
JFP 22 (3): 375–377, 2012. c© Cambridge University Press 2012

doi:10.1017/S0956796812000123 First published online 18 May 2012

375

Bookreview JFP: Domain-Specific Languages
by Martin Fowler The Addison Wesley

Signature Series

JURRIAAN HAGE

Department of Information and Computing Sciences, Utrecht University P.O.Box 80.089,

3508 TB Utrecht, The Netherlands

(e-mail:)J.Hage@uu.nl)

My main reason for wanting to read this book was to find out what a well-known

publicist from the world of OO would have to say about the state of the art

of domain specific languages (DSLs), in particular when it comes to type error

feedback, functional programming, and the combination. As most readers will be

aware, languages like Scheme and Haskell are very well suited to embed DSLs in:

Scheme can be considered a core language to which new language facilities can

be easily added by means of hygienic syntax macro’s (Abelson et al. 1998), and

there are so many papers on embedded DSLs in Haskell (Hudak, 1998), that any

realistic selection would aggravate more people than I would please. Great was my

disappointment when I read on page XXV that these topics were not discussed at all

in the book. Although I can imagine that Fowler does not feel comfortable writing

about subjects he is not sufficiently at home with, the question does arise whether

the title of this book is sufficiently covered by its contents.

What topics does the book adddress then? In short, about 160 of the 575

pages of the book are devoted to a general introduction to the field of DSLs: to

motivate the notion of DSLs, to set the scene and terminology, and to provide some

real life examples so that everybody will have come across at least one of them

in his/her everyday programming life. The remainder of the book is devoted to

explaining how to implement/design many of the necessary ingredients for internal

and external DSLs (Fowler uses the term internal for embedded DSLs). Examples

of such patterns include semantic models, macro’s, embedded interpretation, symbol

tables, and method chaining. In this sense, the book is very much like Terence Parr’s

Language Implementation Patterns (Parr, 2009) (also reviewed in JFP (Hage, 2011)),

although in Parr’s case this is much clearer from the title. Similar to Parr, Fowler

provides different patterns to solve the same problem, and also discusses when or

when not to apply a given pattern.

This does not mean that Fowler does not have anything to add to the book of

Parr. The focus of Fowler is much more on the implementation of concepts that

are particularly useful in the context of DSLs. Since Parr consistently assumes the

external approach, this is particularly evident for patterns that apply specifically

to internal DSLs. Moreover, the book of Parr is strongly tied to Java and Antlr,

whereas Fowler also provides code examples in C# and Ruby. It is the flexibility of

https://doi.org/10.1017/S0956796812000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000123


376 J. Hage

a dynamic language like Ruby that allows DSL developers to create the necessary

fluency of a DSL inside a general purpose language. I shall return to the use of

dynamic languages later on.

The parts most interesting to me are located in the first 160 pages. According to

Fowler, the defining characteristics for a DSL are: programs written in a DSL must

be executable, the language should have a sense of fluency (that may be particular

to that domain), it should have limited expressiveness, and, largely as a consequence

of this limited expressiveness, a domain focus. To me, the main advantage of a

DSL is the ability to phrase solutions to domain problems in a more succinct and

understandable fashion than is possible in general purpose languages; the critical

ingredient is then for the DSL to have a fluency that seems natural to domain

experts, and the ability to program at a sufficiently high level. However, if that can

be arrived at without limiting expressiveness, I certainly do not want to blame a

DSL for being Turing complete.

And what does limited expressiveness mean in the context of an internal DSL?

The suggestion of Fowler (page 28 and 30) is that within the “fluency of the DSL”

expressive power should be restricted. But I wonder if that is how a programmer

will see it. Programmers make mistakes. It is all too easy to accidentally escape from

the DSL into the host languages, particularly if the programmer is as uninformed

about programming as we are led to believe. And what if the fluency of the general

purpose language is not that different from that of the domain? Is that a drawback

(because the distinctions become blurred) or an advantage (because general purpose

programmers will have an easier time learning and remembering the DSL)? And

what if DSLs are composed, should they be easily distinguishable from each other,

or is similarity an advantage? Although Fowler does spend some time on such issues

in Chapter 6, I cannot find satisfying answers to these general questions, outside

the OO and imperative programming domain. As a result I am constantly thinking:

does this argument apply to DSLs in the functional programming world as well?

When it comes to error diagnosis, Fowler admits to not addressing the issue

sufficiently, although he certainly would have wanted to. According to him, bad

error diagnosis is something that people will tolerate, and indeed there is a whole

history of compiler builders not spending time on error diagnosis. Interestingly, in

functional programming there has been quite a lot of work into improving type

error diagnosis (see Heeren, 2005) for an overview until 2004, including work on

domain specific type error diagnosis for Haskell 98 as implemented in the Helium

compiler (Heeren et al., 2003a,b). The complexity of type systems comes with a

price: having parametric polymorphism and first class functions (and much much

more), there are many more ways in which you can screw up your program. As such

features find their way into more languages such as Java, either programmers will

avoid fully exploiting these new features, or error diagnosis will become an issue.

Coming back to the subject of DSLs there is something that does not feel quite

right: on the hand the expressiveness of DSLs is limited to help non-programmers

program within their limited domain, while on the other hand error diagnosis, of

which such programmers have a dire need, is neglected as a side issue. Fowler’s hope

(page 63) is that DSL programs tend to be small anyway and finding bugs should

https://doi.org/10.1017/S0956796812000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000123


Bookreview JFP 377

not be too difficult. On the other hand, Chet Murty explained in his invited talk at

POPL 2007 in Nice that his job is to rid his customers of millions of lines of XSLT,

a language that Fowler, to some extent, will agree is domain specific.

To summarize: although the title does not make this clear, the focus of this

book is strongly on OO languages, even if some of the concepts, e.g., nested

closures, have a definite functional ring to them. If you happen to be interested

in learning to construct tooling for DSLs, then the patterns described in this book

can certainly be helpful, but remember that all the code you will see will be in

Ruby, C# or Java. Conceptually, I am grateful to the book for stressing the idea

of fluency, and putting together a (first?) attempt at a coherent picture of the

world of DSLs. The fact that work done in the functional programming community

is largely ignored, however, makes that I cannot recommend this book without

reservations.

References

Abelson, H., Dybvig, R. K., Haynes, C. T., Rozas, G. J., Adams, N. I., Friedman, D. P.,

Kohlbecker, E., Steele, G. L., Bartley, D. H. & Halstead, R. (1998) Revised5 report on the

algorithmic language scheme. Higher-order Symb. Comput. 11(1), 7–105,

Hage, J. (2011) Language implementation patterns: Create your own domain-specific and gen-

eral programming languages, by terence parr, pragmatic bookshelf, http://www.pragprog.

com, isbn 9781934356456. J. Funct. Program. 21(2), 215–217,

Heeren, B. (2005) Top Quality Type Error Messages. PhD thesis, Universiteit Utrecht, The

Netherlands, http://www.cs.uu.nl/people/bastiaan/phdthesis.

Heeren, B., Hage, J. & Swierstra, S. D. (2003a) Scripting the type inference process. In

Proceedings of the Eighth International Conference on Functional Programming. New York:

ACM Press, pp. 3–13.

Heeren, B., Leijen, D. & van IJzendoorn, A. (2003b) Helium, for learning Haskell. In

Proceedings of the ACM Sigplan 2003 Haskell Workshop. New York: ACM Press, pp. 62–71.

Hudak, P. (1996) Building domain-specific embedded languages. ACM Comput. Surv. 28.

Parr, T. (2009) Language Implementation Patterns. The Pragmatic Bookshelf.

http://www.pragprog.com/titles/tpdsl/language-implementationpatterns. Accessed

25 April 2012.

https://doi.org/10.1017/S0956796812000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000123

