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4-manifolds, providing new examples of Ricci-flat almost Kähler metrics which are not
Kähler.
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Introduction

Self-dual Kähler surfaces have been considered in several recent works, in particular

in a paper by R. Bryant [13], where self-dual Kähler surfaces appear as the four-

dimensional case of a comprehensive study of Bochner-flat Kähler manifolds in all

dimensions, and in a paper by two of the authors [8], where a generic equivalence

has been established between self-dual Kähler surfaces and self-dual Hermitian

Einstein metrics and where an explicit local description of the latter is provided.

Whereas self-dual surfaces are easily proved to be extremal, i.e., admitting a

Hamiltonian Killing vector field whose momentum map is the scalar curvature, it

was an a priori unexpected fact, independently discovered in the above works, that

they actually admit a second Hamiltonian Killing vector field; moreover, a crucial

observation of R. Bryant [13], is that the momentum map of the latter is the Pfaffian

of the normalized Ricci form. Since these Killing vector fields commute, this also

provides a link with the work of H. Pedersen and the second author [17], where

an explicit local classification of self-dual Einstein metrics with two commuting

Killing vector fields is obtained, without the hypothesis that they are Hermitian.
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In this paper, we show that we can relax the assumption of self-duality, and estab-

lish the same bi-Hamiltonian structure for weakly self-dual Kähler surfaces, i.e.,

Kähler surfaces whose anti-self-dual Weyl tensor W� is harmonic; this fact has its

origins in the basic Matsumoto–Tanno identity for such surfaces, recently redisco-

vered by W. Jelonek [32], and leads to a surprisingly simple explicit expression, gene-

ralizing an expression found by Bryant in the self-dual case. On the other hand, we

also observe that in Calabi’s family of extremal Kähler metrics on the first

Hirzebruch surface F1, there is a unique (and completely explicit) weakly self-dual

metric up to homothety. This is in contrast to the self-dual case, where the compact

(smooth) examples are all locally symmetric [20].

Our results concerning weakly self-dual Kähler surfaces may be summarized as

follows (definitions and more precise statements are given in the body of the paper).

THEOREM. Let ðM; g; J;oÞ be a weakly self-dual Kähler surface. Then ðg; J Þ is a

bi-extremal Kähler metric in the sense that the scalar curvature and the Pfaffian of the

normalized Ricci form of ðg; J Þ are Poisson-commuting momentum maps for

Hamiltonian Killing vector fields K1 and K2 respectively. Furthermore, on each con-

nected component of M one of the following holds.

ðiÞ K1 and K2 are linearly independent on a dense open set. Then ðg; J;oÞ has the
explicit local form ð41–45Þ, depending on an arbitrary polynomial of degree 4

and an arbitrary constant which is zero if and onlyif g is self-dual, cf. Theorem 2.

ðiiÞ K1 is nonvanishing on a dense open set, but K1 ^ K2 is identically zero. Then

ðg; J;oÞ is locally of cohomogeneity one and is given explicitly by the Calabi con-
struction, cf. Theorem 4.

ðiiiÞ K1 and K2 vanish identically. Then g has parallel Ricci curvature ðhence is either

Kähler–Einstein or locally a Kähler product of two Riemann surfaces of constant

curvaturesÞ.

If ðM; g; J;oÞ is compact and connected, then it necessarily belongs to case ðiiÞ or
ðiiiÞ above, and in case ðiiÞ ðM; g; J;oÞ is isomorphic to the weakly self-dual Calabi
extremal metric on F1 ðsee Theorem 5Þ.

The path to proving this result touches upon various important themes in Kähler

geometry, and along the way we introduce further ideas, results and examples.

A key aspect of our approach is to study weakly self-dual Kähler surfaces within

a more general setting. The Matsumoto–Tanno identity for weakly self-dual Kähler

surfaces is equivalent to the fact that the primitive part r0 of the Ricci form r of
ðg; J Þ satisfies an overdetermined linear differential equation. On the open set

where r0 is nonvanishing, the equation means that r0 defines a conformally Kähler
Hermitian structure I inducing the opposite orientation to J. Many of the properties

of weakly self-dual Kähler surfaces are simple consequences of the fact that the r is a
closed J-invariant 2-form, whose primitive part satisfies this equation. In particular,
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we prove in Proposition 2 that two of the algebraic invariants (essentially the trace

and the Pfaffian) of any such 2-form j are Poisson-commuting momentum maps for
Hamiltonian Killing vector fields. Therefore, throughout the work, we develop the

theory of Kähler surfaces with such ‘Hamiltonian’ 2-forms j, which include other
interesting examples in addition to weakly self-dual Kähler surfaces.

First of all we study the generic case that the Hamiltonian Killing vector fields

are linearly independent. This means that the Kähler structure ðg; J;oÞ is toric,
and in Theorem 1 we characterize the class of toric Kähler structures arising in this

way from Hamiltonian 2-forms. Whereas toric Kähler surfaces in general depend

essentially on an arbitrary function of two variables [1, 29], our toric surfaces, which

we call ‘ortho-toric’, have an explicit form—given in Proposition 8—depending only

on two arbitrary functions of one variable. This has the practical advantage that

curvature conditions lead to ordinary differential equations for these functions. In

particular, we are able to obtain explicitly all of the extremal toric Kähler structures

in our class, including some new examples of Kähler metrics which are conformally

Einstein, but neither self-dual nor anti-self-dual, and also some explicit Kähler–

Einstein metrics. The weakly self-dual metrics in this family are classified in

Theorem 2.

The case that the Hamiltonian Killing vector fields associated to a Hamiltonian

2-form j are linearly dependent, but not both zero, is closely related to the Calabi
construction of Kähler metrics on line bundles over a Riemann surface [14]. We pro-

vide, in Theorem 3, a geometric local characterization of these Kähler metrics: they

are the Kähler metrics ðg; J Þ, with a Killing vector field K such that the almost

Hermitian pair ðg; I Þ, where I is equal to J on span of fK; JKg but �J on the ortho-

gonal distribution, is conformally Kähler. Over a fixed Riemann surface S, the gen-
eral form of these Kähler metrics ‘of Calabi type’ again depends essentially only on

functions of one variable from which it is easy to recover the Calabi extremal

metrics. We present these in Proposition 14: the Riemann surface S has constant cur-
vature, and the metrics have local cohomogeneity one under Uð2Þ, Uð1;1Þ or a central

extension of the Heisenberg group Nil. The weakly self-dual Calabi extremal metrics

are classified in Theorem 4: there is a four parameter family, one of which is globally

defined on the first Hirzebruch surface. The existence of such a metric has been inde-

pendently observed by Jelonek [33].

The proof of the above theorem is completed by classifying the compact weakly

self-dual Kähler surfaces. A partial classification for real analytic Kähler surfaces

has been recently obtained by Jelonek [32], but we improve it in two respects: first,

as speculated by Jelonek, we are able to remove the assumption of real-analyticity;

second we prove that the only (non-product non-Kähler–Einstein) weakly self-dual

Kähler metric on a ruled surface, is the Calabi extremal example on the first

Hirzebruch surface F1.

The paper is organized as follows. In the first section, we establish some basic facts

concerning weakly self-dual Kähler surfaces; in particular, using general properties of

Hamiltonian 2-forms, we show that weakly self-dual Kähler surfaces are bi-extremal
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and that their anti-self-dualWeyl tensor is degenerate (some facts proved in this section

also appear in Jelonek’s paper [32]). We also present the rough classification, Proposi-

tion 6, that allows us to deduce the above theorem from Theorems 2, 4 and 5. The gen-

eric, toric case, and Theorem 2, are described in the second section, whereas the third

section treats the Calabi examples and Theorem 4. The classification of compact

weakly self-dual Kähler surfaces is given in Section 4.

In the final section we show that some of our results generalize to the class of

almost Kähler 4-manifolds ðM; g; J;oÞ whose Ricci tensor is J-invariant. We first
observe that the Calabi construction gives rise to new (local) examples of self-dual,

Ricci-flat almost Kähler 4-manifolds (see Example 2), which provide further local

counterexamples (cf. [9, 44]) to the still open Goldberg conjecture which states that

a compact Einstein almost Kähler manifold must be Kähler–Einstein. Next we

consider compact almost Kähler 4-manifolds with J-invariant Ricci tensor which

are weakly self-dual, i.e., have harmonic anti-self-dual Weyl tensor. We show in

Theorem 6 that weak-self-duality has strong consequences for the integrability of

the corresponding almost complex structure, providing another interesting link with

the Goldberg conjecture. As an application of this global result, we prove that a

compact almost Kähler 4-manifold has constant sectional curvatures on the

Lagrangian 2-planes if and only if it is a self-dual Kähler surface (see Corollary 1).

1. Weakly Self-dual Kähler Surfaces

1.1. THE MATSUMOTO–TANNO IDENTITY

A Kähler surface ðM; g; J Þ is an oriented Riemannian four-dimensional manifold

equipped with a self-dual complex structure J, such that HJ ¼ 0, where H denotes
the Levi-Civita connection of g. The Kähler form is the J-invariant self-dual 2-form

oð�; �Þ ¼ hJ�; �i; o is closed and ðM;oÞ is a symplectic manifold.
The vector bundle LþM of self-dual 2-forms is the orthogonal direct sum of the

trivial bundle generated by o and of the bundle of J-anti-invariant 2-forms, whereas
the bundle L�M coincides with the bundle of primitive – or trace-free – J-invariant

2-forms.

We denote by R, Ric, Ric0, Scal, W ¼Wþ þW�, the curvature, the Ricci tensor,

the trace-free part of Ric, the scalar curvature (i.e., the trace of Ric), and the Weyl

tensor, expressed as the sum of its �-self-dual components W�.

The Ricci form, r, of a Kähler surface is the J-invariant 2-form defined by
rð�; �Þ ¼ RicðJ�; �Þ; r is closed and, up to a factor 2p, is a representative of the first
Chern class of ðM; J Þ in de Rham cohomology; the trace-free part of r is denoted
by r0.

DEFINITION 1. A Kähler surface ðM; g; J Þ is weakly self-dual if its anti-self-dual

Weyl tensorW� is harmonic, i.e., satisfies dgW� ¼ 0, where the codifferential dg acts
on W� as on a 2-form with values in L�M.
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Because of the Bianchi identity, the weak self-duality condition can also be defined

in terms of the Ricci tensor; from this point of view, it can also be considered as

a weak Einstein condition, in the sense that every Einstein metric is weakly self-dual.

The link is provided by the Cotton–York tensor CX;YðZÞ of the Riemannian metric g.

Recall that the Cotton–York tensor is defined by

CX;YðZÞ ¼ �ðHXhÞðY;ZÞ þ ðHYhÞðX;ZÞ;

where h ¼ 1
2Ric0 þ

1
24 Scal g denotes the normalized Ricci tensor of g.

The normalized Ricci tensor is the form in which the Ricci tensor appears in the

well-known decomposition of the Riemannian curvatureR ¼ h ^ IdþW (cf., e.g.,

[12]); therefore, via the (differential) Bianchi identity, the �-self-dual components,

C�, of the Cotton–York tensor are linked to the �-self-dual components of the Weyl

tensor by dWþ ¼ Cþ and dW� ¼ C�.

Definition 1 can thus be rephrased as follows:

DEFINITION 2. A Kähler surface is weakly self-dual if its Cotton–York tensor is

self-dual.

The normalized Ricci tensor plays a natural role throughout this work. For this

reason, to simplify formulae, we write s ¼ 1
6 Scal for the normalized scalar curvature,

which is the trace of h.

LEMMA 1 ð½43; 32�Þ. For any Kähler surface ðM; g; J;oÞ we have

HXr0 ¼ �2C�ðJX Þ � 1
2 dsðX Þoþ 1

2ðds ^ JX
[ � J ds ^ X[Þ: ð1Þ

In particular, the Kähler surface ðM; g; J;oÞ is weakly self-dual if and only if the
following Matsumoto–Tanno identity

HXr0 ¼ �12 dsðX Þoþ 1
2ðds ^ JX

[ � J ds ^ X[Þ ð2Þ

is satisfied ð for any vector field X Þ.

Proof. Since 2h ¼ Ric� sg, the Cotton–York tensor of any Kähler surface can be

written as follows:

2CX;YðZÞ ¼ �2ðHXhÞðY;ZÞ þ 2ðHYhÞðX;ZÞ

¼ �ðHXRicÞðY;ZÞ þ ðHYRicÞðX;ZÞ þ dsðX ÞhY;Zi�dsðY ÞhX;Zi

¼ �ðHXrÞðY; JZÞ þ ðHYrÞðX; JZÞ þ dsðX ÞhY;Zi � dsðY ÞhX;Zi

¼ ðHJZrÞðX;Y Þ þ dsðX ÞhY;Zi � dsðY ÞhX;Zi:

(In order to obtain the last line from the preceding one, we use the fact that dr ¼ 0.)

We then have

ðHZrÞðX;Y Þ ¼ �2CX;YðJZÞ � dsðX ÞhJY;Zi þ ds ðY ÞhJX;Zi;

or, equivalently,

ðHZr0ÞðX;Y Þ ¼ �2CX;YðJZÞ �
3
2 dsðZÞhJX;Yi�

� dsðX ÞhJY;Zi þ dsðY ÞhJX;Zi: ð3Þ
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The anti-self-dual component of (3) gives identity (1); the last statement follows

immediately. &

1.2. TWISTOR 2-FORMS AND KÄHLER METRICS

On any Riemannian manifold ðM; gÞ, if F is an anti-self-dual 2-form, i.e., a section
of the vector bundle L�M, then HF is a section of the vector bundle T �M� L�M.

This bundle has an orthogonal direct sum decomposition

T �M� L�M ¼ Vð0ÞM� Vð1ÞM; ð4Þ

in accordance with the algebraic decomposition R4 � L�
R4 ¼ R4 � ðSþ � S3�Þ into

irreducible sub-representations under the action of the orthogonal group. In (4),

Vð0ÞM corresponds to the factor R4, hence is isomorphic to T �M, whereas Vð1ÞM

corresponds to the factor Sþ � S3�, so it is the kernel of the natural contraction
T �M� L�M! T �M. The projection of the connection to Vð0ÞM may be identified

with the exterior derivative or divergence on anti-self-dual 2-forms (which are related

by the Hodge � operator), while the projection to Vð1ÞM is often called the twistor or

Penrose operator on anti-self-dual 2-forms.

DEFINITION 3. An anti-self-dual 2-form F is called a twistor 2-form if HF is a
section of the sub-bundle Vð0ÞM of T �M� L�M.

Any nonvanishing section F of L�M can be written uniquely as F ¼ loI, where
l ¼ jFj=

ffiffiffi
2

p
is a positive function and oI is the Kähler form of an anti-self-dual

almost-complex structure I on ðM; gÞ.

LEMMA 2 ð½45�Þ. If F ¼ loI is a nonvanishing section of L
�M, then F is a twistor

2-form if and only if the almost-Hermitian pair ð �gg ¼ l�2g; IÞ is Kähler, with Kähler
form �oo ¼ l�2oI ¼ l�3F.
Proof. F is a twistor 2-form if and only if there exists a 1-form g such that, at each

point of M, HF ¼
P3
i¼1 Iig� oi, where the triple ðI1; I2; I3 ¼ I1I2Þ is any positively

oriented, orthonormal frame of (anti-self-dual) almost-complex structures at that

point, and oi is the Kähler form of Ii.
If F ¼ loI is a nonvanishing twistor 2-form on M, then, by choosing I1 ¼ I,

we have

lHI ¼ ðIg� dlÞ � Iþ I2g� I2 þ I3g� I3:

Since the norm of I is constant, this equality implies that Ig ¼ dl. Now observe that
the equation

lHI ¼ I3dl� I2 � I2dl� I3 ð5Þ

is equivalent to I being parallel with respect to the Levi-Civita connection of

�gg ¼ l�2g. Hence, if F is a twistor 2-form ð �gg; IÞ is Kähler. Conversely, if ð �gg; IÞ is

Kähler then (5) holds, from which it follows that HF ¼ HðloIÞ is the section of
Vð0ÞM corresponding to the 1-form g ¼ �Idl. &

284 V. APOSTOLOV ET AL.

https://doi.org/10.1023/A:1022251819334 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022251819334


If ðM; g; J;oÞ is a Kähler surface then a 2-form is anti-self-dual if and only if it is
trace-free and J-invariant, and there is the following reformulation of Definition 3.

LEMMA 3. Let ðM; g; J;oÞ be a Kähler surface and let j0 be an anti-self-dual
2-form. Then j0 is a twistor 2-form if and only if there is a 1-form b such that

HXj0 ¼ �bðX Þoþ b ^ JX[ � Jb ^ X[ ð6Þ

for any vector field X.

Proof. It is easily checked that the right-hand side of (6) is (the contraction with X

of) the general form of a section of Vð0ÞM ffi T �M. &

By the contracted Bianchi identity, C� is a section of Vð1ÞM, and so the last state-

ment of Lemma 1 can be rephrased as follows.

LEMMA 4. A Kähler surface is weakly self-dual if and only if the trace-free part r0 of
the Ricci form r is a twistor 2-form.

Together with Lemma 2, this implies:

PROPOSITION 1. On the open set M0 where r0 ¼ loI does not vanish, a Kähler
surface ðM; g; J;oÞ is weakly self-dual if and only if the pair ð �gg ¼ l�2g; IÞ is Kähler.

In particular it follows that on M0, the self-dual Weyl tensor of �gg, with the orien-

tation induced by I, is degenerate, and equal to 34 �ss �oo�0 �oo, where �ss is the (normalized)
scalar curvature of �gg, �oo ¼ l�2oI, and �oo�0 �oo stands for the traceless part of �oo� �oo
viewed as an endomorphism of LþM. By the conformal covariance of the Weyl ten-

sor, it follows that on M0, the anti-self-dual Weyl tensor of g (using the orientation

induced by J) is given by

W� ¼
3

4
koI �0 oI; ð7Þ

where

k ¼ �ssl�2 ð8Þ

is the conformal scalar curvature of the Hermitian pair ðg; IÞ, which is related to the

Riemannian scalar curvature of g by

k� s ¼ dy� jyj2; ð9Þ

here y denotes the Lee form of the pair ðg; IÞ, defined by doI ¼ �2y ^ oI, see [21, 7].
Note that we have normalized the conformal scalar curvature by a factor 16 to be con-

sistent with our normalization of the scalar curvature s.

Notice that this only uses the fact that M0 admits a nonvanishing twistor 2-form,

namely r0. On the other hand, r0 is not anarbitrary twistor 2-form: by Lemma 1, the
1-form b defined by Hr0 using (6), is equal to

1
2 ds, and so is exact. This fact, which is

equivalent to the fact that the Ricci form r ¼ r0 þ
3
2 so is closed, will be exploited in

the next subsection.

WEAKLY SELF-DUAL KÄHLER SURFACES 285

https://doi.org/10.1023/A:1022251819334 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022251819334


1.3. HAMILTONIAN 2-FORMS

DEFINITION 4. A Hamiltonian 2-form on a Kähler surface ðM; g; J;oÞ is a closed
J-invariant 2-form j whose trace-free (i.e., anti-self-dual) part j0 is a twistor 2-form.

On a weakly self-dual Kähler surface the Ricci form r is Hamiltonian. In general,
Hamiltonian 2-forms are characterized by an analogue of the Matsumoto–Tanno

identity (2).

LEMMA 5. Let ðM; g; J;oÞ be a Kähler surface. Then a J-invariant 2-form
j ¼ j0 þ

3
2 so is Hamiltonian if and only if

HXj0 ¼ �12 dsðX Þoþ 1
2ðds ^ JX[ � Jds ^ X[Þ ð10Þ

for any vector field X.

Proof. This is immediate from Lemma 3: in (6), dj0 ¼ � 32 ds ^ o if and only if
b ¼ 1

2 ds. &

In order to explain the use of the term ‘Hamiltonian’, we recall the following

definition.

DEFINITION 5. A real function f on a Kähler manifold ðM; g; J;oÞ is a (real)
holomorphy potential if the gradient gradgf is a holomorphic vector field, i.e., pre-

serves J; equivalently, f is a holomorphy potential if Jgradgf is a Killing vector field

with respect to g.

A holomorphy potential f is therefore a momentum map for a Hamiltonian Kill-

ing vector field with respect to the symplectic form o.

To any J-invariant 2-form j ¼ j0 þ
3
2 so, we may associate a normalized 2-form

~jj ¼ 1
2j0 þ

1
4 so. For example, if j is the Ricci form r, then ~jj is the 2-form ~rr asso-

ciated to the normalized Ricci tensor: ~rrð�; �Þ ¼ hðJ�; �Þ.
We are going to show that if j is Hamiltonian, then the trace and Pfaffian of ~jj are

holomorphy potentials.

Recall that, in general, the Pfaffian pfðcÞ of a 2-form c is defined by 12 pfðcÞ ¼
�ðc ^ cÞ, where � is the Hodge operator; alternatively, c ^ c ¼ 1

4 pfðcÞo ^ o.
Since ~jj ¼ 1

2j0 þ
1
4 so, its Pfaffian p is given by

p ¼ 1
4s
2 � 12jj0j

2 ¼
s
2
þ l

� � s
2
� l

� �
; ð11Þ

where l ¼ jj0j=
ffiffiffi
2

p
. We write this product as p ¼ xZ so that s ¼ xþ Z and

l ¼ 1
2 ðx� ZÞ.

PROPOSITION 2. Let ðM; g; J;oÞ be a Kähler surface and let j ¼ j0 þ
3
2 so be

a Hamiltonian 2-form. Then the trace s and the Pfaffian p of ~jj ¼ 1
2j0 þ

1
4 so are

Poisson-commuting holomorphy potentials.
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Proof. (i) Identity (10) can be written in terms of ~jj as

HX ~jj ¼ 1
4ðds ^ JX[ � Jds ^ X[Þ: ð12Þ

Differentiating again and skew-symmetrizing, we get

RX;Y � ~jj¼ ½RX;Y; ~jj� ¼ 14ðHYds^ JX
[ �HXds^ JY[ � JHYds^X[ þ JHXds^Y[Þ:

Since ½RX;Y; ~jj� is J-invariant in X;Y, it follows that

HYds ^ JX� JHYds ^ X� HXds ^ JYþ JHXds ^ Y

¼ �HJYds ^ X� JHJYds ^ JXþ HJX ds ^ Yþ JHJX ds ^ JY;

hence

SðY Þ ^ JX� JSðY Þ ^ X� SðX Þ ^ JYþ JSðX Þ ^ Y ¼ 0; ð13Þ

where SðX Þ ¼ HXdsþ JHJXds:
As an algebraic object, S is a symmetric, J-anti-commuting, endomorphism of

TM; hence by contracting (13) with a vector field Z and taking the trace over Y

and Z, we see that S ¼ 0, and therefore, s is a holomorphy potential.
(ii) From (12) we derive ðHX ~jjÞ ^ ~jj ¼ 1

2 ðX ^ Jds ^ ~jjÞ; hence

dp ¼ �2 � ðJds ^ ~jjÞ: ð14Þ

From this, we infer (again using (12)):

HXdp ¼ �2 � ðJHXds ^ ~jjþ Jds ^ HX ~jjÞ

¼ �2 � ðJHXds ^ ~jjþ 1
4Jds ^ ds ^ JX Þ:

ð15Þ

The second term of the right-hand side of (15) is clearly J-invariant; the first term is

J-invariant as well since s is a holomorphy potential and ~jj is J-invariant. Hence p is
also a holomorphy potential.

(iii) By contracting Equation (14) with Jds, we see that s and p Poisson-
commute. &

Since s and p Poisson-commute, the Killing vector fields K1 :¼ Jgrad s and
K2 :¼ Jgrad p commute. Also oðK1;K2Þ ¼ 0.

Remark 1. The Killing vector fields K1 and K2 need not be nonzero or inde-

pendent in general. In particular K1 and K2 both vanish if s is constant, since j is
then parallel by (10).

Notice, however, that K1;01 , K
1;0
2 , and hence K

1;0
1 ^ K1;02 , are holomorphic, so that

on each connected component of M there are three possibilities: &

(i) K1 ^ K2 is nonvanishing on a dense open set.

(ii) K1 is nonvanishing on a dense open set, but K1 ^ K2 vanishes identically;

(iii) K1 and K2 vanish identically;

One consequence of this remark is the following lemma.
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LEMMA 6. If j is a Hamiltonian 2-form on a Kähler surface M, then the open set
M0, where j0 is non-zero, is empty or dense in each connected component of M.
Proof. On each component ofM where K1 ¼ Jgradgs is nonzero, the set U where

ds is nonvanishing is dense, hence Hj0 is nonvanishing on U and so the complement
of the zero set of j0 is dense in this connected component. On the other hand, if K1 is
identically zero on a component, then j0 is parallel on that component, hence
identically zero or everywhere nonzero. &

When K1 and K2 vanish identically, j does not contain much information about
the geometry ofM (it could be just a constant multiple of o, even zero). In the other
two cases, however, we shall obtain an explicit classification of Kähler surfaces with

a Hamiltonian 2-form. The keys to these classifications are Proposition 2 and the fol-

lowing observation.

PROPOSITION 3. Let j be a Hamiltonian 2-form on a Kähler surface M and write

s ¼ xþ Z and p ¼ xZ for the trace and Pfaffian of ~jj.
Then on each connected component of M where j0 is not identically zero, dx and dZ

are orthogonal.

Proof. The contraction of (10) with j0 yields

hHXj0;j0i ¼
1
2ðj0ðds; JX Þ � j0ðJds;X ÞÞ ¼ �j0ðJds;X Þ

and, hence,

2l dl ¼ dðl2Þ ¼ 1
2dðjj0j

2Þ ¼ �j0ðJdsÞ: ð16Þ

Since ðj0 � J Þ
2
¼ l2Id, we deduce that j0ðJdlÞ ¼ � 12 l ds and therefore

j0 � J
ds
2

þ dl
� �

¼ �l
ds
2

þ dl
� �

; j0 � J
ds
2

� dl
� �

¼ l
ds
2

� dl
� �

:

This means that the 1-forms dx and dZ, wherever they are nonzero, are eigenforms
for the symmetric endomorphism �j0 � J, corresponding to the eigenvalues l and
�l, respectively; in particular, they are orthogonal on the open set M0 where l
(i.e., j0) is nonzero. However, by Lemma 6 this open set is empty or dense in each
connected component of M, and the result follows. &

Remark 2. On the open setM0 where l is nonzero, so that j0 ¼ loI, observe that
Equation (16) may be rewritten

Ids ¼ 2Jdl: ð17Þ

Indeed, supposing only that j0 is a twistor 2-form, �oo ¼ l�3j0 is closed, and so, if
j ¼ j0 þ

3
2 so,

dj ¼ d j0 þ
3
2so

� �
¼ 3l2dl ^ �ooþ 3

2ds ^ o ¼ 3
�
dl ^ oI þ 12ds ^ o

�
:

Hence, Equation (17) holds if and only if j is closed. &
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1.4. BI-EXTREMAL KÄHLER SURFACES

In the case that ðM; g; J;oÞ is weakly self-dual and j0 ¼ r0, we can take j ¼ r, so
that s is the (normalized) scalar curvature s, and p, the Pfaffian p of the normalized
Ricci form ~rrð�; �Þ ¼ hðJ�; �Þ; evidently, ~rr ¼ 1

2 r0 þ
1
4 so.

Recall that a Kähler metric is said to be extremal if the scalar curvature is a holo-

morphy potential.

DEFINITION 6. A Kähler metric is called bi-extremal if both the (normalized)

scalar curvature s ¼ tro ~rr and the Pfaffian p ¼ pfð ~rrÞ of the normalized Ricci form ~rr
are holomorphy potentials.

Note that the potential function p appearing in the above definition is not the Pfaf-

fian of the usual Ricci form r ¼ r0 þ
3
2 so; thus, our definition for bi-extremality dif-

fers from the one given in [42, 31] (compare Theorem 5 below and [31, Th. 1.1 &

Prop. 3.8]).

Proposition 2 immediately implies:

PROPOSITION 4. A weakly self-dual Kähler metric is bi-extremal.

On a bi-extremal Kähler surface, the holomorphy potentials s and p automatically

Poisson-commute, since K2 preserves g, hence s, so that ds ðK2Þ ¼ 0.

For a weakly self-dual Kähler surface, Proposition 3 generically implies that dx
and dZ are orthogonal, where s ¼ xþ Z and p ¼ xZ. We shall see in Sections 2 and
3 that a bi-extremal Kähler surface satisfying this orthogonality condition is weakly

self-dual.

1.5. THE BACH TENSOR

The Bach tensor, B, of an n-dimensional Riemannian manifold ðM; gÞ is defined by

BX;Y ¼
Xn
i¼1

ð�ðHeiCÞei;XðY Þ þ ðWei;XhðeiÞ;Y ÞÞ; ð18Þ

where, we recall, C is the Cotton–York tensor and h is the normalized Ricci tensor

(here, feig is an arbitrary g-orthonormal frame). When n ¼ 4, the Bach tensor is con-

formal covariant of weight �2, i.e., Bf�2g ¼ f2Bg, and B can be indifferently expres-
sed in terms of Wþ or of W�. Specifically

BX;Y ¼ 2
Xn
i¼1

ð�ðHeiC
þÞei;XðY Þ þ ðWþ

ei;X
hðeiÞ;Y ÞÞ

¼ 2
Xn
i¼1

ð�ðHeiC
�Þei;XðY Þ þ ðW�

ei;X
hðeiÞ;Y ÞÞ;

ð19Þ

in particular, the Bach tensor vanishes whenever Wþ, W� or Ric0 vanishes.
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If ðM; g; J Þ is a Kähler surface, the Bach tensor is easily computed by using the

above identity and the fact that Wþ ¼ 3
4 so�0 o. Indeed, if Bþ and B�, denote the

J-invariant and J-anti-invariant parts of B, we get

Bþ ¼ sRic0 þ 2ðHdsÞ
þ
0 ; B� ¼ �ðHdsÞ�; ð20Þ

where ðHdsÞþ0 is the J-invariant trace-free part of the Hessian and ðHdsÞ� is the
J-anti-invariant part. (This formula is due to Derdzi �nnski [21], where it was obtained

by a different argument.)

It follows that B is J-invariant if and only if ðM; g; J Þ is an extremal Kähler sur-

face; moreover, if this holds, we get B ¼ sRic0 þ 2ðHdsÞ0. On the open set U where s
has no zero, the vanishing of B then means that the conformally related metric

~gg ¼ s�2g is Einstein. Therefore, on U, the following two statements are thus equiva-

lent (see also [21]):

(i) The Bach tensor of the Kähler surface ðM; g; J Þ vanishes;

(ii) ðM; g; J Þ is extremal and the conformally related metric ~gg ¼ s�2g is Einstein.

Note also that when B is J-invariant, it is determined by the associated anti-self-dual

2-form ~BBð�; �Þ ¼ BðJ�; �Þ, which is also given by

~BB ¼ ðdJdsÞ0 þ sr0: ð21Þ

On a weakly self-dual Kähler surface, C� ¼ 0, while W� ¼ 3
4 koI �0 oI. It follows

that ~BB is a multiple of kr0, which vanishes if and only if W
� ¼ 0 or r0 ¼ 0.

PROPOSITION 5. A weakly self-dual Kähler surface is Bach-flat ði.e., has vanishing

Bach tensorÞ if and only if it is self-dual or Kähler–Einstein.

1.6. ROUGH CLASSIFICATION OF WEAKLY SELF-DUAL KÄHLER SURFACES

We have seen in Lemma 6 that the open-set M0, on which the trace-free part j0 of
a Hamiltonian 2-form is nonzero, is empty or dense in each connected component

of M. For a weakly self-dual Kähler surface ðM; g; J;oÞ, the Ricci form r is
Hamiltonian, andM0 is the set of points at which g is not Kähler–Einstein. Because

r is closely linked to the anti-self-dual Weyl tensor ofM, we can obtain more infor-
mation about M0 except when g is self-dual.

We first recall the general fact, first observed by A. Derdzi �nnski in [21], that for any

Kähler surface ðM; g; J Þ with nonvanishing scalar curvature s, the conformally

related metric ~gg ¼ s�2g satisfies d ~ggWþ ¼ 0; moreover, up to rescaling, ~gg is the

unique metric in the conformal class ½g� that satisfies this property. This follows from

the fact that the self-dual Cotton–York tensor Cþ of any Kähler surface can be

written as

CþðX Þ ¼ �Wþ ds

s
^ X

� �
; ð22Þ
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on the other hand, the self-dual Cotton–York tensors of two conformally related

metrics g and f�2g are related by

Cþ;f�2gðX Þ ¼ Cþ;gðX Þ þWþ df

f
^ X

� �
;

it follows from (22) that the self-dual Cotton–York tensor of the metric s�2g vanishes

identically; moreover, as Wþ has no kernel (for s nonvanishing), the latter property

characterizes s�2g up to a constant multiple.

LEMMA 7. On each connected component of the open set M0 where r0 does not
vanish, the scalar curvature �ss of �gg is a constant multiple of l�1, i.e.,

�ss ¼ cl�1; ð23Þ

where l is the positive eigenvalue of Ric0 and c is a constant.
Proof. We apply the preceding argument to the Kähler pair ð �gg; IÞ on M0 and to

g ¼ l2 �gg; by hypothesis, g satisfies dgW� ¼ C� ¼ 0, whereW�is actually the self-dual

Weyl tensor of g for the orientation induced by I; from the above mentioned

uniqueness property, it follows that, wherever �ss is non-zero, g coincides with �ss�2 �gg up

to rescaling, i.e., that �ss is a locally constant multiple of l�1. However, the same holds
on the interior of the zero set of �ss. Hence by the continuity of �ss onM0, �ss ¼ cl

�1 for

some constant c on each connected component of M0. &

A more global statement may be obtained using the conformal scalar curvature

k ¼ �ssl�2. Since the anti-self-dual Weyl tensor of g is given by W� ¼ 3
4 koI �0 oI,

it follows that k2 is equal to jW�j2 on M0, up to a numerical factor, and hence

we may extend k continuously to the closure of M0. Also l is globally defined and
continuous.

Therefore, using the fact that the closure of M0 is a union of connected compon-

ents by Lemma 6, we can rewrite Lemma 7.

LEMMA 8. Let ðM; g; J;oÞ be a weakly self-dual Kähler surface. Then, on each
component of M where r0 is not identically zero, the conformal scalar curvature k of
ðg; IÞ is linked to l by

kl3 ¼ c; ð24Þ

where c is the constant of Lemma 7. Moreover, c ¼ 0 if and only if W� ¼ 0 on that

component.

This lemma yields the following rough classification of weakly self-dual Kähler

surfaces (see also [32]).

PROPOSITION 6. Let ðM; g; J;oÞ be a weakly self-dual, connected, Kähler surface.
Then either:

ðiÞ r0 is identically zero so ðg; J Þ is Kähler–Einstein; or

ðiiÞ the scalar curvature s of g is constant, but r0 is not identically zero; then, ðg; J Þ is
locally the Kähler product of two Riemann surfaces of constant curvatures; or
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ðiiiÞ s is not constant and g is self-dual; or

ðivÞ W� and r0 have no zero: then, the Kähler metric ð �gg ¼ l�2g; IÞ of Proposition 1 is
extremal and globally defined on M; in particular, W� is degenerate everywhere.

Proof. If s is constant, then by (2) the Ricci form is parallel. Hence either g is

locally irreducible, and is Einstein, or ðg; J Þ is locally the Kähler product of two

Riemann surfaces of constant curvatures.

If s is not constant, then by Lemma 6 the open setM0 where r0 does not vanish is
an open dense subset ofM. However, by Lemma 8, kl3 is constant. If this constant is
zero, then k must vanish identically and M is self-dual; otherwise k and l have no
zero on M, so M0 ¼M, the Kähler pair ð �gg ¼ l�2g; IÞ is defined on M and W� is

degenerate, but nonzero everywhere. As observed in Section 1.5, for a weakly self-

dual Kähler surface the Bach form ~BB is a multiple of oI. Since B is a conformally
covariant tensor, it follows that the Bach tensor of �gg is I-invariant, showing that

ð �gg; IÞ is an extremal Kähler metric. &

Kähler–Einstein metrics and Kähler products of Riemann surfaces clearly are

weakly self-dual. Since these are well studied, we henceforth assume that s is not con-

stant (on any component), i.e., K1 is nonvanishing on a dense open set. In Section 2,

we analyse the generic case that K1 and K2 are independent, while Section 3 is devo-

ted to the case that K1 ^ K2 vanishes identically (but K1 is non-zero). In both sec-

tions, we obtain an explicit local classification within the more general framework

of Kähler surfaces with a Hamiltonian 2-form.

2. Ortho-toric Kähler Surfaces

2.1. TORIC KÄHLER SURFACES

We have seen in Section 1 that on a Kähler surface with a Hamiltonian 2-form j—in
particular on a weakly self-dual Kähler surface—the trace s and the Pfaffian p of the
associated normalized 2-form ~jj are holomorphy potentials for Hamiltonian Killing
vector fields K1 ¼ J grad s and K2 ¼ J grad p. Furthermore, s and p Poisson-
commute, i.e., oðK1;K2Þ ¼ 0.
A (usually compact) Kähler surface ðM; g; J;oÞ, with holomorphic Killing

vector fields K1 and K2 which are independent on a dense open set and

satisfy oðK1;K2Þ ¼ 0, is said to be toric. We begin this section by recalling the
local theory of such surfaces, and we therefore assume that K1 and K2 are every-

where independent and that x1 and x2 are globally defined momentum maps for

K1 and K2.

The condition oðK1;K2Þ ¼ 0 is equivalent to the fact that x1 and x2 commute
for the Poisson bracket determined by o. Hence, also ½K1;K2� ¼ 0, and since K1,

K2, JK1 and JK2 are all holomorphic, they all commute. In particular the rank 2

distributions P, generated by K1 and K2, and JP, generated by JK1 and JK2, are
integrable.
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These distributions P; JP are also orthogonal, since hJK1;K2i ¼ 0. It follows that
K1, K2, JK1 and JK2 form a frame. Since they commute, the 1-forms in the dual

coframe are closed, and may be written dt1; dt2; Jdt1; Jdt2, where t1 and t2 are only

given locally and up to an additive constant. Now observe that

Jdt1 ¼
jK2j

2dx1 � hK1;K2idx2

jK1 ^ K2j
2

;

Jdt2 ¼
jK1j

2dx2 � hK1;K2idx1

jK1 ^ K2j
2

;

and so

Jdti ¼
X
j¼1;2

Gijdxj ði ¼ 1; 2Þ;

where Gij is a positive definite symmetric matrix of functions of x1 and x2 (note that

Ki ¼ @=@ti). These 1-forms are closed if and only if Gij is the Hessian of a function of

x1 and x2. The following well-known explicit classification is then readily obtained

(see [1, 29]).

PROPOSITION 7. Let Gij be a positive definite 2� 2 symmetric matrix of functions

of 2-variables x1; x2 with inverse G
ij. Then the metric

X
i;j

ðGijdxidxj þ G
ijdtidtjÞ

is almost-Kähler with Kähler form

o ¼ dx1 ^ dt1 þ dx2 ^ dt2

and has independent Hamiltonian Killing vector fields @=@t1; @=@t2 with Poisson-

commuting momentum maps x1 and x2. Any almost Kähler structure with such a pair

of Killing vector fields is of this form (where the ti are locally defined up to an additive

constant), and is Kähler if and only if Gij is the Hessian of a function of x1 and x2.

2.2. THE ORTHO-TORIC CASE

Propositions 2 and 3 motivate the following definition.

DEFINITION 7. A Kähler surface ðM; g; J;oÞ is ortho-toric if it admits two
independent Hamiltonian Killing vector fields with Poisson-commuting momentum

maps xZ and xþ Z such that dx and dZ are orthogonal.

An explicit classification of ortho-toric Kähler metrics follows from Proposition 7

by changing variables and imposing the orthogonality of dx and dZ. However,
since the coordinate change is awkward, and we have not spelt out the proof of

Proposition 7, we give a self-contained proof of this classification.
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PROPOSITION 8. The almost-Hermitian structure ðg; J;oÞ defined by

g ¼ ðx� ZÞ
dx2

FðxÞ
�
dZ2

GðZÞ

� �
þ
1

x� Z
ðFðxÞðdtþ Z dzÞ2 � GðZÞðdtþ xdzÞ2Þ; ð25Þ

Jdx ¼
FðxÞ
x� Z

ðdtþ ZdzÞ; Jdt ¼ �
xdx
FðxÞ

�
ZdZ
GðZÞ

;

JdZ ¼
GðZÞ
Z� x

ðdtþ xdzÞ; Jdz ¼
dx
FðxÞ

þ
dZ
GðZÞ

;

ð26Þ

o ¼ dx ^ ðdtþ ZdzÞ þ dZ ^ ðdtþ xdzÞ ð27Þ

is an ortho-toric Kähler structure for any functions F;G of one variable. Every ortho-

toric Kähler surface is of this form, where t; z are locally defined up to an additive con-

stant.

Proof. (i) The Kähler form may be written

o ¼ dðxþ ZÞ ^ dtþ dðxZÞ ^ dz

which is certainly closed. If is also immediate that @=@t and @=@z are Hamiltonian

Killing vector fields with Poisson-commuting momentum maps xþ Z and xZ. Since
dtþ iJdt and dzþ iJdz are closed, J is integrable, and the Kähler surface is clearly

ortho-toric.

(ii) Conversely, suppose that ðg; J;oÞ is an ortho-toric Kähler surface with Killing
vector fields K1, K2. Since the dual frame to K1;K2; JK1; JK2 consists of closed

1-forms, we may write it as dt; dz; Jdt; Jdz, where t and z are locally defined up

to an additive constant. Note also that dx; dZ; dt; dz are linearly independent
1-forms—where xþ Z and xZ are the momentum maps of K1 and K2—so we may
use ðx; Z; t; zÞ as a coordinate system.
Since ðJdzÞðK1Þ ¼ 0 and ðJdzÞðK2Þ ¼ 0 we may write

Jdz ¼
dx
F

þ
dZ
G

for some functions F and G (of x and Z). The equations

0 ¼ ðJdzÞðJK1Þ ¼ �hJdz; dxþ dZi

and

1 ¼ ðJdzÞðJK2Þ ¼ �hJdz; Zdxþ xdZi

give F ¼ jdxj2ðx� ZÞ and G ¼ jdZj2ðZ� xÞ, using the fact that dx and dZ are ortho-
gonal. A similar argument tells us that

Jdt ¼ �
xdx
F

�
ZdZ
G

:
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for the same functions F and G. Now since Jdt and Jdz are closed, we obtain

ðx� ZÞFZ ¼ 0 and ðZ� xÞGx ¼ 0, so that F ¼ FðxÞ and G ¼ GðZÞ. The Kähler form
o is evidently given by (27), and since we know Jdt and Jdz, we readily obtain
(26), and hence the metric (25). &

Any ortho-toric Kähler surface ðM; g; J;oÞ comes equipped with an anti-self-dual
almost-complex structure, I, whose Kähler form, oI is defined by

oI ¼
dx ^ Jdx
jdxj2

�
dZ ^ JdZ
jdZj2

¼ dx ^ ðdtþ ZdzÞ � dZ ^ ðdtþ xdzÞ; ð28Þ

equivalently

Idx ¼ Jdx ¼
FðxÞ
x� Z

ðdtþ ZdzÞ; Idt ¼ �
xdx
FðxÞ

þ
ZdZ
GðZÞ

;

IdZ ¼ �JdZ ¼ �
GðZÞ
Z� x

ðdtþ xdzÞ; Idz ¼
dx
FðxÞ

�
dZ
GðZÞ

:

ð29Þ

PROPOSITION 9. For any ortho-toric Kähler surface, the almost-Hermitian pair

ð �gg ¼ ðx� ZÞ�2g; IÞ is Kähler.
Proof. Clearly Idt and Idz are closed, so I is integrable. From (28), we easily infer

that the Lee form y of the Hermitian pair ðg; I Þ, defined by doI ¼ �2y ^ oI, is

y ¼ �d log jx� Zj: ð30Þ

It follows that �oo :¼ ðx� ZÞ�2oI is closed, i.e., the pair ð �gg ¼ ðx� ZÞ�2g; I Þ is
Kähler. &

In particular, on any ortho-toric Kähler surface, the anti-self-dual Weyl tensor—

which is the self-dual Weyl tensor of g for the orientation induced by I—is degene-

rate: W� ¼ koI �0 oI, where k is the conformal scalar curvature of the Hermitian
pair ðg; I Þ.

Remark 3. The vector fields K1 and K2 are still Killing with respect to �gg and

Hamiltonian with respect to �oo, with momentum maps �ð1=x� ZÞ and
�ðxþ ZÞ=ð2ðx� ZÞÞ respectively. However, the Kähler metric ð �gg; I Þ is not ortho-toric
in general, as it can be checked using Lemma 9 below.

Combining Propositions 2, 3 with 8 and 9, we obtain the following theorem.

THEOREM 1. A Kähler surface is ortho-toric if and only if it admits a Hamiltonian 2-

form whose associated Killing vector fields are independent. The Kähler structure is then

given explicitly in terms of two arbitrary functions F;G of one variable by ð25Þ–ð27Þ.

Indeed, using (28)–(29), notice that, by definition, Jdðxþ ZÞ ¼ Idðx� ZÞ, cf.
Remark 2, so the Hamiltonian 2-form j is 12ðx� ZÞoI þ ðxþ ZÞo.

WEAKLY SELF-DUAL KÄHLER SURFACES 295
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2.3. ORTHO-TORIC WEAKLY SELF-DUAL KÄHLER SURFACES

The curvature of an ortho-toric Kähler surface is entirely determined by the scalar

curvature s of g, the conformal scalar curvature k of the Hermitian pair ðg; I Þ,
and the trace-free part r0 of the Ricci form of ðg; J Þ.

LEMMA 9. For any ortho-toric Kähler surface ðM; g; J;oÞ, r0 is a multiple m of the
Kähler form oI of the Hermitian pair ðg; I Þ, and m; s; k are given by

m ¼
F 0ðxÞ � G0ðZÞ

2ðx� ZÞ2
�
F 00ðxÞ þ G00ðZÞ
4ðx� ZÞ

; ð31Þ

s ¼ �
F 00ðxÞ � G00ðZÞ
6ðx� ZÞ

; ð32Þ

k ¼ �
F 00ðxÞ � G00ðZÞ
6ðx� ZÞ

þ
F 0ðxÞ þ G0ðZÞ

ðx� ZÞ2
�
2ðFðxÞ � GðZÞÞ

ðx� ZÞ3
: ð33Þ

In particular, on the open subset of M where m has no zero, the anti-self-dual almost-
complex structure determined by r0 is equal to I.
Proof. From (27), we infer that the volume-form vg ¼

1
2o ^ o of g is given by

vg ¼ �ðx� ZÞdx ^ dZ ^ dt ^ dz;

since t and z are the real parts of J-holomorphic coordinates. By putting v0 ¼ dt^

Jdt ^ dz ^ Jdz, we have r ¼ �12dJd log vg=v0. Now according to (26),

v0 ¼ �
x� Z
FðxÞGðZÞ

dx ^ dZ ^ dt ^ dz;

and, hence, vg=v0 ¼ FðxÞGðZÞ; this implies

r ¼ �12dJd log jFðxÞj �
1
2dJd log jGðZÞj;

from which (31) and (32) follow easily.

From (9) and (30), we get

k ¼ s� 2
jdxj2 þ jdZj2

ðx� ZÞ2
�
Dðx� ZÞ
x� Z

;

on the other hand, we compute that

Dx ¼ �
F 0ðxÞ
x� Z

; DZ ¼
G 0ðZÞ
x� Z

;

and we obtain (33). &

PROPOSITION 10. An ortho-toric Kähler surface M is extremal if and only if F and

G are of the form

FðxÞ ¼ kx4þ ‘x3þAx2þB1xþC1; GðxÞ ¼ kx
4þ ‘x3þAx2þB2xþC2; ð34Þ

296 V. APOSTOLOV ET AL.

https://doi.org/10.1023/A:1022251819334 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022251819334


in which case

s ¼ �2kðxþ ZÞ � ‘; ð35Þ

and ð �gg ¼ ðx� ZÞ�2g; I Þ is an extremal Kähler metric as well.
Moreover, M is

. Bach-flat if and only if 4kðC1 � C2Þ ¼ ðB1 � B2Þ‘;

. of constant scalar curvature if and only if k ¼ 0;

. scalar-flat ði.e., anti-self-dualÞ if and only if k ¼ ‘ ¼ 0.

Proof. Since the scalar curvature s is a function of x and Z, J gradg s belongs to the
span of the Killing vector fields K1 and K2 and commutes with them; if it is itself

a Killing vector field, it has to be a linear combination of K1 and K2 with constant

coefficients, i.e. s ¼ aðxþ ZÞ þ bxZþ c, where a; b; c are constants. By (32), this
implies (34). Finally, using (21), we easily compute that the anti-self-dual 2-form

associated to the Bach tensor of an ortho-toric extremal Kähler surface is

~BB ¼
4kðC1 � C2Þ � ðB1 � B2Þ‘

2ðx� ZÞ2
oI:

Since B is also I-invariant, the Kähler metric ð �gg; I Þ is extremal as well (see

Section 1.5). &

EXAMPLE 1. For k 6¼ 0 and 4ðC1 � C2Þ ¼ ðB1 � B2Þ‘=k, we obtain explicit Bach-

flat Kähler surfaces with nonconstant scalar curvature. These metrics are therefore

not anti-self-dual, and for B1 6¼ B2 they are not self-dual either (note that a self-dual

Kähler surface is bi-extremal and see the next Proposition). According to Section 1.5,

the metric ~gg ¼ ð2kðxþ ZÞ þ ‘Þ�2g, which is defined on the open subset where

2kðxþ ZÞ þ ‘ 6¼ 0, is Einstein, Hermitian (but non-Kähler) with a locally defined

toric isometric action.

PROPOSITION 11. An ortho-toric Kähler surface M is bi-extremal if and only if

F and G are of the form

FðxÞ ¼ kx4 þ ‘x3 þ Ax2 þ Bxþ C1;

GðxÞ ¼ kx4 þ ‘x3 þ Ax2 þ Bxþ C2;
ð36Þ

in which case the Ricci form is given by r ¼ �2kj� ‘o. Hence M is weakly self-dual

and is

. self-dual if and only if C1 ¼ C2;

. Kähler–Einstein if and only if k ¼ 0;

. Ricci-flat if and only if k ¼ ‘ ¼ 0.
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Proof. Since a bi-extremal surface is extremal, we may apply Proposition 10. We

then compute

m ¼ �kðx� ZÞ þ
B1 � B2

2ðx� ZÞ2
; ð37Þ

p ¼ 4k2xZþ k‘ðxþ ZÞ þ
‘2

4
� k

B1 � B2
x� Z

þ
ðB1 � B2Þ

2

4ðx� ZÞ4
: ð38Þ

As in the proof of Proposition 10, p cannot be a J-holomorphy potential unless it is

a linear combination of xþ Z and xZ with constant coefficients; this in turn is equiva-
lent to the condition B1 ¼ B2. Since m ¼ �2kl and s ¼ �2ks� ‘ it follows that

r ¼ �2kj� ‘o. Hence r is a Hamiltonian and so M is weakly self-dual by (4).
By substituting in the expression of k given by (33) we get k ¼

�ð2ðC1 � C2ÞÞ=ððx� ZÞ3Þ; since the condition W� ¼ 0 is equivalent to k ¼ 0, the

characterization of the self-dual case follows. Also M is Einstein if and only if

m ¼ 0, and so the last two assertions are immediate. &

Remark 4: For k 6¼ 0, we can set k ¼ �12 and ‘ ¼ 0 by a simultaneous affine

change of x and Z. In this case r ¼ j, and so the ortho-toric reduction is defined by
r. However, not all weakly self-dual Kähler surfaces can be put in ortho-toric form;
for example weakly self-dual metrics belonging to the general family of cohomo-

geneity-one extremal metrics considered by E. Calabi [14] are not in general ortho-

toric, since K1 and K2 are then collinear. We discuss this case in Section 3.

On the other hand, the examples with k ¼ 0 in the above Proposition show that

among Kähler–Einstein metrics (which are weakly self-dual), there are some which

can be put into ortho-toric form, because even though r does not define an ortho-
toric reduction, there happens to be another Hamiltonian 2-form j. If additionally
A ¼ ‘ ¼ 0 or C1 ¼ C2, these examples in fact have cohomogeneity one and their

ortho-toric form arises from a choice of maximal torus inside the isometry group.

However, the other examples do not have additional symmetries and therefore

appear to be new.

PROPOSITION 12. On an ortho-toric extremal Kähler surface M, the space of

infinitesimal symmetries of the Kähler structure is generated by K1 and K2 ðand infi-

nitesimal rotations in this plane if they are globally definedÞ, except in the following two

cases:

ðiÞ M is locally a complex space form, i.e., Kähler–Einstein and self-dual; or

ðiiÞ M is Ricci-flat (hence, anti-self-dual) and, locally, of cohomogeneity one.

In terms of F and G, these two cases are respectively described by

FðxÞ ¼ GðxÞ ¼ ‘x3 þ Ax2 þ Bxþ C; ð39Þ
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and

FðxÞ ¼ Bxþ C1; GðxÞ ¼ Bxþ C2: ð40Þ

Proof. Suppose there exist a third infinitesimal symmetry of M, say K3, which

does not lie in the plane spanned by K1 and K2; then, we must have dsðKiÞ ¼ 0 and

dmðKiÞ ¼ 0, for i ¼ 1; 2; 3; this implies that ds and dm are colinear; we then infer from
(35) and (37) that we have k ¼ 0 and B1 ¼ B2 in (34), so that M is Kähler–Einstein

by Proposition 11.

If, in addition, W� ¼ 0, we obtain (39) and g is then a self-dual Kähler–Einstein

surface, i.e., a complex space form.

If W� does not vanish identically, on the open set where W� 6¼ 0, the Hermitian

pair ðg; IÞ is invariant under the action of the Killing vector fields Ki’s, as I is deter-

mined by the eigenform of W� corresponding to its simple eigenvalue, cf. [21, 7];

then, k (a constant multiple of the simple eigenvalue of W�), the square-norm jyj2

of the Lee form y of the pair ðg; I Þ as well as dy are also invariant under the action
of Ki’s, i ¼ 1; 2; 3; we then have djyj2 ^ dk ¼ 0; by using (30) and Lemma 9, we can

check that this implies that F and G satisfy (40); by Proposition 10, the correspond-

ing ortho-toric Kähler surface is Ricci-flat and k ¼ �ð2ðC1 � C2ÞÞ=ððx� ZÞ3Þ; it then
follows from (30) that y ¼ 1

3d ln jkj; in particular, djyj
2 ^ y ¼ 0; by [8, Theorem 1],

this implies that the metric is of cohomogeneity one. Since k is non-zero, it is not
constant, and so the metric is not homogeneous.

Evidently the two cases overlap when C1 ¼ C2 and A ¼ ‘ ¼ 0, in which case g

is flat. &

Remark 5. In fact we do not need to assume a priori that M is extremal in the

above proof, as long as we assume that the additional symmetry preserves j, hence
x� Z. Then ds and dx� dZ are collinear, from which it is easy to deduce that M is
extremal.

Let us now collect the results we have established so far about weakly self-dual

Kähler surfaces.

THEOREM 2. Let ðM; g; J;oÞ be a weakly self-dual Kähler surface. Denote by s, l,
and p ¼ ððs=2Þ þ lÞððs=2Þ � lÞ, the (normalized) scalar curvature, the positive eigen-
value of the trace-free Ricci tensor Ric0, and the Pfaffian of the normalized Ricci

tensor, respectively. Then,

ðiÞ K1 :¼ J gradg s and K2 :¼ J gradgp are commuting Killing vector fields, and on any

simply connected open subset where K1 and K2 are linearly independent, the functions

x :¼ ðs=2Þ þ l, Z :¼ ðs=2Þ � l, t, z form a globally defined coordinate system with

respect to which the Kähler structure ðg; J;oÞ is

g ¼ ðx� ZÞ
dx2

FðxÞ
�
dZ2

GðZÞ

� �
þ
1

x� Z
ðFðxÞðdtþ ZdzÞ2 � GðZÞðdtþ xdzÞ2Þ; ð41Þ
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Jdx ¼
FðxÞ
x� Z

ðdtþ ZdzÞ; Jdt ¼ �
xdx
FðxÞ

�
ZdZ
GðZÞ

;

JdZ ¼
GðZÞ
Z� x

ðdtþ xdzÞ; Jdz ¼
dx
FðxÞ

þ
dZ
GðZÞ

;

ð42Þ

o ¼ dx ^ ðdtþ ZdzÞ þ dZ ^ ðdtþ xdzÞ; ð43Þ

where

FðxÞ ¼ kx4 þ ‘x3 þ Ax2 þ Bxþ C1; ð44Þ

GðxÞ ¼ kx4 þ ‘x3 þ Ax2 þ Bxþ C2: ð45Þ

ðiiÞ Conversely, each almost Kähler structure ðg; J;oÞ described by ð41Þ–ð45Þ is Kähler
and weakly self-dual with

s ¼ �2kðxþ ZÞ � ‘; p ¼ 4k2xZþ k‘ðxþ ZÞ þ
‘2

4
;

so that K1 ¼ @=@t and K2 ¼ @=@z.

ðiiiÞ The Kähler structure described by ð41Þ--ð45Þ is self-dual if and only if C1 ¼ C2.

In the self-dual case, we recover the general expression found by Bryant [13,

Section 4.3.2] depending on an arbitrary polynomial of degree 4.

3. Kähler Surfaces of Calabi Type

3.1. HAMILTONIAN 2-FORMS AND THE CALABI CONSTRUCTION

In this section we classify weakly self-dual Kähler surfaces of nowhere constant sca-

lar curvature s, but for which p and s are not independent. As in the previous section

(when we assumed p and s were independent) we do this by finding an explicit for-

mula for a Kähler surface ðM; g; J;oÞ with a Hamiltonian 2-form j ¼ j0 þ
3
2so such

that K1 :¼ J gradgs has no zero, but K2 :¼ J gradgp ¼ bK1, where p is the Pfaffian of
~jj and b is (necessarily) constant.
The general theory of Kähler surfaces with a Hamiltonian 2-form, described in

Section 1, applies equally to this case. In particular, since K1 has no zero, we may

still write p ¼ xZ and s ¼ xþ Z for the trace and Pfaffian of ~jj, and dx and dZ are
orthogonal by Proposition 3.

On the other hand, the constructions of Section 2 definitely fail, because K1 and K2
are no longer independent: p is an affine function of s, so x and Z are not indepen-
dent functions. Therefore, dx and dZ, in addition to being orthogonal, are collinear!
This is not a contradiction: we deduce that either x or Z is constant. Since
p ¼ xðs� xÞ ¼ Zðs� ZÞ, this constant is the constant b above, so that p ¼ bðs� bÞ

and l ¼ �12 ðs� 2bÞ.

We observe that K1 is an eigenvector of �j0 � J, for the eigenvalue l, and the
conformally Kähler anti-self-dual complex structure I is characterized as follows:
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I coincides with J on the distribution generated by K1 and JK1, but with �J on the

orthogonal distribution. Hence, we are in the following situation.

DEFINITION 8. A Kähler surface ðM; g; J;oÞ is said to be of Calabi type if it
admits a nonvanishing Hamiltonian Killing vector field K such the almost-Hermitian

pair ðg; I Þ—with I equal to J on the distribution spanned by K and JK, but �J on the

orthogonal distribution—is conformally Kähler.

It is straightforward to obtain an explicit formula for Kähler metrics of Calabi

type, using the LeBrun form of a Kähler metric with a Hamiltonian Killing vector

field [37].

PROPOSITION 13. Let ðM; g; J;oÞ be a Kähler surface of Calabi type. Then the
Kähler structure is given locally by

g ¼ ðaz� bÞgS þ wðzÞdz2 þ wðzÞ�1ðdtþ aÞ2; ð46Þ

o ¼ ðaz� bÞoS þ dz ^ ðdtþ aÞ; ð47Þ

where z is the momentum map of the Killing vector field K, t is a function on M with

dtðK Þ ¼ 1, w is a function of one variable, gS is a metric on 2-manifold S with area
form oS, a is a 1-form on S with da ¼ aoS, and a; b are constant. Conversely equations

ð46Þ–ð47Þ define a Kähler structure of Calabi type with K ¼ @=@t, for any gS and V.

Proof. The proof follows LeBrun’s description [37] of Kähler metrics with a

Hamiltonian Killing vector field K. Supposing first that ðg; J;oÞ is only almost
Hermitian, with a Killing vector field K ¼ Jgradz, and that K� iJK is holomorphic,

so that the complex quotient is locally a Riemann surface S. Introducing a local
holomorphic coordinate xþ iy on S, we may write

g ¼ euwðdx2 þ dy2Þ þ w dz2 þ w�1ðdtþ aÞ2;

Jdx ¼ dy; Jdz ¼ w�1ðdtþ aÞ;

o ¼ euw dx ^ dyþ dz ^ ðdtþ aÞ:

where dtðKÞ ¼ 1, a is an invariant 1-form with aðKÞ ¼ 0, and u;w are functions of
x; y; z. The almost Hermitian structure I is given by

Idx ¼ �dy; Idz ¼ w�1ðdtþ aÞ;

with Kähler form

oI ¼ �euw dx ^ dyþ dz ^ ðdtþ aÞ:

We now impose the condition that ðg; J;oÞ and ð �gg ¼ l�2g; I; �oo ¼ l�2oIÞ are Kähler
for some nonvanishing function l. Now do ¼ 0 if and only if

ðeuwÞzdz ^ dx ^ dy ¼ dz ^ da; ð48Þ
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while l�2oI is closed if and only if

l dz ^ daþ ððeuwÞzl� 2lze
uwÞdz ^ dx ^ dyþ

þ 2lxdx ^ dz ^ ðdtþ aÞ þ 2lydy ^ dz ^ ðdtþ aÞ þ 2ltdt ^ oI ¼ 0: ð49Þ

In the presence of (48), (49) is equivalent to

ðeuwÞzl ¼ lzeuw; lx ¼ ly ¼ lt ¼ 0; ð50Þ

which holds if and only if l ¼ lðzÞ and euw ¼ hl for some function hðx; yÞ.
Let y be the complex 1-form w dzþ iðdtþ aÞ. Then, since dx� idy is closed, the

complex structures I and J are integrable if and only if dy belongs to the ideals gen-
erated by fy; dx� idyg and by fy; dxþ idyg respectively. Since dyð@=@t; �Þ ¼ 0, these
conditions force ðdx� idyÞ ^ dy and ðdxþ idyÞ ^ dy to vanish. Hence I is integrable
if and only if

da ¼ �wxdy ^ dzþ wydx ^ dzþ fdx ^ dy ð51Þ

while J is integrable if and only if

da ¼ wxdy ^ dz� wydx ^ dzþ fdx ^ dy; ð52Þ

here f is an arbitrary function. Hence I and J are both integrable if and only if

wx ¼ wy ¼ 0 and da ¼ fdx ^ dy ð53Þ

and f is necessarily a function of x; y only.

Putting together (48), (50), and (53), we see that ðg; J;oÞ is of Calabi type, with
Killing vector field K, if and only if euw ¼ hðx; yÞlðzÞ, with da ¼ hðx; yÞlz, lzz ¼ 0
and wx ¼ wy ¼ 0, so that l ¼ az� b for constants a; b and w ¼ wðzÞ.

Using the freedom in the choice of t, we may then assume a is a 1-form on S, while
gS ¼ hðx; yÞðdx2 þ dy2Þ is a metric on S, and the result follows. &

This Proposition shows that Kähler metrics of Calabi type are essentially the same

as metrics arising from the well-known Calabi construction [14] of metrics on the

total space of a Hermitian line bundle over a Riemann surface. In this interpretation,

the Killing vector field K generates the natural circle action on the line bundle and

the Kähler form is

oS þ dJdf ð54Þ

for a function f of the fibre norm r. Since �dJdlogr is the curvature of the line bun-

dle, which is basic, the momentum map z of K is also a function of r. Hence we may

locally view f as a function of z, so that, if we write Jdz ¼ dtþ a where dtðK Þ ¼ 1

and a is basic,

dJ df ¼
f 0ðzÞ

wðzÞ

� �
z

dz ^ ðdtþ aÞ þ
f 0ðzÞ

wðzÞ
da: ð55Þ

Therefore, in Proposition 13, setting b ¼ �1 without loss of generality, we have

f 0ðzÞ ¼ zwðzÞ.
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The metrics of Proposition 13 certainly admit a Hamiltonian 2-form, namely

j ¼ ðaz� bÞoI þ 3azo. Hence, s ¼ 2az and l ¼ az� b, so that x ¼ 2az� b and

Z ¼ b. The Hamiltonian Killing vector fields associated to j both vanish when
a ¼ 0. On the other hand, for a nonzero, we can use the freedom in the choice of

z to set a ¼ 1 and b ¼ 0.

THEOREM 3. A Kähler surface is of Calabi type if and only if either:

ðiÞ it is locally a Kähler product of two Riemann surfaces, one of which admits a

Killing vector field; or

ðiiÞ it admits a Hamiltonian 2-form whose associated Killing vector fields are depen-

dent but not both zero.

The Kähler structure is then given explicitly by the Calabi construction ð46Þ�ð47Þ: in

case ðiÞ a ¼ 0, while in case ðiiÞ we may take a ¼ 1, b ¼ 0 without loss of generality.

3.2. WEAKLY SELF-DUAL KÄHLER SURFACES OF CALABI TYPE

We begin this section by computing the curvature of a Kähler surface of Calabi type

which is not a local Kähler product. Therefore we set a ¼ 1, b ¼ 0, and write

wðzÞ ¼ z=VðzÞ, so that the Kähler structure is

g ¼ zgS þ
z

VðzÞ
dz2 þ

VðzÞ

z
ðdtþ aÞ2; ð56Þ

o ¼ z oS þ dz ^ ðdtþ aÞ; ð57Þ

As with ortho-toric Kähler surfaces, the curvature is entirely determined by the

scalar curvature s of g, the conformal scalar curvature k of the Hermitian pair
ðg; I Þ, and the trace-free part r0 of the Ricci form of ðg; J Þ.

LEMMA 10. For a nonproduct Kähler surface ðM; g; J;oÞ of Calabi type, given by
ð56Þ�ð57Þ, r0 is a multiple m of the Kähler form oI of the Hermitian pair ðg; I Þ, and
m; s; k are given by

m ¼ �
1

4z
sS þ

Vz
z2

� �
z

z2
� �

; ð58Þ

s ¼
sS � Vzz
6z

; ð59Þ

k ¼
1

6z
sS � z2 z2

V

z4

� �
z

� �
z

� �
; ð60Þ

where sS is the scalar curvature of S. In particular, on the open subset of M where m
has no zero, the anti-self-dual almost-complex structure determined by r0 is equal to I.
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Proof. The Ricci form r is given by r ¼ rS � 12 dJd logV. The first term is
1
2 sSoS,

and we compute the second term as follows:

dJ d logV ¼ d
Vz
V
Jdz

� �
¼ d

Vz
z
ðdtþ aÞ

� �

¼
Vzz
z
dz ^ ðdtþ aÞ þ Vz

1

z
oS �

1

z2
dz ^ ðdtþ aÞ

� �
:

Evidently we may write this as a linear combination of o and oI, and we readily
obtain (58) and (59).

The conformal scalar curvature is most easily computed by noticing that the con-

formal Kähler metric �gg ¼ z�2g is also of Calabi type, with �zz ¼ 1=z and
�VVð �zzÞ ¼ �zz4Vð1= �zzÞ ¼ VðzÞ=z4. Hence, its scalar curvatures are

sS � �VV �zz �zz

6 �zz
¼
z

6
sS � z2 z2

V

z4

� �
z

� �
z

� �

from which (60) follows, since k ¼ z�2 �ss. &

PROPOSITION 14. Let M be a nonproduct Kähler surface M of Calabi type, with

Killing vector field K. Then the scalar curvature of M is a momentum map for a

multiple of K if and only if gS has constant curvature k and V is of the form

VðzÞ ¼ A1z
4 þ A2z

3 þ kz2 þ A3zþ A4: ð61Þ

Any Kähler surface given by ð56Þ–ð57Þ is extremal, with Ricci form moI þ 3
2 so, where

m ¼ �A1zþ
A3
2z2

; ð62Þ

s ¼ �2A1z� A2:; ð63Þ

also the conformal scalar curvature of ðg; I Þ is

k ¼ �
A3
z2

�
2A4
z3

: ð64Þ

Hence:

ðiÞ g has constant scalar curvature if and only if A1 ¼ 0;

ðiiÞ g is scalar-flat ði.e., anti-self-dualÞ if and only if A1 ¼ A2 ¼ 0.

ðiiiÞ ðg; J Þ is Kähler–Einstein if and only if A1 ¼ A3 ¼ 0;

ðivÞ g is weakly self-dual if and only if A3 ¼ 0.

ðvÞ g is self-dual if and only if A3 ¼ A4 ¼ 0.

ðviÞ ðg; J Þ is bi-extremal if and only if g is weakly self-dual;

ðviiÞ the Bach tensor of g vanishes if and only if 4A1A4 � A2A3 ¼ 0.

Proof. From (59), we have

6zsþ Vzz ¼ sS:
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If s is an affine function of z, then both sides of this equation must be constant.

Hence sS ¼ 2k and V must be a quartic in z with quadratic term kz2. The formulae

for m; s and k are immediate, as are (i)–(v). (For (iv) we use the fact that I is inte-
grable and z�2oI is closed, so that weak self-duality is equivalent to the equation
ds ¼ 2dm.)
(vi) The Pfaffian p of the normalized Ricci form is given by

p ¼
�
�2A1z�

1
2A2 þ

A3
2z2

��
�12A2 �

A3
2z2

�
ð65Þ

in particular, p is a rational function of z; since z is a holomorphy potential, p is

a holomorphy potential if and only if it is an affine function of z, if and only if

A3 ¼ 0; p is then equal to � 12A2ðsþ
1
2A2Þ.

(vii) For any extremal Kähler surface the Bach tensor is J-invariant and the cor-

responding anti-self-dual 2-form, is expressed by (21) which yields

~BB ¼
ð4A1A4 � A2A3Þ

z2
oI: &

This family of extremal Kähler metrics has been considered in many places. In

particular, it includes the extremal Kähler metrics of cohomogeneity one under

Uð2Þ constructed by Calabi in [14]; more generally, it turns out that these metrics

all have cohomogeneity one under a (local) action of a four-dimensional Lie group,

locally isomorphic to a central extension of the isometry group of a surface of con-

stant curvature k. We refer to these metrics as extremal Kähler surfaces of Calabi type

and briefly recall how they may be realized as diagonal Bianchi metrics, of class IX,

VIII or II, according to whether k is positive, negative or zero.

Up to rescaling, we can—and will—assume that k ¼ e, with e ¼ 1; 0 or �1. As is
well known, we can now write dtþ a ¼ s3 and introduce t-dependent 1-forms s1; s2
on S with gS ¼ s21 þ s22, s1 ^ s2 ¼ oS and

ds1 ¼ es2 ^ s3; ds2 ¼ es3 ^ s1; ds3 ¼ s1 ^ s2: ð66Þ

By substituting s1; s2; s3 in (56)

g ¼
z

VðzÞ
dz2 þ zðs21 þ s22Þ þ

VðzÞ

z
s23; ð67Þ

the complex structure J is determined by

Js1 ¼ s2; J dz ¼
VðzÞ

z
s3 ð68Þ

while the Kähler form o is

o ¼ dz ^ s3 þ zs1 ^ s2 ¼ dðzs3Þ: ð69Þ

We here recognize bi-axial diagonal Bianchi metrics of class IX, VIII or II, accord-

ing as e is equal 1, �1 or 0; these admit a cohomogeneity one local action of SUð2Þ if
e ¼ 1, of SUð1; 1Þ if e ¼ �1, of the Heisenberg group Nil if e ¼ 0, and the orbits are
level sets of z. This can be seen as follows: denote by ðZ1;Z2;Z3 ¼ K1Þ the triplet of
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vector fields determined by siðZjÞ ¼ dij and dzðZiÞ ¼ 0, i; j ¼ 1; 2; 3, where dij is the
Kronecker symbol. Then, for each value of z, Z1;Z2;Z3 are tangent to the corre-

sponding orbit Mz and generate a Lie algebra isomorphic to suð2Þ, suð1; 1Þ or
nil3 according as e is equal to 1, �1 or 0; therefore, each orbit can be locally identi-
fied to the corresponding Lie group and we can locally construct a new triple of inde-

pendent vector fields, ð ~ZZ1; ~ZZ2; ~ZZ3Þ, such that ½ ~ZZi;Zj� ¼ 0 and dzð ~ZZiÞ ¼ 0, i; j ¼ 1; 2; 3

(for each orbit, if ðZ1;Z2;Z3Þ is a basis of left-invariant vector fields, ð ~ZZ1; ~ZZ2; ~ZZ3Þ is

a basis of right-invariant vector fields); ~ZZ1; ~ZZ2; ~ZZ3 are clearly Killing with respect to g

and all commute with K1.

If e 6¼ 0, K1; ~ZZ1; ~ZZ2; ~ZZ3 generate a four-dimensional Lie algebra, corresponding to

a local action of Uð2Þ if e ¼ 1, of Uð1; 1Þ if e ¼ �1. If e ¼ 0, ~ZZ3 equals K1, up to a

constant factor; on the other hand, we get an additional Killing vector field ~KK1 gen-

erated by the rotations around the origin in the Euclidean 2-planeE2 of x; y; then,
~KK1;K1; ~Z1Z1; ~Z2Z2 generate a four-dimensional Lie algebra, say g, corresponding to a
local action of the group, G, obtained by forming the semi-direct product of Nil

by S1 for the natural action of S1 on Nil by (outer) automorphisms; the centre of

G ¼ Nil�S1 coincides with the centre of Nil; the latter is one-dimensional again

and the quotient of G by its center is isomorphic to IsomðE2Þ; in other words, G

is isomorphic to a (nontrivial) one-dimensional central extension of IsomðE2Þ.

If we concentrate our attention on weakly self-dual Kähler surfaces, we readily

infer from the foregoing:

THEOREM 4. Let ðM; g; JÞ be a weakly self-dual Kähler surfaces. Denote by s the

scalar curvature and by p the Pfaffian of the normalized Ricci form; let K1 ¼ J gradgs

and K2 ¼ J gradgp be the associated Killing vector fields and assume that K1 has no

zero and that K2 ¼ bK1, where b is a real constant (possibly zero).

ðiÞ Then ðM; g; J Þ admits a local action of cohomogeneity one of G ¼ Uð2Þ,Uð1; 1Þ or

Nil�S1 and is locally isomorphic to a diagonal Bianchi metric of class IX, VIII or II

respectively.

More precisely, let s1; s2; s3 denote the ðlocalÞ 1-forms on M induced by this action,

corresponding to a triple of G-invariant 1-forms on G, so that ds3 ¼ s1 ^ s2, ds2 ¼
es3 ^ s1, ds1 ¼ es2 ^ s3, where e ¼ 1;�1 or 0 according as G ¼ Uð2Þ, Uð1; 1Þ or

Nil�S1; then, the Kähler structure ðg; J Þ can be put in the form ð67Þ–ð68Þ, where z

is an affine function of s and VðzÞ is of the form

VðzÞ ¼ A1z
4 þ A2z

3 þ ez2 þ A4: ð70Þ

ðiiÞ Conversely, each Kähler surface of the form ð67Þ–ð68Þ, with V given by ð70Þ is

weakly self-dual.

ðiiiÞ This Kähler structure is self-dual if and only if A4 ¼ 0.

Remark 6: By substituting A3 ¼ 0 in (62) and (64), we readily infer that A4 and

the constant c appearing in (23) and (24) are linked together by

c ¼ 2A31A4; ð71Þ
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moreover, A1 6¼ 0, as s is nonconstant, so that A4 ¼ 0 if and only if c ¼ 0; as we

already know, both conditions are equivalent to g being self-dual. &

3.3. THEWEAKLY SELF-DUAL KÄHLERMETRIC ON THE FIRST HIRZEBRUCH SURFACE

We close this section by providing an example of a compact weakly self-dual Kähler

surface ðM; g; J Þ; this belongs to the family of extremal metrics constructed in [14] by

E. Calabi on the first Hirzebruch surface F1, viewed as the compactification of the

total space of the tautological line bundle L ¼ Oð�1Þ over the complex projective

line CP1 ¼ PðC
2
Þ obtained by adding a section at infinity, say C1; then, the zero sec-

tion, C0, has self-intersection �1 and F1 can also be considered as a blown up of the

projective plane CP2 at some point, with exceptional divisor C0, and F1 � C0 ¼

C
2
� fð0; 0Þg.

We here recall the main features of Calabi’s construction from [14]. Let r be the

usual norm in C
2 and, for convenience, introduce the function t defined on

C
2
� fð0; 0Þg by et ¼ r2; the group Uð2Þ naturally acts on F1, by preserving C0 and

C1; by [15], the connected group of isometries, Isom0ðM; gÞ, of any compact extre-

mal Kähler surface ðM; g; J Þ is a maximal compact subgroup of the connected group

of holomorphic transformations Aut0ðM; J Þ; it follows that any extremal metric on

F1 is isometric to a Uð2Þ-invariant metric, in particular has a globally defined poten-

tial on the open set M0 ¼ F1 � C0 ¼ C
2
� fð0; 0Þg of the form u ¼ uðtÞ; the Kähler

form is thus given by o ¼ cðtÞddctþ c0
ðtÞdt ^ dct, where cðtÞ :¼ u0ðtÞ; conversely,

any such Kähler metric extends to F1 if and only if cðtÞ extends to a C1 function

of et in the neighbourhood of t ¼ �1 and to a C1 function of e�t in the neighbour-

hood of t ¼ 1; in particular, c has a limit a when t! �1 and a limit, b, when

t! 1,with 0 < a < b; the corresponding Kähler class ½o� is then equal to
4pð�a½C0� þ b½C1�Þ, where ½C0� and ½C1� denotes the Poincaré dual of C0 and simi-

larly for ½C1�; conversely, each Kähler class on F1 is of this form, for some pair

0 < a < b; it is easily checked that the Ricci for is given by r ¼ ddcv, with

v ¼ t� 1
2 logc� 1

2 logc
0, so that s ¼ 2ððv0=cÞ þ ðv00=c0

ÞÞ; on the other hand, such a

metric is extremal if and only if s is an affine function of c; by easy successive partial
integrations, we infer that this metric is extremal if and only if c satisfies the follow-
ing differential relation: cc0

¼ VðcÞ, where V is a polynomial of the form (61); more-
over, the extremal metric is actually defined on F1 and has its Kähler class para-

meterized by the pair ða; bÞ as above if and only if the coefficients of V are given by

A1 ¼
�2a

ðb� aÞða2 þ 4abþ b2Þ
; A2 ¼

ð3a2 � b2Þ

ðb� aÞða2 þ 4abþ b2Þ
;

A3 ¼
abð3a2 � b2Þ

ðb� aÞða2 þ 4abþ b2Þ
; A4 ¼

�2a3b2

ðb� aÞða2 þ 4abþ b2Þ
;

ð72Þ

we thus get an extremal Kähler metric, say gða;bÞ, in each Kähler class of F1 (we have

a similar construction for the other Hirzebruch surfaces Fk [14]; the coefficients of V

are then given by (76) below).
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All these metrics are of cohomogeneity one under the action of Uð2Þ and can also

be put in the form (67)–(68), with the same parameter c, the same polynomial VðcÞ,
dct ¼ s3 and dd

ct ¼ s1 ^ s2; in particular, according to Proposition 14, gða;bÞ if
weakly self-dual if and only if A3 ¼ 0, and this happens if and only if a and b are

related by

b2 ¼ 3a2; ð73Þ

in this case, A2 ¼ 0 as well, meaning that p ¼ 0, and VðcÞ ¼ A1c
4
þ c2 þ A4 is a

function of c2; in particular, cc0
¼ VðcÞ is easily integrated into

c ¼ a
1þ 3etþt0

1þ etþt0

� �1
2

¼ a
1þ 3et0r2

1þ et0r2

� �1
2

; ð74Þ

where t0 is a constant; the latter can be made equal to zero without loss of generality

by a mere translation of the parameter t, i.e. a rescaling of r; then, up to rescaling, the

Kähler form is given by

o ¼
ð1þ 3etÞ

1
2

ð1þ etÞ
1
2

dd ctþ
et

ð1þ etÞ
3
2ð1þ 3etÞ

1
2

dt ^ d ct: ð75Þ

In the sequel, the Kähler metric given by (75) will be referred to as the Calabi

weakly self-dual Kähler metric of F1. It may be noticed that, according to (72), the

scalar curvature s ¼ �2A1c is nonconstant and (strictly) positive.
In the next section we show that, conversely, each compact weakly self-dual Kähler

surface with nonconstant scalar curvature is, up to rescaling, isomorphic to the first

Hirzebruch surface equipped with the Calabi weakly self-dual Kähler metric.

4. Compact Weakly Self-dual Kähler Surfaces

Compact self-dual Kähler surfaces have been described by B.-Y. Chen in [20]: these

are locally symmetric, hence of constant holomorphic sectional curvature or, locally

the product of Riemann surfaces of opposite constant curvature (see [13] for a

higher-dimensional generalization).

In [32], W. Jelonek proved that compact real analytic weakly self-dual Kähler sur-

faces are either Kähler–Einstein, or locally the product of two Riemann surfaces of

constant Gauss curvatures, or biholomorphic to a ruled surface.

We show that the hypothesis of real analyticity can actually be removed and that,

except in the case when the scalar curvature is constant, the only weakly self-dual

Kähler ruled surface is the first Hirzebruch surface F1 equipped with the Calabi

weakly self-dual Kähler metric, as described in the preceding section (up to rescal-

ing). More precisely, we have the following result.

THEOREM 5. Let ðM; g; J Þ be a compact weakly self-dual Kähler surface. Then

ðM; g; J Þ is either
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ðiÞ Kähler–Einstein; or

ðiiÞ locally isomorphic to the product of two Riemann surfaces of constant Gauss cur-

vatures, or

ðiiiÞ up to rescaling, isomorphic to the first Hirzebruch surface F1 equipped with a

Calabi weakly self-dual Kähler metric.

Proof. By Proposition 6, we know that g is either self-dual, hence, by the above

mentioned result of B.-Y. Chen, described by (i) or (ii), or of constant scalar cur-

vature, hence, again, described by (i) or (ii), or of nonconstant scalar curvature. In

the latter case, the (negative) Kähler structure ð �gg; I Þ is globally defined; it then fol-

lows from a result of Kotschick [36] that the signature of M is zero [36]; moreover,

since the (real) holomorphic field K1 ¼ J gradg s has nonempty zero set, we know by

[19] that the Kodaira dimension of the Kähler surface ðM; JÞ is �1, hence ðM; JÞ is a

ruled surface which is the projectivization PðEÞ of a rank 2 holomorphic vector

bundle E over a compact complex curve S [11].
If S ¼ CP1; ðM; JÞ is a Hirzebruch surface Fk ¼ PðO�Oð�kÞÞ, where k is a

positive integer, or the product CP1 � CP1; the only extremal Kähler metrics

of CP1 � CP1 are the (symmetric) product metrics, which are of constant scalar cur-

vature; on the other hand, any maximal compact subgroup of Aut0ðM; JÞ is conju-

gate to Uð2Þ, and therefore any extremal Kähler metric must be a cohomogeneity-

one Uð2Þ metric [15], hence, locally of the form (67) with e ¼ 1 (cf. the end of the pre-
ceding section for the case when k ¼ 1); as shown by E. Calabi in [14], for each k > 0,

any Kähler class of Fk carries a unique extremal Kähler metric (up to a reparameter-

ization); each one can be put in the form (67), where the polynomial V, in the nota-

tion of (61), is determined by

A1 ¼
ðkþ 1Þaþ ðk� 1Þb

ðb� aÞða2 þ b2 þ 4abÞ
; A2 ¼

ð2� kÞb2 � ðkþ 2Þa2

ðb� aÞða2 þ b2 þ 4abÞ
;

A3 ¼
abðð2� kÞb2 � ðkþ 2Þa2Þ
ðb� aÞða2 þ b2 þ 4abÞ

; A4 ¼
a2b2ððkþ 1Þaþ ðk� 1ÞbÞ
ðb� aÞða2 þ b2 þ 4abÞ

;

ð76Þ

where 0 < a < b are the parameters of the Kähler class; according to Proposition 14,

g is weakly self-dual precisely when A3 ¼ 0; in the present situation, this is equivalent

to A2 ¼ 0 and happens if and only if k ¼ 1 and m :¼ a=b ¼ 1=
ffiffiffi
3

p
, i.e. if ðM; g; JÞ is

the first Hirzebruch surface equipped with a Calabi weakly self-dual Kähler metric.

We now show that a compact ruled surface ðM; JÞ whose base S is a compact com-
plex curve of genus gðSÞ at least 1 does not carry weakly self-dual Kähler metrics of
non-constant scalar curvature. We thus assume that ðM; JÞ ¼ PðEÞ carries a weakly

self-dual Kähler metric of non-constant scalar curvature to get a contradiction.

Using an argument from [38, 49], we first observe that the rank two vector bundle

E splits as E ¼ O� L, where O stands for the trivial holomorphic line bundle and L
is a holomorphic line bundle L of degree degðLÞ > 0. Indeed, recall the already men-

tioned result of E. Calabi [15] that the connected component of the isometry

group Isom0ðM; gÞ is a maximal compact subgroup in Aut0ðM; JÞ; according to
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M. Maruyama [41], the group of automorphisms of ruled surfaces can be described

as follows: If gðSÞ5 1, there exists an exact sequence

f1g ! AutSðPðEÞÞ ! AutðPðEÞÞ ! AutðSÞ; ð77Þ

where AutSðPðEÞÞ denotes the group of relative automorphisms of the bundle

PðEÞ ! S, and AutðSÞ is the group of automorphisms of S (of course, AutðSÞ is
finite if gðSÞ5 2); on the other hand, the (nontrivial) homomorphic vector field
X1 ¼ K1 � iJK1 whose real part is the Killing vector field K1 ¼ J gradg s has a
nonempty zero set; since X1 preserves the (unique) rulingM ¼ PðEÞ ! S, it projects
onto a holomorphic vector field on the base S; since X1 has at least one zero, the
induced vector field on S vanishes; it follows that X1 is tangent to the CP1 fibers

(equivalently, X1 belongs to the Lie algebra of AutSðPðEÞÞ); this shows that the ker-

nel of the group homomorphism f : Isom0ðM; gÞ ! Aut0ðSÞ induced by the exact
sequence (77) is a nontrivial compact subgroup of AutSðPðEÞÞ; one can therefore find

an S1 in the connected component of the identity of AutSðPðEÞÞ; denote by X0 the
induced holomorphic vector field, such that the imaginary part K0 ¼ ImðX0Þ gener-
ates the S1-action, whereas X0 itself generates a C

�-action; as a matter of fact, X0 can
be identified to a traceless holomorphic section of EndðEÞ, say s; note that s is of

constant determinant; since K0 ¼ ImðX0Þ generates a periodic S1-action, s must be
diagonalizable; this shows that we have a holomorphic splitting of E into eigensub-

bundles of s; by twisting by a line bundle, we obtain the splitting E ¼ O� L, where

degðLÞ5 0; then, X0 is nothing but the Euler vector field of L. If the degree of L is
zero, then any Kähler class contains a locally symmetric Kähler metric [51], so that

any extremal Kähler metric on ðM; JÞ is of constant scalar curvature [14], a contra-

diction; we thus obtain a splitting E ¼ O� L where L is a holomorphic line bundle

of degðLÞ > 0.

As Isom0ðM; gÞ is a maximal compact subgroup in Aut0ðM; JÞ, we may assume

[49] that (up to a biholomorphism) the metric g is invariant under the fixed S1 action

generated by K0 ¼ ImðX0Þ. For any nontrivial Killing vector field, K, which arises
from a real holomorphy potential, the argument already used above shows that

X ¼ K� iJK must be tangent to the fibers, and therefore X ^ X0 ¼ 0. In particular,
we get that K0 ¼ fK1 þ hJK1; where f; h are smooth functions defined on an open

dense subset of M where K1 ¼ J gradgs 6¼ 0. But hK0;JK1i ¼ �dsðK0Þ ¼ �LK0s¼ 0,
i.e. h¼ 0, and therefore f is a constant. By rescaling the metric if necessary we

may assume therefore that K1 ¼ K0 ¼ ImðX0Þ. Similarly, K2 ¼ Jgradgp must be a
constant multiple of K1 and by Theorem 4, g must be locally of cohomogeneity

one, i.e., g can be written of the form (67) on an open dense subset of M.

Note that M contains exactly two curves fixed by the C
�-action generated by X0,

corresponding to the zero and infinity sections, C0 and C1, ofM ¼ PðO� LÞ; more-

over, the function z appearing in (67) makes sense on the whole of M as being a

momentum map of the corresponding S1-action (up to multiplication by a nonzero

constant); it then follows that z :M! R mapsM onto an interval ½a; b�, such that z

is regular on M� ðz�1ðaÞ [ z�1ðbÞÞ; therefore, for any t0 2 ða; bÞ, S ¼ z�1ðt0Þ=S
1,
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whereas C0 ¼ z
�1ðaÞ and C1 ¼ z�1ðbÞ (see [38]). By using an argument from [38,

p. 42], it is shown that q ¼ jK1j
2 is a smooth function on S� ½a; b�, which satisfies

the boundary conditions

qð:; aÞ ¼ qð:; bÞ ¼ 0;
@

@z
q

� �
ð:; aÞ ¼ �

@

@z
q

� �
ð:; bÞ ¼ k; ð78Þ

where k is a real constant; for Calabi’s metrics (67) one has q ¼ ðVðzÞÞ=z, so that the

Equations (78) read

VðaÞ ¼ VðbÞ ¼ 0; V0ðaÞ ¼ ka; V0ðbÞ ¼ �kb;

we thus obtain the following values for the coefficients A1;A2;A3;A4 of V (notations

of (61)):

A1 ¼
kðaþ bÞþ eða� bÞ

ðb� aÞða2þ 4abþ b2Þ
; A2 ¼

�kða2þ b2Þþ 2eðb2� a2Þ
ðb� aÞða2þ 4abþ b2Þ

;

A3 ¼
abð�kða2þ b2Þþ 2eðb2� a2ÞÞ

ðb� aÞða2þ 4abþ b2Þ
; A4 ¼

a2b2ðkðaþ bÞþ eða� bÞÞ
ðb� aÞða2þ 4abþ b2Þ

;

ð79Þ

according to Proposition 14 we have A3 ¼ 0, and from ð79Þ we also get A2 ¼ 0; by

(63) and (62) it follows that the Ricci tensor of g has two distinct eigenvalues, equal

to s=6 and s=3, respectively; by Proposition 6, Ric0 nowhere vanishes onM, meaning

that the scalar curvature s nowhere vanishes as well; since K1 is a non-trivial Killing

vector field, smust be everywhere positive; this shows that the first Chern class c1ðMÞ

of ðM; JÞ is positive, and therefore c21ðMÞ > 0, a contradiction [11].

Remark 7. The case (ii) of Theorem 5 includes in particular ruled surfaces PðEÞ

over a Riemann surface S of genus g5 1 when the holomorphic vector bundle E
is stable or polystable, cf., e.g., [51].

5. Weakly Self-dual Almost Kähler Manifolds

5.1. THE MATSUMOTO–TANNO IDENTITY FOR ALMOST KÄHLER 4-MANIFOLDS

Recall that an almost Kähler manifold is an almost Hermitian manifold ðM; g; J;oÞ
for which the Kähler 2-form o is closed. The almost complex structure J of an
almost Kähler manifold is not integrable in general; if it is, we obtain a Kähler

manifold.

We would like to identify the Ricci tensor Ric of an almost Kähler manifold with

a 2-form r, the Ricci form, as in the Kähler case. However, only the J-invariant part
of Ric defines a 2-form, whereas on a (nonintegrable) almost Kähler manifold, the

Ricci tensor is not in general J-invariant. We shall therefore impose J-invariance

as an extra requirement.

WEAKLY SELF-DUAL KÄHLER SURFACES 311

https://doi.org/10.1023/A:1022251819334 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022251819334


Throughout this section we will always assume that ðM; g; JÞ is an almost Kähler

4-manifold whose Ricci tensor is J-invariant, i.e., RicðJ�; J�Þ ¼ Ricð�; �Þ. We then

adopt the notations of Section 1, and, in analogy with the Kähler case, we consider

the type (1,1) Ricci form, r, of ðM; g; JÞ defined by rð�; �Þ ¼ RicðJ�; �Þ; the anti-
self-dual part of r is denoted by r0. It is a remarkable fact [22] that even though J
is not integrable, r is still a closed (1,1)-form (although it is no longer a representa-
tive of 1=2pcR1 ). Using this observation, the proof of Lemma 1 easily extends to the
case of almost Kähler 4-manifolds with J-invariant Ricci tensor.

LEMMA 11. For any almost Kähler 4-manifold with J-invariant Ricci tensor the

identity (1) is satisfied. In particular, the anti-self-dual Weyl tensor W� of such a

manifold is harmonic if and only if the Matsumoto-Tanno identity (2) is satisfied.

Proof. The proof follows the one given in the Kähler case, with slight mod-

ifications in places where the nonintegrability of J must be taken into account: the

Cotton–York tensor is now written as

CX;YðZÞ ¼ �12ððHXrÞðY; JZÞ � ðHYrÞðX; JZÞÞ � 12ðrðY; ðHXJÞðZÞÞ�

� rðX; ðHYJÞðZÞÞÞ þ 12ðdsðXÞhY;Zi � dsðYÞhX;ZiÞ: ð80Þ

Since r closed [22], we have

ðHXrÞðY; JZÞ � ðHYrÞðX; JZÞ ¼ �ðHJZrÞðX;YÞ: ð81Þ

As an algebraic object, HXJ is a skew-symmetric endomorphism of TM, associated
(by g-duality) to the section HXo of the bundle of J-anti-invariant 2-forms; it
then anti-commutes with J, and commutes with any skew-symmetric endomorphism

associated to a section of L�M; in particular, HXJ commutes with the endo-
morphism corresponding to r0 via the metric (which will be still denoted by r0).
We thus obtain

rðY; ðHXJÞðZÞÞ � rðX; ðHYJÞðZÞÞ

¼ 3s
2 ððHYoÞðX; JZÞ � ðHXoÞðY; JZÞÞ þ ðHXoÞðY; r0ðZÞÞ � ðHYoÞðX; r0ðZÞÞ:

By using the closedness of o we derive

rðY; ðHXJÞðZÞÞ � rðX; ðHYJÞðZÞÞ ¼ 3s
2 ðHJZoÞðX;YÞ � ðHr0ðZÞoÞðX;YÞ: ð82Þ

Substituting (81) and (82) in (80), we finally get

HZr0 ¼ �3s2dsðZÞo� 2CðJZÞ � HRic0ðZÞoþ ds ^ JZ[; ð83Þ

The L�M-component of (83) gives the identity (1); the last part of the lemma is

immediate. &
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It follows that Lemma 4 and, hence, Proposition 1 remain true for weakly

self-dual Kähler surfaces, so that on the open set M0 where r0 6¼ 0 the almost
Hermitian structure ð �gg ¼ l�2g; IÞ defined on M0 by r0 ¼ loI (see Lemma 2) is
Kähler.

The theory of Hamiltonian 2-forms j does not extend automatically to the almost
Kähler case: there is no reason, in general, to suppose that the trace and Pfaffian of j
are Poisson-commuting holomorphy potentials, nor can we appeal to the open map-

ping theorem when J is not integrable. On the other hand, Proposition 3 does gen-

eralize in the following sense: if we write s ¼ xþ Z and p ¼ xZ, then dx and dZ are
orthogonal and Jds ¼ 2Idl on the closure of M0.
Fortunately, when j is the Ricci form, we can show more.

LEMMA 12. On a weakly self-dual almost Kähler 4-manifold with J-invariant Ricci

tensor, K ¼ Jgradgs is a Killing vector field.

Proof. On M0, the Ricci tensors of both �gg ¼ l�2g and g are I-invariant, and
therefore Igradgl is Killing vector field (with respect to both metrics) [7]. Since
Ids ¼ 2Jdl, Jds ¼ 2Idl and K is a Killing vector field onM0. On the other hand if l
vanishes identically on an open set U then g is Einstein on U, so that s is constant,

and K is a trivial Killing vector field. Hence, by continuity, K is a Killing vector field

everywhere. &

Because of this observation, it is natural to strengthen the definition of Hamil-

tonian 2-forms in the almost Kähler case: we say that a closed J-invariant 2-

form j on an almost Kähler 4-manifold is Hamiltonian if its trace-free part
j0 is a twistor 2-form and its trace s is a momentum map for a Killing vector
field.

Note that for any Killing vector field K, HX ðHKÞ ¼ R
g
K;X and so the 1-jet fK;HKg is

parallel with respect to a globally defined connection, cf. [35]. Hence if K vanishes on

an open set so does HK, and therefore K vanishes on any connected component
meeting that open set. It follows that if j is Hamiltonian, the open set M0 where
j0 6¼ 0 is dense or empty in each connected component.
In particular, we obtain the following generalization of Proposition 6.

PROPOSITION 15. Let ðM; g; J;oÞ be a connected weakly self-dual almost Kähler
4-manifold with J-invariant Ricci tensor. Then one of the following holds:

ðiÞ r0 is identically zero; then, ðg; J;oÞ is an Einstein almost Kähler 4-manifold; or
ðiiÞ the scalar curvature s of g is constant, but r0 is not identically zero; then, ðg; JÞ is

obtained from a Kähler surface ðg; IÞ with two distinct constant principal Ricci

curvatures, l and m, in the following manner: J equals to I on the l-eigenspace
of the Ricci tensor, but to �I on the m-eigenspace; hence I is compatible with
the opposite orientation of ðM; JÞ; or

ðiiiÞ s is not constant and g is self-dual; or
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ðivÞ W� and r0 have no zero; then, ð �gg ¼ l�2g; IÞ is a globally defined extremal Kähler
metric of non-constant scalar curvature, which is compatible with the opposite

orientation of ðM; JÞ.

5.2. WEAK SELF-DUALITY, HAMILTONIAN 2-FORMS, AND A CONJECTURE

OF GOLDBERG

The existence of nonintegrable almost Kähler 4-manifolds listed in (i)–(iv) of Propo-

sition 15 appears to be a nontrivial problem. We collect below some remarks and

known results on this issue:

. A long-standing conjecture of Goldberg [28, 47] states that a compact Einstein

almost Kähler manifold must be a Kähler–Einstein manifold. The first local

examples of nonintegrable Einstein almost Kähler 4-manifolds have been

recently discovered in [44, 9]; we shall provide new examples (see Example 2

below), but for all these examples the Ricci tensor and the anti-self-dual Weyl

tensor identically vanish.

. The almost Kähler 4-manifolds described in Proposition 15(ii) have been recently

studied in [6]. It is known that there are essentially two examples of homogeneous

Kähler surfaces ðM; g; IÞ which give rise to homogeneous non-integrable almost

Kähler 4-manifolds described in (ii) of Proposition 15; specifically, ðM; g; IÞ is

either isomorphic to ðSUð2Þ �Sol2Þ=Uð1Þ (in the case when the signature of the

Hermitian form is (2,2), cf. [48]), or to ðIsomðE2Þ � Sol2Þ=SOð2Þ(in the case when

the signature of the Hermitian form is (0,2), cf. [51]); see also Example 3 below.

However, there are also many nonhomogeneous examples [4].

. We believe that there should exist nonintegrable examples of almost Kähler

4-manifolds described in Proposition 15(iii) and (iv). However, as we discuss

below, it is not clear how to generalize the constructions of Sections 2 and 3 to

obtain such examples.

According to Proposition 4, for a weakly self-dual Kähler surface, not only the

scalar curvature, but also the Pfaffian of the normalized Ricci form is a momentum

map for a Killing vector field. Indeed, this much holds for the trace and the Pfaf-

fian of the normalized 2-form associated to any Hamiltonian 2-form, by

Proposition 2.

Hence, one approach to generalize the constructions of Sections 2 and 3 to the

almost Kähler case is to study Hamiltonian 2-forms such that the Pfaffian is also

a momentum map for a Killing vector field. The following Lemma shows that there

are no nonintegrable examples with linearly independent Killing vector fields, which

means that there is no direct generalization of the constructions of Section 2.

LEMMA 13. For an almost Kähler 4-manifold with a Hamiltonian 2-form j, the
Pfaffian p of the associated normalized 2-form ~jj is a momentum map for a Killing
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vector field ~KK ¼ Jgradgp if and only if either ðg; J Þ is a Kähler or ~KK is a constant

multiple of K ¼ Jgradgs.
Proof. Since p ¼ 1

4 s
2 � l2 we have dp ¼ 1

2 sdsþ j0ðJdsÞ. Straightforward cal-
culation gives

HðJdpÞ ¼ ds ^ Jds�
1

2
jdsj2oþ

1

2
sHðJdsÞ � j0 � Hds:

Since K ¼ Jgradgs is Killing by assumption, it follows that Jgradgp is Killing if and
only if j0 � Hds is skew. This is automatic on the open set where j0 vanishes, where
ds ¼ 0 and hence dp ¼ 0. Therefore we can assume j0 is nonvanishing and write
j0 ¼ loI, where I is a complex structure of the opposite orientation to J.
Now I � Hds is skew if and only if Hds is I-invariant; since J and I commute, this

means that the J-anti-invariant part of Hds must be I-invariant. But K ¼ Jgradgs
is Killing, so the J-anti-invariant part of ðHXdsÞðYÞ is equal to 2ðHXoÞðK;YÞ þ
ðHKoÞðX;YÞ: The latter is I-invariant if and only if for any vector field X we have

ðHIXJÞðKÞ ¼ IðHXJÞðKÞ: ð84Þ

Suppose now that HXJ ¼ A 6¼ 0 for a vectorX at some point. Since HIXJ, likeA, is a J-
anti-invariant endomorphism,we canwriteHIXJ ¼ bAþ cJA for some b; c 2 R. Equa-

tion (84) now reads bAðKÞ þ cJAðKÞ ¼ IAðKÞ: Since A commutes with I and anticom-

mutes with J, by applyingA to the both sides we obtain:�bKþ cJK ¼�IK. However

K is orthogonal to both JK and IK, and so b ¼ 0 and c ¼ �1. Thus, on the open set

where J is nonintegrable and j0 6¼ 0, we have Jds ¼ �Ids ¼ �2Jdl, so dp and ds
are linearly dependent. &

The Calabi construction in Section 3 does generalize to the almost Kähler case and

generates some new examples of self-dual Ricci-flat almost Kähler 4-manifolds.

However, we shall see that there are no nonintegrable examples of nonconstant

scalar curvature.

PROPOSITION 16. Let ðM; g; J;oÞ be an almost Kähler 4-manifold with J-invariant
Ricci tensor and a nonvanishing Hamiltonian Killing vector field K. Suppose that the

pair ð �gg ¼ l�2g; IÞ is Kähler, where l is a momentum map for a nonzero multiple of K,
and I is equal to J on spanðK; JKÞ, but to �J on the orthogonal complement of

spanðK; JKÞ.

Then either J is integrable, or ðg;oÞ is given explicitly by

g ¼
W

z
ðz2gS þ dz2Þ þ

z

W

�
dtþ

V

z
dzþ b

�2
; ð85Þ

o ¼ zWoS þ dz ^
�
dtþ

V

z
dzþ b

�
; ð86Þ

where gS is a metric on 2-manifold S with area form oS, b is a 1-form on S with
db ¼WoS, and Vþ iW is an arbitrary holomorphic function on S.
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Conversely any such metric satisfies the above hypotheses, and J is integrable if and

only if the function W is constant.

Proof. Without loss of generality, we take l ¼ z to be a momentum map for K

(with respect to o). As in Proposition 13, cf. LeBrun [37], we may introduce coor-
dinates such that

g ¼ euwðdx2 þ dy2Þ þ w dz2 þ w�1ðdtþ aÞ2

o ¼ euwdx ^ dyþ dz ^ ðdtþ aÞ

�oo ¼ z�2ð�euwdx ^ dyþ dz ^ ðdtþ aÞÞ

where �oo is the Kähler form of I with respect to �gg ¼ z�2g. The integrability of I toge-

ther with the closedness of o and �oo yields

euw ¼ hðx; yÞz; da ¼ �wxdy ^ dzþ wydx ^ dzþ hðx; yÞdx ^ dy

from which we obtain the integrability condition

wxx þ wyy ¼ 0: ð87Þ

The Ricci tensor of g is J-invariant if and only if

�zuz � 2
zw

�
x
¼ 0 and

�zuz � 2
zw

�
y
¼ 0

so that we can write zuz ¼ fðzÞ zw� 2: Since euw ¼ hðx; yÞz, we obtain ðzwÞzþ

fðzÞ=zðzwÞ2 ¼ 0.

The latter is explicitly integrated, and we get

z wðx; y; zÞ ¼
1

FðzÞ þ Gðx; yÞ

for some functions FðzÞ and Gðx; yÞ. By substituting into (87) we discover that either

F or G must be constant.

If G is constant, then wx ¼ wy ¼ 0, i.e., g is of Calabi type and J is integrable.

Consider now the case when F is a constant; then, w ¼W=z and eu ¼ z2eU; where

Wðx; yÞ is a positive harmonic function and Uðx; yÞ is an arbitrary function of ðx; yÞ;

the almost Kähler structure ðg;oÞ takes the form (85)–(86) where:

. gS ¼ eUðdx2 þ dy2Þ;

. oS ¼ eUdx ^ dy;

. W is a positive harmonic function on S;

. a satisfies da ¼ �Wydx ^ dz=zþWxdy ^ dz=zþWoS and we can locally choose

t so that a ¼ Vdz=zþ b, where V is a harmonic conjugate of W and db ¼WsS.

This almost Hermitian structure ðg; J;oÞ is almost Kähler with J-invariant Ricci
tensor, since w, eu and a solve the required equations. &
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One directly calculates the normalized scalar curvature s of the metric (85): it is

given by

s ¼
1

6zWeU

�
Uxx þUyy þ 2e

U
�
:

On a weakly self-dual almost Kähler 4-manifold with J-invariant Ricci tensor, we

have seen that s is a momentum map for a Killing vector field. However, s cannot be

a multiple of z unless it vanishes. Hence, this construction does not yield any nonin-

tegrable weakly self-dual almost Kähler metrics of Calabi type with nonconstant sca-

lar curvature. However, it does provide the following new examples of self-dual

Ricci-flat strictly almost Kähler 4-manifolds.

EXAMPLE 2. Let ðg; J;oÞ be given by (85) and suppose that s ¼ 0; this means that
U is a solution of the Liouville equation, i.e., that gS is the standard metric on an

open subset of S2, while H ¼Wþ iV is a nonconstant holomorphic function on S
with positive real part. If we write z ¼ r, we see that the metric

g ¼
W

r
ðdr2 þ r2gS2 Þ þ

r

W
ðdtþ aÞ2

is given by applying the Gibbons–Hawking Ansatz using the harmonic function

W=r, which is invariant under dilation with weight �1 in the sense that

r
@

@r

W

r

� �
¼ �

W

r
:

(In fact this is the natural scaling weight for W=r, since it is the Higgs field of an

abelian monopole on R
3.)

This class of Gibbons–Hawking metrics has been studied before in [16] and [18]. In

addition to the triholomorphicKilling vector field @=@t, thesemetrics also admit a triho-

lomorphic homothetic vector field r @=@r. Therefore, by [27], the local quotient by r @=@r

is a hyperCREinstein–Weyl space. In this case the quotient Einstein–Weyl structurewas

obtained explicitly in [16] and is an Einstein–Weyl space with a geodesic symmetry.

The reader is referred to these references for more information. However, to the

best of our knowledge, the observation that these metrics are almost Kähler is

new. Note that the Kähler form is not an eigenform of the Weyl tensor, showing that

the solutions are different from the previously known examples of Nurowski–

Przanowski [44] and Tod, which were obtained by applying the Gibbons–Hawking

Ansatz to a translation-invariant harmonic function.

We next use the rough classification given by Proposition 15 to obtain the follow-

ing partial result which motivates the further study of compact weakly self-dual

almost Kähler 4-manifolds with J-invariant Ricci tensor:

THEOREM 6. Suppose that there exists a compact weakly self-dual almost Kähler

4-manifold ðM; g; J;oÞ with J-invariant Ricci tensor, for which the almost complex
structure J is not integrable. Then one of the following two alternatives holds:
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ðiÞ The scalar curvature of g is a negative constant; then M admits an Einstein,

non-integrable almost Kähler structure; or

ðiiÞ ðM; g; J;oÞ belongs to case ðivÞ of Proposition 15, and the globally defined Kähler
structure ð �gg; IÞ is isomorphic to an extremal Kähler metric which is not locally of

cohomogeneity one, on a minimal ruled surface S ¼ PðO� LÞ ! Sg with g5 1
and deg L > 0.

Proof. We inspect the possible compact nonintegrable almost Kähler 4-manifolds

given by (i)–(iv) of Proposition 15.

The case of constant scalar curvature is described by Proposition 15(i), (ii). Our

claim then follows by [47] and [6, Th.2].

Suppose that s is not constant, i.e., that K ¼ Jgradgs is a nontrivial Killing vector

field by Lemma 12. Let x0 2M be a zero of K; then, the isotropy subgroup Hðx0Þ of

the connected group of isometries of ðM; gÞ is a compact group of dimension at least

one; one can therefore take an S1 in Hðx0Þ. Hodge theory implies that on a compact

almost Kähler manifold any isometry which is homotopic to the identity inside the

group of diffeomorphisms is a symplectomorphism (see e.g. [39]); hence the chosen

isometric S1-action is symplectic with respect to o. Since x0 is a fixed point of the S1-
action, we obtain a Hamiltonian S1-action on ðM;oÞ [40]. The manifold is then
equivariantly (and orientedly) diffeomorphic to a rational or a ruled complex surface

endowed with a holomorphic circle action [10, 2, 34]. Moreover, in this case

ðM; g; J;oÞ is given by Proposition 15 (iii) or (iv).
Consider first the case (iii). Since s is not constant, the self-dual Weyl tensor Wþ

does not vanish [5, Cor.1]. By the Chern–Weil formulae, the signature ofM is strictly

positive and, therefore,M is diffeomorphic toCP
2 [11]. Combining the results of [30]

and [46], one sees that on CP
2 the only self-dual conformal structure with nontrivial

(conformal) Killing vector field is the standard one. Thus, modulo diffeomorphisms,

we may assume that g is conformal to the standard Kähler metric ðg0;o0Þ. Since o
and o0 are both harmonic self-dual 2-forms on ðCP

2; g0Þ, and since b
þðCP

2
Þ ¼ 1,

we conclude that o ¼ const:o0, showing that J is integrable, a contradiction.
Suppose ðM; g; J;oÞ is as in Proposition 15(iv). Nowr0 determines an integrable

almost complex structure I compatible with g and with the opposite orientation of

ðM; JÞ, such that ð �gg ¼ l�2g; IÞ is an extremal Kähler metric with Igrad �gg �ss ¼
const:K. Denote byM the smooth manifoldM endowed with the orientation induced

by I. Thus, the oriented smooth 4-manifolds M and M both admit complex struc-

tures. Since M is the underlying smooth manifold of a rational or a ruled complex

surface, we conclude as in the proof of Theorem 5 that the complex surface ðM; IÞ

is a ruled surface of the form PðEÞ, where E! Sg is a holomorphic rank 2 bundle

over a compact Riemann surface Sg of genus g, and which splits as E ¼ O� L for a

holomorphic line bundle L of degree deg ðLÞ > 0.

We have to prove that g5 1. Indeed, if g ¼ 0, we obtain the Hirzebruch surface

Fk ¼ PðO�Oð�kÞÞ, where k is a positive integer. As we have already observed in

the proof of Theorem 5, the extremal Kähler metrics on these surfaces are the Calabi
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cohomogeneity-one U(2)-metrics, i.e. �gg is given by the Calabi construction (67)–(68);

since g ¼ const:�ss2 �gg, it follows that g is a cohomogeneity-one metric as well and there-

fore grad �gg �ss ¼ const:gradgs, showing that JK ¼ IK. Since s is not constant, by

Lemma 13, J is integrable on the open dense subset where ds 6¼ 0, hence everywhere.

We thus conclude that g � 1. Note that the above local argument applies to any

extremal Kähler �gg which is locally of cohomogeneity one, so that the last part of

the theorem also follows. &

We do not have any examples in case (ii) of the above theorem. Indeed, the only

examples we know of extremal Kähler metrics on the minimal ruled surfaces in (ii)

are locally cohomogeneity-one Calabi-type metrics [49,50].

5.3. ALMOST KÄHLER 4-MANIFOLDS OF CONSTANT LAGRANGIAN SECTIONAL

CURVATURE

In this section we deduce another global result from Theorem 6. An almost Kähler

4-manifold ðM; g;oÞ is said to have (pointwise) constant Lagrangian sectional curva-
ture if the sectional curvature of g, at each point of M, is constant on the set of

Lagrangian 2-planes at that point-recall that the latter are the planes X ^ Y with

oðX;YÞ ¼ 0. One can make the same definition for almost Kähler manifolds of

any dimension, but for 2n > 4, any almost Kähler 2n-manifold of constant Lagran-

gian sectional curvature is in fact Kähler with constant holomorphic sectional curva-

ture [23, 24]. Conversely, it is easy to see that any complex space form has constant

Lagrangian sectional curvature (see, e.g., [25]).

In four dimensions, the situation is more interesting. A simple local calculation

(cf. e.g. [5]) shows that an almost Kähler 4-manifold has constant Lagrangian sec-

tional curvature if and only if the Ricci tensor is J-invariant, the Weyl tensor is

self-dual, and the Kähler form is one of its roots (i.e., M has Hermitian Weyl tensor

in the sense of [3]).

The following homogeneous example shows that the integrability for almost

Kähler 4-manifolds with constant Lagrangian sectional curvature does not follow

locally (nor even for complete metrics).

EXAMPLE 3. Consider the homogeneous Kähler surfaceM ¼ ðSUð2Þ �Sol2Þ=Uð1Þ,

where Sol2 denotes the real two-dimensional solvable subgroup of upper triangular

matrices in SL2ðRÞ.

We take the unique left-invariant Kähler structure ðg; IÞ on M, determined by the

property that the constant principal Ricci curvatures are equal to ð�1;þ1Þ, cf. [48].

According to Proposition 15(ii), ðM; gÞ admits an almost Kähler structure J with

J-invariant Ricci tensor. Since the scalar curvature of g is zero, g is self-dual (with

the orientation opposite to I ) [26]; furthermore, J is not integrable [6], and by using

the general formulae in [12, Ch. 7] one easily checks that ðM; g; JÞ has constant

Lagrangian sectional curvature.
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In contrast to this example, there were a number of reasons [3, 5] to believe that a

compact almost Kähler 4-manifold of constant Lagrangian curvature must be a self-

dual Kähler metric. The conjectured integrability of the almost complex structure

has been proved under some additional assumptions on curvature [5] or the topology

[3] of the manifold, but the general question was left open. As a consequence of

Theorem 6 we are now able to give a positive answer.

COROLLARY 1. A compact, four-dimensional, almost Kähler manifold has constant

Lagrangian sectional curvature if and only if it is a Kähler self-dual surface.

Proof. Suppose ðM; g; J;oÞ is a compact almost Kähler 4-manifold of constant
Lagrangian sectional curvature, but for which J is not integrable. According to

[5, Th. 2] the scalar curvature s of g is not constant; then, by Theorem 6, the

smooth manifold M is diffeomorphic to a minimal ruled surface. Since any such

surface admits an orientation reversing involution, we conclude that M carries a

complex structure which is compatible with the orientation induced by o. Then,
by [3, Cor. 2], the almost complex structure J must be integrable, contradicting our

assumption. &
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