) induced by the exact
sequence (77) is a nontrivial compact subgroup of Auts(P(E)); one can therefore find
an S! in the connected component of the identity of Auts(P(E)); denote by Z, the
induced holomorphic vector field, such that the imaginary part Ky = Im(5;) gener-
ates the S'-action, whereas Z itself generates a C*-action; as a matter of fact, Z¢ can
be identified to a traceless holomorphic section of End(FE), say s; note that s is of
constant determinant; since Ky = Im(Z,) generates a periodic S'-action, s must be
diagonalizable; this shows that we have a holomorphic splitting of E into eigensub-
bundles of s; by twisting by a line bundle, we obtain the splitting £ = O & L, where
deg(L) = 0; then, &, is nothing but the Euler vector field of L. If the degree of L is
zero, then any Kaéhler class contains a locally symmetric Kdhler metric [51], so that
any extremal Kdhler metric on (M, J) is of constant scalar curvature [14], a contra-
diction; we thus obtain a splitting £ = O @ L where L is a holomorphic line bundle
of deg(L) > 0.

As Isomy(M, g) is a maximal compact subgroup in Auty(M, J), we may assume
[49] that (up to a biholomorphism) the metric g is invariant under the fixed S' action
generated by Ky = Im(E,). For any nontrivial Killing vector field, K, which arises
from a real holomorphy potential, the argument already used above shows that
2 = K — iJK must be tangent to the fibers, and therefore E A Ey = 0. In particular,
we get that Ky = K| + hJK|, where f, h are smooth functions defined on an open
dense subset of M where K; = Jgrad,s # 0. But (K, JK) = —ds(Ko) = —Lg,5 =0,
i.e. £=0, and therefore f is a constant. By rescaling the metric if necessary we
may assume therefore that Kj = Ko = Im(Zo). Similarly, K, = Jgrad,p must be a
constant multiple of K; and by Theorem 4, g must be locally of cohomogeneity
one, i.e., g can be written of the form (67) on an open dense subset of M.

Note that M contains exactly two curves fixed by the C*-action generated by E,
corresponding to the zero and infinity sections, Cy and C,, of M = P(O @ L); more-
over, the function z appearing in (67) makes sense on the whole of M as being a
momentum map of the corresponding S'-action (up to multiplication by a nonzero
constant); it then follows that z: M — R maps M onto an interval [a, b], such that z
is regular on M — (z~'(a) U z~'(b)); therefore, for any € (a,b), T =z"'(t0)/S",
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whereas Cy = z7'(a) and Cs = z~'(b) (see [38]). By using an argument from [38,
p. 42], it is shown that ¢ = |K;|* is a smooth function on X x [a, b], which satisfies
the boundary conditions

40 @) = g, ) = O; (aiq)( a) = —(a—azq)(., b) =k, (78)

where k is a real constant; for Calabi’s metrics (67) one has ¢ = (V(z))/z, so that the
Equations (78) read

V(a) = V(b) = 0; V'(a) = ka; V'(b) = —kb:

we thus obtain the following values for the coefficients 4, A, A3, A4 of V (notations

of (61)):
4, — _kla+b)+e(a—b) 4= —k(a®> 4 b*) + 2e(b*> — a?)
"7 (b—a)(a® +4ab+ b2’ 2T (b—a) @ +4ab+ 1Y)
(79)
Ay = ab(—k(a® + b*) 4 2¢(b*> — a*)) 4~ @D (k(a+b) +e(a—b)).

(b—a)(a*+4ab+bY) YT (b—a)d*+4ab+ D)

according to Proposition 14 we have A3 = 0, and from (79) we also get 4, = 0; by
(63) and (62) it follows that the Ricci tensor of g has two distinct eigenvalues, equal
to s/6 and s/3, respectively; by Proposition 6, Ricy nowhere vanishes on M, meaning
that the scalar curvature s nowhere vanishes as well; since K is a non-trivial Killing
vector field, s must be everywhere positive; this shows that the first Chern class ¢; (M)
of (M, J) is positive, and therefore ¢}(M) > 0, a contradiction [11].

Remark 7. The case (ii) of Theorem 5 includes in particular ruled surfaces P(E)
over a Riemann surface X of genus g > 1 when the holomorphic vector bundle E
is stable or polystable, cf., e.g., [51].

5. Weakly Self-dual Almost Kéhler Manifolds
5.1. THE MATSUMOTO-TANNO IDENTITY FOR ALMOST KAHLER 4-MANIFOLDS

Recall that an almost Kdhler manifold is an almost Hermitian manifold (M, g, J, w)
for which the Kéhler 2-form w is closed. The almost complex structure J of an
almost Kédhler manifold is not integrable in general; if it is, we obtain a Ké&hler
manifold.

We would like to identify the Ricci tensor Ric of an almost Kdhler manifold with
a 2-form p, the Ricci form, as in the Kédhler case. However, only the J-invariant part
of Ric defines a 2-form, whereas on a (nonintegrable) almost Kéhler manifold, the
Ricci tensor is not in general J-invariant. We shall therefore impose J-invariance
as an extra requirement.
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Throughout this section we will always assume that (M, g, J) is an almost Kéhler
4-manifold whose Ricci tensor is J-invariant, i.e., Ric(J-, J-) = Ric(-, ). We then
adopt the notations of Section 1, and, in analogy with the Kéhler case, we consider
the type (1,1) Ricci form, p, of (M,g,J) defined by p(-,-) = Ric(J-, ); the anti-
self-dual part of p is denoted by p,. It is a remarkable fact [22] that even though J
is not integrable, p is still a closed (1,1)-form (although it is no longer a representa-
tive of 1/2ncf*). Using this observation, the proof of Lemma 1 easily extends to the
case of almost Kédhler 4-manifolds with J-invariant Ricci tensor.

LEMMA 11. For any almost Kdhler 4-manifold with J-invariant Ricci tensor the
identity (1) is satisfied. In particular, the anti-self-dual Weyl tensor W~ of such a
manifold is harmonic if and only if the Matsumoto-Tanno identity (2) is satisfied.

Proof. The proof follows the one given in the Kéhler case, with slight mod-
ifications in places where the nonintegrability of J must be taken into account: the
Cotton—York tensor is now written as

Cx (Z) = —5(Vxo)(Y, JZ) — (Vyp)(X, JZ)) = p(Y, (VxI)NZ))~
— p(X, (Vy)(2)) + Hds(XNY, Z) — ds(Y)(X, Z)). (80)

Since p closed [22], we have
(Vxp)(Y,JZ) — (Vyp)(X, JZ) = =(Vzp)(X, Y). 81

As an algebraic object, VxJ is a skew-symmetric endomorphism of 7M, associated
(by g-duality) to the section Vyw of the bundle of J-anti-invariant 2-forms; it
then anti-commutes with J, and commutes with any skew-symmetric endomorphism
associated to a section of A~ M; in particular, VyJ commutes with the endo-
morphism corresponding to p, via the metric (which will be still denoted by p).
We thus obtain

p(Y, (VxI)(2)) — p(X, (VyI)(2))
= 3(Vyo)(X, JZ) = (Vxo)(¥, JZ)) + (Vxo)(Y. py(2)) = (Vyo) X, py(Z)).

By using the closedness of w we derive

p(Y, (VxI)(2)) = p(X, (VyI)Z)) = 5(Vz0) (X, Y) = (V) (X, ). (82)
Substituting (81) and (82) in (80), we finally get

Vzpo = —3ds(Z)w — 2C(JZ) — VRicyzy@ + ds A JZ, (83)

The A~ M-component of (83) gives the identity (1); the last part of the lemma is
immediate. [
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It follows that Lemma 4 and, hence, Proposition 1 remain true for weakly
self-dual Kéhler surfaces, so that on the open set M, where p, # 0 the almost
Hermitian structure (g = A">g, I) defined on M, by po = Aoy (see Lemma 2) is
Kihler.

The theory of Hamiltonian 2-forms ¢ does not extend automatically to the almost
Kaéhler case: there is no reason, in general, to suppose that the trace and Pfaffian of ¢
are Poisson-commuting holomorphy potentials, nor can we appeal to the open map-
ping theorem when J is not integrable. On the other hand, Proposition 3 does gen-
eralize in the following sense: if we write ¢ = & +# and n = &z, then d¢ and dy are
orthogonal and Jdo = 2/d4 on the closure of M.

Fortunately, when ¢ is the Ricci form, we can show more.

LEMMA 12. On a weakly self-dual almost Kdhler 4-manifold with J-invariant Ricci
tensor, K = Jgrad,s is a Killing vector field.

Proof. On M, the Ricci tensors of both § = A7%g and g are [-invariant, and
therefore /grad,/ is Killing vector field (with respect to both metrics) [7]. Since
Ids = 2Jd4, Jds = 21dZ and K is a Killing vector field on M. On the other hand if 4
vanishes identically on an open set U then g is Einstein on U, so that s is constant,
and K is a trivial Killing vector field. Hence, by continuity, K is a Killing vector field
everywhere. ]

Because of this observation, it is natural to strengthen the definition of Hamil-
tonian 2-forms in the almost Kédhler case: we say that a closed J-invariant 2-
form ¢ on an almost Kéhler 4-manifold is Hamiltonian if its trace-free part
@, is a twistor 2-form and its trace ¢ is a momentum map for a Killing vector
field.

Note that for any Killing vector field K, Vy (VK) = R“}; y and so the 1-jet {K, VK} is
parallel with respect to a globally defined connection, cf. [35]. Hence if K vanishes on
an open set so does VK, and therefore K vanishes on any connected component
meeting that open set. It follows that if ¢ is Hamiltonian, the open set M, where
@, # 0 is dense or empty in each connected component.

In particular, we obtain the following generalization of Proposition 6.

PROPOSITION 15. Let (M, g, J, w) be a connected weakly self-dual almost Kdhler
4-manifold with J-invariant Ricci tensor. Then one of the following holds:

(1) py is identically zero; then, (g, J, w) is an Einstein almost Kdihler 4-manifold; or
(ii) the scalar curvature s of g is constant, but p, is not identically zero,; then, (g, J) is
obtained from a Kdhler surface (g, 1) with two distinct constant principal Ricci
curvatures, A and u, in the following manner: J equals to I on the J-eigenspace
of the Ricci tensor, but to —I on the p-eigenspace; hence I is compatible with

the opposite orientation of (M, J); or

(ii1) s is not constant and g is self-dual; or
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(iv) W~ and p, have no zero; then, (g = 272g. 1) is a globally defined extremal Kdhler
metric of non-constant scalar curvature, which is compatible with the opposite
orientation of (M, J).

5.2. WEAK SELF-DUALITY, HAMILTONIAN 2-FORMS, AND A CONJECTURE
OF GOLDBERG

The existence of nonintegrable almost Kéhler 4-manifolds listed in (i)—(iv) of Propo-
sition 15 appears to be a nontrivial problem. We collect below some remarks and
known results on this issue:

e A long-standing conjecture of Goldberg [28, 47] states that a compact Einstein
almost Kéhler manifold must be a Kéhler-Einstein manifold. The first local
examples of nonintegrable Einstein almost Kéihler 4-manifolds have been
recently discovered in [44, 9]; we shall provide new examples (see Example 2
below), but for all these examples the Ricci tensor and the anti-self-dual Weyl
tensor identically vanish.

e The almost Kéhler 4-manifolds described in Proposition 15(ii) have been recently
studied in [6]. It is known that there are essentially two examples of homogeneous
Kaéhler surfaces (M, g, I) which give rise to homogeneous non-integrable almost
Kaéhler 4-manifolds described in (ii) of Proposition 15; specifically, (M, g, I) is
either isomorphic to (SU(2) xSol)/U(1) (in the case when the signature of the
Hermitian form is (2,2), cf. [48]), or to (Isom(E?) x Soly)/SO(2)(in the case when
the signature of the Hermitian form is (0,2), cf. [51]); see also Example 3 below.
However, there are also many nonhomogeneous examples [4].

e We believe that there should exist nonintegrable examples of almost Kahler
4-manifolds described in Proposition 15(iii) and (iv). However, as we discuss
below, it is not clear how to generalize the constructions of Sections 2 and 3 to
obtain such examples.

According to Proposition 4, for a weakly self-dual Kdhler surface, not only the
scalar curvature, but also the Pfaffian of the normalized Ricci form is a momentum
map for a Killing vector field. Indeed, this much holds for the trace and the Pfaf-
fian of the normalized 2-form associated to any Hamiltonian 2-form, by
Proposition 2.

Hence, one approach to generalize the constructions of Sections 2 and 3 to the
almost Kéhler case is to study Hamiltonian 2-forms such that the Pfaffian is also
a momentum map for a Killing vector field. The following Lemma shows that there
are no nonintegrable examples with linearly independent Killing vector fields, which
means that there is no direct generalization of the constructions of Section 2.

LEMMA 13. For an almost Kdhler 4-manifold with a Hamiltonian 2-form ¢, the
Pfaffian & of the associated normalized 2-form @ is a momentum map for a Killing
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vector field K = Jgrad,m if and only if either (g,J) is a Kdhler or K is a constant
multiple of K = Jgrad,o.

Proof. Since 1 =10?>— > we have drn = lods + @y (Jdo). Straightforward cal-
culation gives

1 1
V(Jdn) = do A Jdo — 3 |do]w + Eo—V(Jdo) — ¢, o Vdo.

Since K = Jgrad,o is Killing by assumption, it follows that Jgrad,n is Killing if and
only if ¢, o Vdo is skew. This is automatic on the open set where ¢, vanishes, where
do =0 and hence dn = 0. Therefore we can assume ¢, is nonvanishing and write
@, = Awy, where [ is a complex structure of the opposite orientation to J.

Now 7o Vdo is skew if and only if Vdg is I-invariant; since J and 7 commute, this
means that the J-anti-invariant part of Vdo must be /l-invariant. But K = Jgrad,o
is Killing, so the J-anti-invariant part of (Vydo)(Y) is equal to 2(Vyw)(K, Y)+
(Vkw)(X, Y). The latter is I-invariant if and only if for any vector field X we have

(Vix)(K) = I(VxJ)(K). (84)

Suppose now that VyJ = A4 # 0 for a vector X at some point. Since VxJ, like 4, is a J-
anti-invariant endomorphism, we can write V,;xJ = bA + c¢JA forsome b, ¢ € R. Equa-
tion (84) now reads bA(K) + cJA(K) = IA(K). Since A commutes with / and anticom-
mutes with J, by applying 4 to the both sides we obtain: —bK + ¢JK = —IK. However
K is orthogonal to both JK and /K, and so » = 0 and ¢ = £1. Thus, on the open set
where J is nonintegrable and ¢, # 0, we have Jdo = £Ido = £2Jd/, so dn and do
are linearly dependent. ]

The Calabi construction in Section 3 does generalize to the almost Kdhler case and
generates some new examples of self-dual Ricci-flat almost Kéhler 4-manifolds.
However, we shall see that there are no nonintegrable examples of nonconstant
scalar curvature.

PROPOSITION 16. Let (M, g, J, w) be an almost Kdhler 4-manifold with J-invariant
Ricci tensor and a nonvanishing Hamiltonian Killing vector field K. Suppose that the
pair (g = 272g. 1) is Kdhler, where 2 is a momentum map for a nonzero multiple of K,
and 1 is equal to J on span(K, JK), but to —J on the orthogonal complement of
span(K, JK).

Then either J is integrable, or (g, w) is given explicitly by
2

w V
g=—(Pgs +d) + o (dr +—dz + ) (85)
z w z

w:chuz—i-dz/\(dt—}-Kdz—i—ﬁ), (86)
z

where gz is a metric on 2-manifold X with area form wsy, f is a 1-form on X with
df = Wws, and V + iW is an arbitrary holomorphic function on X.
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Conversely any such metric satisfies the above hypotheses, and J is integrable if and
only if the function W is constant.

Proof. Without loss of generality, we take 4 = z to be a momentum map for K
(with respect to w). As in Proposition 13, cf. LeBrun [37], we may introduce coor-
dinates such that

g = e“w(dx® + dy?) + wdz> + wl(dr + %)’
o =c"wdx Ady +dz A (dt + &)
® =z 2 (—e“wdx A dy + dz A (df + )

where @ is the Kihler form of 7 with respect to g = z~2g. The integrability of I toge-
ther with the closedness of w and @ yields

e'w = h(x, y)z, da = —w.dy Adz 4+ w,dx Adz+ A(x, y)dx Ady
from which we obtain the integrability condition
Wy + W)y, = 0. (87)

The Ricci tensor of g is J-invariant if and only if

=2 =2
(zu_ ) =0 and (zu_ ) =0
ATV zw Jy
so that we can write zu. = f(z)zw — 2. Since e"w = h(x, y)z, we obtain (zw).+

f(2)/2(zw)* = 0.
The latter is explicitly integrated, and we get

1
F(z) + G(x, p)

for some functions F(z) and G(x, y). By substituting into (87) we discover that either
F or G must be constant.
If G is constant, then w, =w, =0, i.e., g is of Calabi type and J is integrable.
Consider now the case when F is a constant; then, w = W/z and e* = z?eV, where
Wi(x, y) is a positive harmonic function and U(x, y) is an arbitrary function of (x, y);

the almost Kéhler structure (g, w) takes the form (85)—(86) where:

zw(x, y,z) =

gz = eV(dx? + dy?);

ws = eVdx A dy;

W is a positive harmonic function on X;

o satisfies do = —W,dx A dz/z + W,dy A dz/z + Wws and we can locally choose
t so that « = Vdz/z + 8, where V' is a harmonic conjugate of W and dff = Woy.

This almost Hermitian structure (g, J, ) is almost Kédhler with J-invariant Ricci
tensor, since w, e and o solve the required equations. OJ
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One directly calculates the normalized scalar curvature s of the metric (85): it is
given by

S = et (Uxx + U,y + 2eU).

On a weakly self-dual almost Kéhler 4-manifold with J-invariant Ricci tensor, we
have seen that s is a momentum map for a Killing vector field. However, s cannot be
a multiple of z unless it vanishes. Hence, this construction does not yield any nonin-
tegrable weakly self-dual almost Kdhler metrics of Calabi type with nonconstant sca-
lar curvature. However, it does provide the following new examples of self-dual
Ricci-flat strictly almost Kdhler 4-manifolds.

EXAMPLE 2. Let (g, J, ) be given by (85) and suppose that s = 0; this means that
U is a solution of the Liouville equation, i.c., that gy is the standard metric on an
open subset of S?, while H = W+ iV is a nonconstant holomorphic function on X
with positive real part. If we write z = r, we see that the metric

w r
g =—(dr + r’ge) + —(dt + a)?
r w

is given by applying the Gibbons—Hawking Ansatz using the harmonic function
W /r, which is invariant under dilation with weight —1 in the sense that

0 W
a\r)

(In fact this is the natural scaling weight for WW/r, since it is the Higgs field of an
abelian monopole on R*.)

This class of Gibbons—Hawking metrics has been studied before in [16] and [18]. In
addition to the triholomorphic Killing vector field 3/d¢, these metrics also admit a triho-
lomorphic homothetic vector field r d/9r. Therefore, by [27], the local quotient by r 9/ dr
isa hyperCR Einstein—Weyl space. In this case the quotient Einstein—Weyl structure was
obtained explicitly in [16] and is an Einstein—Weyl space with a geodesic symmetry.

The reader is referred to these references for more information. However, to the
best of our knowledge, the observation that these metrics are almost Kéhler is
new. Note that the Kdhler form is not an eigenform of the Weyl tensor, showing that
the solutions are different from the previously known examples of Nurowski—
Przanowski [44] and Tod, which were obtained by applying the Gibbons—Hawking
Ansatz to a translation-invariant harmonic function.

We next use the rough classification given by Proposition 15 to obtain the follow-
ing partial result which motivates the further study of compact weakly self-dual
almost Kdhler 4-manifolds with J-invariant Ricci tensor:

THEOREM 6. Suppose that there exists a compact weakly self-dual almost Kdhler

4-manifold (M, g, J, ®) with J-invariant Ricci tensor, for which the almost complex
structure J is not integrable. Then one of the following two alternatives holds.
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(1) The scalar curvature of g is a negative constant; then M admits an Einstein,
non-integrable almost Kdhler structure, or

(1) (M, g, J, w) belongs to case (iv) of Proposition 15, and the globally defined Kdhler
structure (g, I) is isomorphic to an extremal Kdhler metric which is not locally of
cohomogeneity one, on a minimal ruled surface S =P(O S L) — X, with g > 1
and deg L > 0.

Proof. We inspect the possible compact nonintegrable almost Kéhler 4-manifolds
given by (i)—(iv) of Proposition 15.

The case of constant scalar curvature is described by Proposition 15(i), (ii). Our
claim then follows by [47] and [6, Th.2].

Suppose that s is not constant, i.e., that K = Jgrad,s is a nontrivial Killing vector
field by Lemma 12. Let xg € M be a zero of K; then, the isotropy subgroup H(x() of
the connected group of isometries of (M, g) is a compact group of dimension at least
one; one can therefore take an S' in H(x,). Hodge theory implies that on a compact
almost Kédhler manifold any isometry which is homotopic to the identity inside the
group of diffeomorphisms is a symplectomorphism (see e.g. [39]); hence the chosen
isometric S'-action is symplectic with respect to w. Since X is a fixed point of the S'-
action, we obtain a Hamiltonian S'-action on (M, w) [40]. The manifold is then
equivariantly (and orientedly) diffeomorphic to a rational or a ruled complex surface
endowed with a holomorphic circle action [10, 2, 34]. Moreover, in this case
(M, g, J, w) is given by Proposition 15 (iii) or (iv).

Consider first the case (iii). Since s is not constant, the self-dual Weyl tensor W+
does not vanish [5, Cor.1]. By the Chern—Weil formulae, the signature of M is strictly
positive and, therefore, M is diffeomorphic to CP?[11]. Combining the results of [30]
and [46], one sees that on CIP? the only self-dual conformal structure with nontrivial
(conformal) Killing vector field is the standard one. Thus, modulo diffeomorphisms,
we may assume that g is conformal to the standard Kéhler metric (gg, wg). Since w
and wy are both harmonic self-dual 2-forms on (CIP?, g¢), and since bT(CIP?) = 1,
we conclude that w = const.wg, showing that J is integrable, a contradiction.

Suppose (M, g, J, ) is as in Proposition 15(iv). Nowp,, determines an integrable
almost complex structure / compatible with g and with the opposite orientation of
(M,J), such that (g=A"2g,I) is an extremal Kihler metric with Igradgs =
const.K. Denote by M the smooth manifold M endowed with the orientation induced
by I. Thus, the oriented smooth 4-manifolds M and M both admit complex struc-
tures. Since M is the underlying smooth manifold of a rational or a ruled complex
surface, we conclude as in the proof of Theorem 5 that the complex surface (M, I)
is a ruled surface of the form [P(E), where E — X, is a holomorphic rank 2 bundle
over a compact Riemann surface X, of genus g, and which splits as £ = O @ L for a
holomorphic line bundle L of degree deg (L) > 0.

We have to prove that g > 1. Indeed, if g = 0, we obtain the Hirzebruch surface
Fr = P(O & O(—k)), where k is a positive integer. As we have already observed in
the proof of Theorem 5, the extremal Kdhler metrics on these surfaces are the Calabi
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cohomogeneity-one U(2)-metrics, i.e. g is given by the Calabi construction (67)—(68);
since g = const.5°g, it follows that g is a cohomogeneity-one metric as well and there-
fore gradzs = const.grad,s, showing that JK = /K. Since s is not constant, by
Lemma 13, J is integrable on the open dense subset where ds # 0, hence everywhere.
We thus conclude that g > 1. Note that the above local argument applies to any
extremal Kéhler g which is locally of cohomogeneity one, so that the last part of
the theorem also follows. O

We do not have any examples in case (ii) of the above theorem. Indeed, the only
examples we know of extremal Kdhler metrics on the minimal ruled surfaces in (ii)
are locally cohomogeneity-one Calabi-type metrics [49,50].

5.3. ALMOST KAHLER 4-MANIFOLDS OF CONSTANT LAGRANGIAN SECTIONAL
CURVATURE

In this section we deduce another global result from Theorem 6. An almost Kédhler
4-manifold (M, g, w) is said to have (pointwise) constant Lagrangian sectional curva-
ture if the sectional curvature of g, at each point of M, is constant on the set of
Lagrangian 2-planes at that point-recall that the latter are the planes X' A Y with
(X, Y) =0. One can make the same definition for almost Kéhler manifolds of
any dimension, but for 2n > 4, any almost Kédhler 2n-manifold of constant Lagran-
gian sectional curvature is in fact Kédhler with constant holomorphic sectional curva-
ture [23, 24]. Conversely, it is easy to see that any complex space form has constant
Lagrangian sectional curvature (see, e.g., [25]).

In four dimensions, the situation is more interesting. A simple local calculation
(cf. e.g. [5]) shows that an almost Kdhler 4-manifold has constant Lagrangian sec-
tional curvature if and only if the Ricci tensor is J-invariant, the Weyl tensor is
self-dual, and the Kédhler form is one of its roots (i.e., M has Hermitian Weyl tensor
in the sense of [3]).

The following homogeneous example shows that the integrability for almost
Kaihler 4-manifolds with constant Lagrangian sectional curvature does not follow
locally (nor even for complete metrics).

EXAMPLE 3. Consider the homogeneous Kéhler surface M = (SU(2) xSoly)/U(1),
where Sol, denotes the real two-dimensional solvable subgroup of upper triangular
matrices in SLy(R).

We take the unique left-invariant Kéhler structure (g, /) on M, determined by the
property that the constant principal Ricci curvatures are equal to (—1, +1), cf. [48].
According to Proposition 15(ii), (M, g) admits an almost Kéhler structure J with
J-invariant Ricci tensor. Since the scalar curvature of g is zero, g is self-dual (with
the orientation opposite to /) [26]; furthermore, J is not integrable [6], and by using
the general formulae in [12, Ch. 7] one easily checks that (M, g, J) has constant
Lagrangian sectional curvature.
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In contrast to this example, there were a number of reasons [3, 5] to believe that a
compact almost Kédhler 4-manifold of constant Lagrangian curvature must be a self-
dual Kédhler metric. The conjectured integrability of the almost complex structure
has been proved under some additional assumptions on curvature [5] or the topology
[3] of the manifold, but the general question was left open. As a consequence of
Theorem 6 we are now able to give a positive answer.

COROLLARY 1. A compact, four-dimensional, almost Kdhler manifold has constant
Lagrangian sectional curvature if and only if it is a Kdhler self-dual surface.

Proof. Suppose (M, g, J, w) is a compact almost Kdhler 4-manifold of constant
Lagrangian sectional curvature, but for which J is not integrable. According to
[5, Th. 2] the scalar curvature s of g is not constant; then, by Theorem 6, the
smooth manifold M is diffeomorphic to a minimal ruled surface. Since any such
surface admits an orientation reversing involution, we conclude that M carries a
complex structure which is compatible with the orientation induced by w. Then,
by [3, Cor. 2], the almost complex structure J must be integrable, contradicting our
assumption. O
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