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ABSTRACT
Situational awareness (SA) is critical to mobilizing a rapid, efficient, and effective response to disasters.
Limited by time and resources, response agencies must make decisions about rapidly evolving situations,
which requires the collection, analysis, and sharing of actionable information across a complex landscape.
Emerging technologies, if appropriately applied, can enhance SA and enable responders to make quicker,
more accurate decisions. The aim of this systematic review is to identify technologies that can improve SA
and assist decision-making across the United States Government and the domestic and international
agencies they support during disaster response operations. A total of 1459 articles and 36 after-action
reports were identified during literature searches. Following the removal of duplicates and application
of inclusion/exclusion criteria, 302 articles and after-action reports were included in the review. Our find-
ings suggest SA is constrained primarily due to unreliable and significantly delayed communications, time-
intensive data analysis and visualization, and a lack of interoperable sensor networks and other capabilities
providing data to shared platforms. Many of these challenges could be addressed by existing technologies.
Bridging the divide between research and development efforts and the operational needs of response
agencies should be prioritized.
Key Words: disaster response, emergency responders, multi-agency coordination, situational awareness,
technology

From 2004 to 2014, the International Federation
of Red Cross and Red Crescent Societies esti-
mated that, on average, more than 12 disasters

occurred every week around the globe.1 Some of these
disasters had catastrophic consequences. In the United
States, Hurricanes Katrina, Harvey, and Maria
collectively killed at least 4500 people and caused
$376 billion dollars in damages.2-5 Unfortunately,
these catastrophic events are becoming more common
due to a convergence of anthropomorphic and clima-
tological factors. Climate change is driving an increase
in the frequency and severity of natural disasters,
whether measured by number of events or economic
damage,6-8 while the recent rise in intra-state warfare
and the interconnectedness of the global supply chain
have increased vulnerability to man-made disasters.9,10

In addition, a global movement toward urbanization
increases the potential impact of disasters as more
individuals become exposed to the same hazards.
Currently, 55% of the world’s population lives in urban
areas, and that number is expected to rise to 68% by
2050.11 Already, 60% of cities with 500,000þ citizens
are at a marked risk of a natural disaster,12 and urban
settlements in low- and middle-income countries
in Asia, South America, and Africa, the regions

with the highest projected rates of urbanization, are
located in areas with uniquely high risk to natural disas-
ters.13 These heightened risks necessitate novel
approaches to decrease morbidity and mortality driven
by disasters.

The United States National Response Framework
(NRF) defines the disaster lifecycle as comprising
prevention, protection, mitigation, response, and
recovery.14 Prevention, protection, and mitigation all
take place before a disaster’s occurrence, while recovery
occurs after the acute response has subsided. Response
begins the moment a disaster affects an area. Disasters
are fast moving, highly dynamic events, and the
response can involve a wide range of actors, including
state and local authorities, federal and international
agencies, and the populations affected. Response is lim-
ited by time, capital, and human resources, which drive
the need to quickly and efficiently mobilize limited
supplies and personnel. Effective mobilization, particu-
larly between agencies with disparate priorities and
objectives, requires emergency managers to have a
complete understanding of the situation in the field.
This knowledge framework is frequently referred to
as situational awareness (SA). In a disaster response,
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Emergency Operations Centers (EOCs) act as information
hubs and are responsible for the attainment and sharing of
SA vertically and horizontally across decision-makers and
actors in the field.

SA is particularly challenging to obtain during a disaster due to
logistical challenges in collecting and disseminating complete
and high-quality information from first responders to EOCs,
the constantly shifting needs and resources in the field, and
organizations using different information sharing platforms.
With incomplete SA, the decisions made within EOCs will
be inefficient and potentially ineffective, as they target a situa-
tion different to the one at hand. The 2004 Indian Ocean
Tsunami, which resulted in the death of over 227,000 people,
was a somber illustration of the consequences of failing to
achieve SA. The response was plagued by poor SA from the
moment the tsunami was triggered, including the lack of a tsu-
nami warning system, the inability of the Pacific Tsunami
Warning Center to contact government officials in Indonesia,
and the absence of a system to alert the public once the tsu-
nami was identified.15,16 Domestically, this phenomenon was
also demonstrated during the Deepwater Horizon response,
when the EOC had incomplete and excessively technical data
on the oil flow rate and well capacity, the locations of first
responders, and the availability of resources, resulting in the
inappropriate use of a well-sealing procedure that failed to halt
the oil spill.17

Emerging technology, if appropriately applied, has the poten-
tial to revolutionize response operations. A prior review pub-
lished by 2 authors involved in this study (J.R., J.F.) found that
the use of information and communication technologies in dis-
aster response is generally limited in geographical application,
fails to identify the intended end-users, and does not address
the challenges with implementing the technology in the
field.18 However, this prior study was limited by the lack of
review of after-action reports (AARs). For example, the
Deepwater HorizonAARhighlighted a lack of interoperability
between technologies and information sharing platforms, chal-
lenges in interpreting and storing large amounts of gathered
data, and time delays in processing data, resulting in unaction-
able information being delivered to decision-makers.17 This
indicates that the technologies currently in use are not
adequate to obtain SA, and may limit the speed, efficiency,
and effectiveness of response efforts, but these specific chal-
lenges may not have been appreciated using the previous
methodology, motivating this present study.

An inventory of existing SA technologies would allow
response agencies to match their needs to available technolo-
gies. Likewise, identification of the technological capabilities
that are currently unavailable would allow for strategic invest-
ment in these technologies. However, no systematic review of
SA technologies relevant to disaster response was found in the
academic literature. Therefore, the objectives of this review
were to: identify technologies for gaining SA that are currently

being applied to disaster response or are in development, clas-
sify these technologies based on their maturity level for field-
ing, and determine the SA needs of response agencies relative
to the technologies currently available or emerging.

METHODS
The authors conducted a systematic literature review using the
Preferred Reporting Items for Systematic Review and Meta-
Analysis (PRISMA) Guidelines to identify technologies cur-
rently being used to enable SA during disaster response.19

This review included published journal articles, conference
proceedings, and AARs describing SA technologies under-
going research, development, testing, and evaluation in real
or simulated disaster responses.

Searches for journal articles and conference proceedings were
conducted in May 2019 in the following databases: Web of
Science, Embase, CINAHL, BIOSIS, PubMed, and Scopus.
Searches included the terms listed in Table 1. English lan-
guage, original research, and conference reports published
between the years 2000 and 2019 were included if describing
technology for SA in a real or simulated disaster. To facilitate
the management of the systematic review, the Covidence plat-
form20 was used to import citations and screen titles and
abstracts. Covidence uploaded citations and removed dupli-
cate entries among the databases, permitting more efficient
screening and review of reports. All initial steps, including title
and abstract screenings, were independently conducted by a
random selection of 2 individuals (T.K., J.R., M.O., S.O.,
M.R., K.R.L.), with conflicts resolved by a third individual.
All steps from assessment of full texts for inclusion onward
were performed by a single individual, and data were extracted
using a standardized Microsoft Access database.

Searches for AARs were conducted in Columbia International
Affairs Online,21 Policy File Index,22 Homeland Security
Digital Library,23 the Defense Technical Information
Center,24 National Technical Information Service,25

Transport Research International Documentation,26

Google,27 and Global Health Database.28 AARs were screened
separately from journal articles and conference proceedings
using the same inclusion and exclusion criteria (Table 1).

Each full text was reviewed and the following data were
extracted from each record: type (Supplemental Tables S1
and S8), purpose (Supplemental Table S2), and maturity of
the technology (Supplemental Table S3); organization poten-
tially using the technology (Supplemental Table S4); intended
technology end-user (Supplemental Table S5); type of disaster
in which technologies were or could be applied (Supplemental
Table S6); and gaps in obtaining adequate SA during disaster
response (Supplemental Tables S7 and S9). These “gaps” were
defined as inadequate or absent technological capabilities,
processes, systems, or knowledge during disaster response that
were explicitly described in an article or AAR. For each full
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text record, data were entered in a “choose all that apply”
manner, in which each full text record could describe multiple
types of technologies at various levels of maturity that could
be used by multiple types of organizations. Details on the
data types, categories, and definitions are available in the
Supplemental Material.

As no quantitative or qualitative data were collected in this
systematic review, quality assessment metrics were not applied
to assess the methods of the journal articles. The statistical sig-
nificance of the data was determined using Pearson’s
Chi-square test of Independence for contingency tables con-
taining only data from articles, or Fisher’s exact test for contin-
gency tables that included data from only AARs or AARs and
articles. Results were considered significant if the P-value
was <0.05.

RESULTS
Before beginning the systematic review, an initial search of the
academic literature, governmental, and intergovernmental
agency documents showed that there are no consensus defini-
tions for the key terms being used in this review, namely SA,
technology, and disaster. In particular, for the term “disaster,”
there are a wide range of definitions in the literature and used
by federal and intergovernmental agencies (Supplemental
Tables S10 and S11). The Federal Emergency Management
Agency’s (FEMA’s) response is governed by the Stafford
Act, which contains the legal definition of a “major disaster”
and determines FEMA’s ability to provide federal funding and
respond to a domestic disaster.29 A notable exclusion from the
Stafford Act definition is a health-related disaster, such as an
infectious disease epidemic. Another definition of interest was
from the United Nations Office for Disaster Risk Reduction,
which defines a disaster as “a serious disruption of the function-
ing of a community or society involving widespread human,
material, economic or environmental losses and impacts,
which exceeds the ability of the affected community or society
to cope with using its own resources”.30 Unlike the Stafford

Act, this definition includes health-related disasters; however,
it also includes exclusively economic disasters such as the 2008
financial crisis, which would not be considered a disaster by
most response agencies. Ultimately, no perfect definition
existed that precisely mapped to the scope of this project,
so an established definition was adapted. Not all agencies’
response activities are intractably linked to their definition
of a disaster; however, it is important to define the scope of
focus for this review.

For the purposes of this review, the term disaster was derived
from the definition in the Stafford Act,29 in which “determi-
nation of the President” was removed to accommodate disas-
ters taking place outside of the United States, while “epidemic
or outbreak” was added to accommodate health-related
disasters (shown in italics in Table 2). The definition of SA
was taken directly from the First Edition of the NRF.31

Technology was defined ad hoc, as definitions identified in
standard dictionaries (eg, “the practical application of knowl-
edge especially in a particular area”32) were nonspecific. The
exact definitions used in the present review served as inclusion
criteria (Table 2).

A total of 1459 articles and 36 AARs were identified during
literature searches. Following removal of 284 duplicate
records, exclusion of 667 records during abstract screening,
and exclusion of 242 records during full-text review, 302
records17,33–333 were included for data extraction (Figure 1).
The most common reason for exclusion of a record during
full-text review was due to it being a review study or opin-
ion/editorial.

The included articles and AARs skewed to recent years
(Supplemental Figure S1), with 79% of the articles and
90% of the AARs being published in the last decade. The
majority of technologies described in articles were related to
responses to natural disasters (238 of 282 included articles,
84%) (Figure 2). The natural disasters to which the greatest
proportions of technologies were applicable were hydrological

TABLE 1
Search Terms and Exclusion Criteria for Abstract Review

Systematic review search terms (disaster OR cycloneOR hurricane OR tornado OR stormOR high water ORwind driven water OR tidal wave OR tsunami
OR earthquake OR volcanic eruption OR landslide OR mudslide OR snowstorm OR drought OR fire OR flood OR
explosion OR terrorism OR terrorist attack OR pandemic OR epidemic OR outbreak) AND (“situation* awareness” OR
“data integration” OR “integrated information” OR “information integration” OR “knowledge integration” OR
“continuous monitoring”) AND (technology OR dashboard OR ICT OR communications OR “mobile applications” OR
machinery OR equipment OR software)

Exclusion Criteria
Non-English language No English translation of full text exists, or English translation was completely unintelligible.
Review/OpEd Article did not report new concepts or primary or original data collection. (Note: this criterion was not used for AARs.)
No or unclear SA capabilities SA was mentioned in abstract but not directly incorporated into the technology. Notification systems for the public were

excluded.
No or unclear technology No or poorly described technology.
Other Did not meet the inclusion criteria or objective of the review and did not align with an exclusion criterion.

Abbreviations: AAR, after action report; SA, situational awareness.
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(153 articles) and geological disasters (142 articles). In addi-
tion, a large number of technologies from the articles could
be applied to accidental or deliberate disasters (163 articles).
These categories were not exclusive, and technologies were
sorted into 1 or more categories, depending on the use case

described by the article’s authors, or use cases envisioned by
the systematic review team.

Technologies were categorized based on the technology type
and purpose. Technology types varied, with the most common

TABLE 2
Definition of Terms

Term Definition
Situational awareness (SA) The ability to identify, process, and comprehend the critical information about an incident.31

Technology Machinery, equipment, or software developed from the application of scientific knowledge.
Disaster “Major disaster”means any natural catastrophe (including any hurricane, tornado, storm, highwater, wind-drivenwater,

tidal wave, tsunami, earthquake, volcanic eruption, landslide, mudslide, snowstorm, drought, epidemic, or outbreak),
or, regardless of cause, any fire, flood, or explosion, in any part of the United States, which causes damage of sufficient
severity and magnitude to warrant major disaster assistance to supplement the efforts and available resources of
States, local governments, and disaster relief organizations in alleviating the damage, loss, hardship, or suffering
caused thereby.29

Note: The superscripts are references included in the bibliography of the manuscript.

FIGURE 1
Inclusion and Exclusion of Reports During Screening and Full-Text Review.
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types in articles being data analysis (52%) and sensor technol-
ogies (42%), while the most common types in AARs
were communications (90%) and user interface technologies
(55%) (Figure 3). Communications and user interface tech-
nologies were significantly more likely to be mentioned in
AARs, while data analysis technologies were significantly
more likely to be mentioned in articles. In addition, technol-
ogies that performed data aggregation and data generation or
collection were significantly more likely to be mentioned in
AARs, and technologies that performed data interpretation
were significantly more likely to be mentioned in articles
(Supplemental Figure S2).

Most technologies were not associated with certain disaster
types, with the exception of robotics technology. Robotics
technology was significantly more likely to be mentioned in
relation to accidental or deliberate disasters in articles
(Figure 4), such as unmanned vehicles that could remotely
sense radiation in a nuclear disaster216 or identify an oil spill
in the ocean.120 There was no clear trend in the technology
types mentioned over time.

Technologies were also categorized by their maturity, their
intended end-user within a disaster response agency, and by

the organizations likely to use the technology, none of
which were mutually exclusive. End users and organizations
included those explicitly reported in the article, as well as those
who could potentially leverage the technology. The majority
of technologies were intended for use by EOC staff (84% in
articles and 90% in AARs). In addition, technologies
intended for use by first responders were significantly more
likely to be mentioned in AARs (Supplemental Figure S3).
The most common organization in which technologies could
be applied was the Department of Homeland Security (DHS)
(72%) (Figure S4). The majority of technologies in articles
were still immature, being at the pilot/proof of concept stage
or earlier (79%) (Supplemental Figure S5). The early technol-
ogy maturity level was similar across all technology categories
(Figure 5).

Gaps explicitly mentioned by the authors that might limit the
use of a technology were mapped to 10 categories. These gap
categories were composed of numerous individual gaps
(Supplemental Table S9). The 3 most common gap categories
were inadequacies in communications and connectivity (95%
of AARs, 21% of articles), analysis and visualization (35% of
AARs, 17% of articles), and interoperability and sensor capa-
bilities (35% of AARs, 16% of articles) (Figure 3). Gaps in

FIGURE 2
Disaster Type to Which Technology Was Applied (Number of Articles Only, n= 282 Articles).
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architecture, communications and connectivity, infrastruc-
ture, and training were significantly more likely to be men-
tioned in AARs.

There was no clear trend in the gap categories over time. Most
gaps were not clearly associated with certain types of disasters,
with the exception of health gaps, which were significantly
more likely to be mentioned in relation to natural disasters
in articles (Figure 4).

DISCUSSION
This systematic review defined disasters similarly to the
Stafford Act, with the addition of health-related disasters.
For the purposes of AARs and potential applicability of these
findings, disasters located anywhere in the world were
included. The included records skewed to more recent years,
likely due to the increasing volume of publications over time,
consistent with the trends seen in the initial 1495 reports iden-
tified in the literature searches.

The finding that the majority of technologies were intended to
be used by EOCs is likely reflective of the scoping of this sys-
tematic review, which focused on technologies providing SA

to disaster responders, and excluded technologies aimed for use
by the general public. In addition, AARs were significantly
more likely to mention technologies for first responders, which
may be because AARs provide detailed analyses of all partic-
ipants in a response, whereas articles do not always describe all
potential end-users or use cases of their technologies. It is also
possible that this discrepancy exists because of inadequate
research on technologies for first responders, such as safe
and timely recall and evacuation of first responders,217,254

tracking the locations and status of fellow first responders
and required supplies,17,39,217,248,249 and reliable communica-
tion of data to and from the EOC.17,35,247,254,255 The most fre-
quently mentioned sector in which technologies could be
implemented was DHS, the parent organization to FEMA
and the US Coast Guard, which are among the federal agen-
cies most frequently involved in disaster response activities in
the United States. SA technologies identified in this review
were relevant to all types of disasters, with all types of disasters
being well-represented.

Similar types of gaps were described over time, suggesting
chronic issues in disaster response technologies. However,
there was inadequate data to determine whether these gaps
were resolved over time. The most prevalent gap in articles

FIGURE 3
Technology and Gap Categories Mapped by Record Type (n= 282 Articles, 20 AARs).
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and AARs was communications and connectivity, followed by
analysis and visualization, and interoperability and sensor
capabilities. Communications, data generation/collection,
user interface, and data aggregation technologies were signifi-
cantly more frequently mentioned in AARs, suggesting
that the research community may not be prioritizing the areas

of greatest need by the operations community. While the
majority of AARs described using the first 3 technologies,
the technologies were inadequate; thus, the gap persists.

Meanwhile, research on data aggregation technologies was
limited, whichmay reflect a perception among researchers that

FIGURE 4
Technology and Gap Categories Mapped by Disaster Type (n =282 Articles, 20 AARs).
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high-quality data aggregation technologies already exist. Data
analysis, interpretation, and identification technologies were
mentioned by very few or no AARs, likely because AARs were
inadequately detailed. In addition, gaps in communications

and connectivity, infrastructure, training, and architecture
were mentioned more often in AARs than in articles.
Given the scope of the systematic review, which focused on
technologies, it is possible that not all articles mentioning gaps

FIGURE 5
Technology Categories Versus Technology Maturity Levels (Articles Only, n= 282 Articles).
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in infrastructure, training, and architecture would be located
by the search terms used. However, the search terms did iden-
tify articles focusing on communications and connectivity
gaps. In other words, disaster response agencies were frequently
reporting gaps in communications and connectivity, but aca-
demics and researchers were not, suggesting a disconnect
between the state of the science and the technologies being
used by disaster response agencies.

Communications and connectivity challenges, such as
damaged or absent infrastructure,35,162,247,255 inadequate
bandwidth for data to be transmitted from first responders
in the field to the EOC,35,255 and high call and email
volumes,245,247,254 are extremely common during disasters.
Articles in this review highlighted promising potential
solutions to these challenges, such as delay-tolerant net-
works,144,330,331 mobile ad-hoc networks178,273,284,287-289

including those using drones,110,144 ultra-wideband technol-
ogy,63,152 and more. However, they are largely still immature.
Additional development of these technologies to reach a
higher maturity level and additional investment into commu-
nications infrastructure, such as redundant systems, are needed
to improve SA during disaster response.

Data analysis was identified as another significant challenge
during disaster response. For example, responses to 2 of the
most salient recent disasters, the Deepwater Horizon incident
and the Fukushima nuclear disaster, experienced difficulty
with processing, modeling, and understanding highly techni-
cal data17,243; inadvertent omission of certain sensor data in
models that might have predicted the Tōhoku tsunami252;
and an overwhelming volume of data to be processed. These
issues required substantial investments of time, energy, and
resources.17,243 The AAR focusing on the 2017 wildfires in
Sonoma, California, specifically noted that the Geographic
Information Systems technology being used during the
response was outdated.247 These findings suggest limited pen-
etrance of novel data analysis technologies among disaster
response agencies, and present an opportunity for disaster
response agencies to increase the efficiency and effectiveness
of their handling and interpretation of data through adoption
of these technologies.

For example, while a minority (15%) of AARs reported using
data analysis technologies during disaster response, newer
types of these technologies now exist, such as those using
artificial intelligence and machine learning (AI/ML), which
have the potential to autonomously ingest, analyze, generate
anomaly alerts, and make inferences and conclusions about
large volumes of data in real time. Examples included ML
analysis of social media posts to detect and localize an
incident59,145,172 and machine vision-based detection of
anomalies, such as fire, and prediction about the severity of dis-
aster damage.175,177 If implemented, AI/ML has the potential
to revolutionize SA during disaster response operations.
Articles also mentioned data analysis architectures, such as

fog and edge computing,55,65 that enable data processing
and analysis (including sensor data and video footage) close
to the field collection site, rather than requiring transmission
to a central server in the EOC for integration and analysis and
transmission back to first responders, thus saving valuable time
during a disaster response.

While sensor capabilities were identified as another gap during
response activities,many articles described technologies to over-
come these limitations. Examples included remote sensors, such
as satellites and drones, to detect conditions on the ground in
difficult-to-access regions41,82,87,138,158,216,261,274,276,316; infrared
sensors that enable image detection in low-visibility conditions,
such as nighttime, smoke, or bad weather43,220,231,277; and
Radio Frequency Identification (RFID), which is a low-power
device that can track the location of disaster supplies and
victims,49,90,285 as a replacement for spray-painted Building
Marking Systems287,288; and more. Other articles described
architectures for integrating sensor data from different networks
in real time,64,301 thus providing timely and common SA to all
response agencies.

Finally, AARs identified data aggregation technologies, such
as WebEOC and other shared platforms, as a major area for
improvement. These shared platforms were not portable into
the field, meaning that first responders used paper to collect
data,243 and they often required a high degree of customization
before use.243,245 Other challenges with shared platforms were
related to gaps in communications and connectivity, training,
and interoperability. For example, AARs reported numerous
users whose accounts had not been authorized to access a
shared platform,245,253 inadequate training of staff to effectively
use the shared platform, resulting in paper-based data aggrega-
tion in EOCs,243 poor interoperability between computing
infrastructure,17 and variable data security requirements at dif-
ferent agencies,17 resulting in ineffective data sharing.

In some cases, a shared platform was not available during the
response.162 It may be valuable to conduct additional research
and development to make such data aggregation platforms
more user-friendly to limit the amount of training required
for their effective use, and to enable their use in the field.
For disaster response agencies and all levels of government,
it would be important to establish data use agreements proac-
tively, and to either ensure interoperability between their plat-
forms or switch to a common platform, well in advance of the
onset of a disaster. Other key enablers of effective shared plat-
forms include addressing gaps in communications and connec-
tivity, training of staff, and interoperability between sensors
and data aggregation platforms.

These handful of examples suggest that there are numerous
technologies that can fill gaps in disaster response operations.
Introducing newer versions of all types of technologies into dis-
aster response activities has the potential to substantially
improve the ability of disaster response agencies to acquire
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real-time information, efficiently analyze the large volumes of
data they receive, share information with one another on a
common platform, and quickly request and deploy relevant
resources during a disaster. In other words, more rapidly tran-
sitioning new technologies from researchers to disaster
response agencies has the potential to transform disaster
response agencies’ ability to gain SA, and thus to respond effi-
ciently and effectively during a disaster.

While some technologies mentioned in articles were at the
implementation stage, the majority of technologies across all
technology categories were immature, which suggests an
ongoing challenge in transitioning technologies from research
and development to the field. Additionally, this highlights a
gap in the systematic evaluation of technologies that have
been implemented at large scales. Assessments of mature tech-
nologies would aid agencies that seek technologies to expand
their capabilities. An important limitation of this systematic
review is that the majority of data sources were published
research articles or conference proceedings, which are skewed
toward reporting immature technologies. Technologies that
are beyond early research and development phases, but have
yet to be commercialized, were likely excluded by virtue of
not having been published. It is also possible that there was
variability in the extraction of data. Because the search terms
were intended to capture technologies, this systematic review
was unable to capture gaps related to policy, training, and other
non-technology issues. An important area of further research
may include assessing whether a technology gap actually exists
among disaster response agencies, or if gaps in policy or
training prevent responders from knowing about or properly
using available technology. As only English-language articles
and AARs were captured in this review, it is likely that
both the breadth and maturity of technologies that exist in
reality is greater than is indicated by this systematic review.
Importantly, the newest, most cutting-edge research will not
be captured by a systematic review, particularly in technology
fields, due to time lags in writing and publishing of journal
articles.

CONCLUSIONS
Timely, accurate, and complete SA is a key enabler of success-
ful disaster response, where the situation is changing rapidly,
resources are limited, and different agencies must coordinate
their activities. While policy and governance are the founda-
tion of effective disaster response, technologies have the
potential to provide rapid and shared SA for response agencies.
This systematic review aimed to identify existing technologies
that can be used to obtain SA during a disaster response, clas-
sify them based upon maturity level, and compare existing
technologies with identified technological gaps in disaster
response activities. This review identified a substantial divide
between what research shows is the state of the science and the
technologies that disaster response agencies are currently
using. In addition, while the number of AARs was small, many

technological gaps experienced by disaster response agencies
seemed to be chronic issues. Further research should investi-
gate whether these gaps are persisting over time.

Moreover, many of these challenges could be partially or fully
addressed by implementing existing technologies, particularly
in the areas of communications, data analysis, interoperability,
and user interfaces. For example, communications and con-
nectivity was by far the most commonly-reported gap in
AARs, and was significantly less frequently reported as a gap
in articles. Investing in research and maturation of, and imple-
menting existing mature communications technologies, would
profoundly impact the ability of EOCs and first responders to
share information reliably and rapidly in settings with damaged
or absent infrastructure. There is also a need for more research
evaluating the large-scale implementation of technologies,
which could aid in the uptake of mature technologies by agen-
cies. More efficient acquisition and implementation of rel-
evant novel technologies by disaster response agencies are
recommended to improve the speed, quality, and coordination
of SA in disaster response.
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