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OSCILLATIONS OF NEUTRAL DELAY DIFFERENTIAL 
EQUATIONS 

BY 

G. LADAS AND Y. G. SFICAS 

ABSTRACT. The oscillatory behavior of the solutions of the neutral 
delay differential equation 

d 
~[x(t) -px(t-T)] + Q(t)x(t- a) = 0, f > f o , 
dt 

where p, T, and a are positive constants and Q E C([f0,°°),IR+), are 
studied. 

1. Introduction. A neutral delay differential equation (NDDE for short) is a differ
ential equation in which the highest order derivative of the unknown function appears 
with the argument t (present state) as well as one or more delayed arguments (past 
histories). See Driver [3] and [4], Bellman and Cooke [2], and Hale [5] for questions 
of existence, uniqueness, and continuous dependence. In general the theory of NDDEs 
presents extra complications and basic results which are true for delay differential 
equations are not true for neutral equations. For example Snow [16] has shown that 
even though the characteristic roots of a NDDE may all have negative real parts, it is 
possible for some solutions to be unbounded. 

In this paper we deal with the oscillatory behavior of the solutions of linear NDDEs 
of the form 

d 
(1) - U ( t ) - px(t - T)] + Q(t)x(t - a) = 0, t > t0 

dt 

where /?, T, and CT are positive constants and Q E C[[r0,°°), W\. Let 
()) E C[[t0 — ra,foL K] where m — max{T,cr}. By a solution of Eq. (1) with initial 
function $ at t0 we mean a function x E C[[t0 — m, °°), U] such that x(t) = <|>(t) for 
t0 — m < t < t0,x(t) — px(t — T) is continuously differentiate for t > t0, and x 
satisfies the equation 

d 
— [jc(t) - px(t - T)] + Q(t)x(t - a) = 0 for t > tQ. 
dt 

Using the method of steps, it follows that for any continuous initial function § there 
exists a unique solution of Eq. (1) valid for t > t0. 
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As is customary, a solution of Eq. (1) is called oscillatory if it has arbitrarily large 
zeros and nonoscillatory if it is eventually positive or negative. Although the oscillation 
theory of delay differential equations has been extensively developed during the past 
few years (see, for example, [1], [6] and [8]-[15] and the references cited therein), there 
is hardly any theory, at this time, dealing with the oscillatory behavior of NDDEs. [For 
some results about second order nonlinear neutral equations and for juu-like continuous 
functions see [17] and [7] respectively.] 

2. Constant Coefficients. Consider the NDDE 

d 
(2) — |>(t) ~ px(t - T)] + qx(t - CT) = 0, t > t0 

dt 

where p, q, T, and a are positive constants. The characteristic equation of Eq. (2) is 

(3) F{\) ^ X - pke'Xr + qe~x<T = 0. 

Observe the following: 

(a) For/7 < 1, F(X) = X(l - pe~Xl) + qe'X(T > 0 for X > 0. 

(p) For/? = 1, F(k) = -\(e-kT - 1) + qe~X(J > 0 for X < 0. 

(7) For/? > 0 and que > 1, F(\) = (X + qe~X(T) - p\e~x" 

In ( que ) 
> p\e'Xj > 0 for X < 0. 

a 

Motivated by the above observations we established the following results. 

THEOREM 1. Assume p < 1, Then every nonoscillatory solution of Eq. (2) tends to 
zero as t —» 00. 

THEOREM 2. Assume p = 1. 77iefz every solution of Eq. (2) oscillates. 

THEOREM 3. Assume p < 1 and que > 1. Then every solution ofEq. (2) oscillates. 

Finally, without any motivation from the characteristic equation (3), we establish the 
following oscillation result. 

THEOREM 4. Assumep < 1, a > T, and q(cr — T) > (1 — p)/e. Then every solution 
of Eq. (*) oscillates. 

As a corollary, the above result gives sufficient conditions for Eq. (3) to have no real 
roots. 

Extensions of these results to equations with the coefficient q variable are given 
together with their proofs in Section 3. The proofs of the above Theorems will therefore 
be omitted. 
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EXAMPLES. 1) The NDDE 

d 1 1 
(4) ~[x(t) x(t - 1)] + —x(t - 1) = 0, t > 0 

dt 2e 2e 
satisfies the hypothesis of Theorem 1 and therefore every solution of Eq. (4) tends to 
zero as t —» °°. For example, x(t) = e~ ' is such a solution. On the other hand, Eq. (4) 
does not satisfy the hypothesis qae > 1 of Theorem 3. Therefore it is not surprising 
that Eq. (4) has nonoscillatory solutions, for example, x(t) = e~r. 

2) The NDDE 

d 
- [x(t) - (1 + e)x(t - 1)] + x(t - 1) = 0, t > 0 
dt 

does not satisfy the hypothesis of any of the Theorems 1—4. Therefore, it is not 
surprising that it has a solution namely, x(t) = el, which is nonoscillatory and does 
not approach zero as t —» o°. Examples 1 and 2 demonstrate that if either of the 
hypotheses of Theorem 3 fails, the conclusion may fail too. 

3) The NDDE 

d 1 3 / TT\ 

(5) — l > ( 0 " ~x(t - TT)] + -x[t = 0 
dt 2 2 v 2> 

satisfies the hypotheses of Theorem 3 and so all solutions of Eq. (5) oscillate. For 
example, sin t and cos t are oscillatory solutions of Eq. (5). Note, however that the 
hypotheses of Theorem 4 are not satisfied. 

4) The NDDE 

d / 5ir\ 
(6) —|>(t ) - px(t - 2ir)] + qx[t = 0 

dt v 2 ' 
with q = 1/5TT^ and p = 1 — \/5ne satisfies the hypotheses of Theorem 4 and so all 
solutions of Eq. (6) oscillate. For example, sin t and cos t are oscillatory solutions of 
Eq. (6). Note, however, that the hypotheses of Theorem 3 are not satisfied. 

5) The NDDE 

d I ir\ 
— [jc(t) - x(t - TT)] + 2x[t = 0 
dt v 2> 

satisfies the hypotheses of Theorem 2 and so every solution of this equation oscillates. 
For example, sin t and cos t are oscillatory solutions. 

3. Variable Coefficients. Consider the NDDE 

d 
(7) - U( t ) - px(t - T)] + Q(t)x(t - a) = 0, t > t0 

dt 

where/?, T, and a are positive constants and Q Œ C[[t0,^),U+]. Theorems 5 through 
8 below are extensions of Theorems 1 through 4 respectively. 
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THEOREM 5. Assume 

(8) p<\ 

and 

(9) f Q(s)ds = oo 

Then every nonoscillatory solution of Eq. (7) tends to zero as t —» oo. 

THEOREM 6. Assume condition (9) and that 

(10) p = l . 

Then every solution of Eq. (7) oscillates. 

THEOREM 7. Assume condition (8) am/ f to 

(11) lim f Ô0s)& > - . 

Then every solution of Eq. (7) oscillates. 

THEOREM 8. Assume condition (8), a > T, Q is ^-periodic, and that 

(12) lim Q(s)ds > lim f ( 
1 -p 

e 

Then every solution of Eq. (7) oscillates. 
The following Lemma will be useful in the proofs of the Theorems. 

LEMMA \.Letf,g:[t09<x>)-*R be such that 

(13) f(t) = g(t) -pg(t- c),t>t0. 

Assumep and c are constants with 0 < p < 1, g is bounded on [t0, °°), and lim/(r) = 
/ exists. Then the following statements hold: ~*°° 

(i) p = 1 implies / = 0; 

(ii) p < 1 implies lim g(t) exists. 

PROOF: Let {tn} and {t'n} be sequences of points in [t0, °°) which converge to oo as 
n —> oo and such that 

lim g(tn) = limg(f) = J 
«—•00 f - > 0 0 

and 

lim g (t'n) = l img(r) = i. 
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From (13), 

x g(tn)~f(tn) 
g(t„ ~ c) = , n = 1,2,.. . 

P 

and taking limits as n + » we obtain 

s - l 
s > lim g(tn - c) 

p 

or / > 5(1 - p). In a similar way we find / < /(l - /?). When/? = 1, clearly / = 0 
and (/) is proved. When p < 1, 

1 - / ? 

from which it follows that s = i and (//) is proved. The proof of the Lemma is 
complete. 

PROOF OF THEOREM 5. Since the negative of a solution of Eq. (7) is also a solution, it 
suffices to show that every eventually positive solution x ( t) of Eq. (7) tends to zero as 
t —» oo. First, we will prove that every eventually positive solution x{t) of Eq. (7) is 
bounded Setz(t) = x(t) - px(t - T). Then, from Eq. (7), z'(t) = -Q(t)x(t - a) 
< 0 which implies that z(t) is eventually decreasing and so in particular z(t) < x 
(t — a). Using this in Eq. (7) we find z'(t) + Q(t)z(t) < 0 for r sufficiently large, 
say, t > f2 — t\. Then 

z{t)e^_Q{s)ds\ < 0, t> t2 

d 

dt 

and so 

z(t)el',2
Q(s)ds < z(f2), f > r2. 

Let 5 = max{z(f2),0}. Then for t > f2 

(14) x ( 0 </?jc(r - T) + £ e x p ( - J g(s)<&). 

Assume, for the sake of contradiction, that x ( r ) is not bounded. Then, there exists a 
sequence {tn} such that 

lim tn = oo, lim x(tn) = oo and x(tn) = max JC(^). 

From (14), for n sufficiently large, we then obtain 

*(f„) <px(t - T) + £ e x p ( - J "Q(j)ds) ^ px(tn) + £ e x p ( - f "(?(*)&). 
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Hence 

B nH 

x(tn) < exp(- Q(s)ds) 
\ - p J h 

which as n —> oo leads to a contradiction. This establishes our claim that x(t) is 
bounded. Applying Lemma 1(//) with/(0 = z(t), g(t) = x(t), and c = T we obtain 
the conclusion that lim x(t) exists. Since x(t) > 0 this limit, call itL, is nonnegative. 

Assume, for sake of contradiction, that L > 0. Then, from Eq. (7) 

d L 
-[x(t)-px(t-T)] + Q(t)-<0 
dt 2 

for t sufficiently large, say, r > f3 > f2- Integrating from t3 to t we obtain 

(15) [X(t) - Px(t - T)] + - Q(s)ds) < [*(f3) - jM>3 - T)]. 
2 j/2 

Since x(t) is bounded and since, in view of (9), the integral in (15) diverges to oo as 
t —> oo, it follows that (15) leads to a contradiction as t —> oo. The proof of Theorem 
5 is complete. 

PROOF OF THEOREM 6. Assume, for the sake of contradiction, that Eq. (7) has an 
eventually positive solution x(t). Set z(t) = x(t) — x(t — T). It follows from 
Eq. (7) that z(t) is eventually decreasing. Since z(t) cannot be eventually identically 
zero, it follows that either z{t) is eventually negative or z(t) is eventually positive. If 
z(t) were eventually negative then x{t) would be bounded and from Lemma 1(0, 
lim z(t) = 0. This implies that z{t) is eventually positive. Thus 

(16) x(t) - x(t - T) > 0 

for t sufficiently large, say, t ^ r, > t0. Integrating Eq. (7) from t\ to t we find 

[x(t) - x{t - T)] - [*(*,) - jc(r, - T)] + [ Q(s)x(s - v)ds = 0 

which implies that 

(17) | G(J)JC(J - a)ds <*(* , ) , * > * , . 

Let m = minx (s — cr) for tx ^ 5 < r, + T. Then, in view of (16), JC(5 — a) > m for 
51 ̂  t\ and (17) implies that 

m j g (^)^ < x(r,), r ^ r, 

which as t —> oo contradicts (9). The proof of Theorem 6 is complete. 
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PROOF OF THEOREM 7. Assume, for the sake of contradiction, that Eq. (7) has an 
eventually positive solution x(t). By Theorem 5, it follows that lim x(t) — 0. Set 

/—•so 

z(t) = x(t) - px(t - T). Thenz(t) decreases to zero and, in view of (11) z(t) cannot 
be eventually identically zero which implies that eventually 

(18) z ( f ) > 0 . 

But z(t) < x(t) and Eq. (7) implies that eventually 

(19) z'(r) + Q(t)z(t- CT)<0. 

From [11] and [8] we know that condition (11) implies that (19) cannot have an 
eventually positive solution. This contradicts (18) and completes the proof of the 
theorem. 

PROOF OF THEOREM 8. Let x(t) and z(t) as in the proof of Theorem 7 and set 
w(t) = z(t) — pz(t — T). Since Q is T-periodic, it is easily seen that z and w are con
tinuously differentiable solutions of Eq. (7). We have z'(t) = —Q(t)x(t - a) and 
w'(t) = —Q(t)z(t - a). Now using the fact that x(t) tends to zero as t —» o°, it 
follows that each of z and w is nonincreasing and tends to zero as t—> <». It then follows 
that eventually 

(20) w ( f ) > 0 . 

Furthermore, w'(t - T) = -Q(t - j)z(t - T - <r) = - Q(t)z(t - T - a) < 
— Q(t)z(t — cr) — w'(t). Then from the equation 

w'(t) - pw\t - T) + Q(t)w(t - a) = 0 

we obtain the delay inequality 

w'(t - T) - pw'(t - T) + Q(t)w(t - CT) < 0 

or 

1 
w'(t) + Q(t)w[t - (CT - T)] < 0. 

1 - p 
But in view of (12), see [11] and [8], the last inequality cannot have an eventually 
positive solution. This contradicts (20) and the proof is complete. 
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