# Periodic and Almost Periodic Functions on Infinite Sierpinski Gaskets 

Robert S. Strichartz

Abstract. We define periodic functions on infinite blow-ups of the Sierpinski gasket as lifts of functions defined on certain compact fractafolds via covering maps. This is analogous to defining periodic functions on the line as lifts of functions on the circle via covering maps. In our setting there is only a countable set of covering maps. We give two different characterizations of periodic functions in terms of repeating patterns. However, there is no discrete group action that can be used to characterize periodic functions. We also give a Fourier series type description in terms of periodic eigenfunctions of the Laplacian. We define almost periodic functions as uniform limits of periodic functions.

## 1 Introduction

The Sierpinski gasket (SG) may be thought of as a fractal analog of the unit interval, while the infinite blow-ups of SG may be thought of as fractal analogs of the real line. On the real line we have periodic and almost periodic functions. What are the analogous functions on the infinite blow-ups of SG? There are two ways to describe periodic functions on the line: (i) as functions invariant under a discrete group of translations, or (ii) as lifts of functions on the circle under covering maps from the line to the circle. On the blow-ups of SG there are no discrete groups acting, so we cannot generalize the first approach. But as we will see, there are covering maps to certain compact fractafolds, analogous to the circle, so we can generalize the second approach. Another approach, starting with a function on $S G$ and extending it by rotations, yields a smaller class of functions that we call extended periodic functions, in Section 4.

To be specific, we describe SG as the invariant set for the iterated function system (IFS) consisting of three similarities $\left\{F_{1}, F_{2}, F_{3}\right\}$ of the plane with fixed-points $\left\{q_{1}, q_{2}, q_{3}\right\}$ the vertices of an equilateral triangle, and contraction ratio $1 / 2$. However, we use the IFS with "twists" as described in [2,3], so that

$$
F_{i} x=\frac{1}{2} R_{i} x+\frac{1}{2} q_{i}
$$

where $R_{i}$ is the reflection that fixes $q_{i}$ and permutes the other two vertices of the triangle. Including the reflection does not change the invariant set, but it gives a description of SG that is better suited to our purposes (see Figure 1.1). Note that the three mappings $F_{i}$ have inverses that may be combined into a single continuous 3-to1 mapping of $S G$ to itself. Let $w=\left(w_{1}, w_{2}, \ldots\right)$ denote an infinite word where each

[^0]

Figure 1.1: SG showing the cell structure on levels $1,2,3$, using the IFS with "twists", (label $i j k$ means the cell is $F_{i} F_{j} F_{k}(S G)$ ).
$w_{i}$ takes on the values 1,2 , or 3, and let $[w]_{m}=\left(w_{1}, \ldots, w_{m}\right)$ denote the truncation of $w$ to length $m$. We define $F_{[w]_{m}}^{-1}=F_{w_{1}}^{-1} \circ F_{w_{2}}^{-1} \circ \cdots \circ F_{w_{m}}^{-1}$ (note that the order is the reverse of what might be expected), and

$$
\begin{equation*}
S G_{w}=\bigcup_{m=1}^{\infty} F_{[w]_{m}}^{-1}(S G) \tag{1.1}
\end{equation*}
$$

Note that $S G \subseteq F_{[w]_{1}}^{-1}(S G) \subseteq F_{[w]_{2}}^{-1}(S G) \subseteq \cdots$ so (1.1) is an increasing union. We call $S G_{w}$ an infinite blow-up of SG (see $[6,10]$ ).

If $w^{\prime}=\left(w_{1}^{\prime}, \ldots, w_{m^{\prime}}^{\prime}\right)$ denotes a finite word of length $m^{\prime}$, then $F_{[w]_{m}}^{-1} F_{w^{\prime}}(S G)$ is called a cell of order $m^{\prime}-m$. Note that the cells of order 0 are isometric to SG, and all cells are similar to SG. Different choices of words lead to different blow-ups, and, in fact, there are uncountably many non-isometric blow-ups (two blow-ups will be isometric only in the case that the words differ in only a finite number of places after a permutation of indices [10, Lemma 2.3]). In general there is no canonical choice of
blow-ups. However, we will exclude the case of a word with all but a finite number of $w_{i}$ being equal. That choice leads to a blow-up with a boundary point, and so is analogous to a half-line rather than a line.

Each blow-up is a fractafold [7], defined to be a Hausdorff space in which every point has a neighborhood homeomorphic to a neighborhood of a point in SG. These are noncompact fractafolds without boundary (the neighborhoods avoid the boundary points $\left\{q_{1}, q_{2}, q_{3}\right\}$ of SG). We can construct compact fractafolds by gluing together a finite number of copies of SG at boundary points, described by a cell graph $G$ whose vertices correspond to the copies of SG and whose edges indicate the gluing. (Because of the symmetry of SG, we do not have to indicate which vertex is glued.) The fractafold $\mathcal{F}$ will be without boundary exactly when $G$ is 3 -regular. Two simple examples are the double cover $\widetilde{S G}$, whose cell graph has two vertices jointed by three edges, and the octahedron fractafold OSG whose cell graph is the complete graph on four vertices. We can visualize OSG as putting a copy of SG in every other face in a regular octahedron. The key observation is that there exists a locally isometric covering map from $S G_{w}$ to OSG. In fact, we can construct an infinite sequence of fractafolds $O S G_{n}$, with $O S G_{0}=O S G$, and $O S G_{n}$ obtained from $O S G$ by enlarging the $n$-cells of OSG to 0 -cells of $O S G_{n}$. We will construct locally isometric covering maps $\pi_{n}^{\prime}: O S G_{n} \rightarrow O S G_{n-1}$ and $\pi_{n}: S G_{w} \rightarrow O S G_{n}$ so that the following diagram commutes:


We will define a continuous function on $S G_{w}$ to be periodic of level $n$ if it is the lift under $\pi_{n}$ of a continuous function on $\operatorname{OSG}_{n}$. Because of the commuting diagram, a function periodic of level $n$ is also periodic of level $n^{\prime}$ for any $n^{\prime}>n$. We define an almost periodic function to be a uniform limit of periodic functions. We will give two other characterizations of periodic functions in terms of repeating patterns of restrictions to cells of order $-n$. We will also give a Fourier series type characterization: periodic functions are uniform limits of sums of periodic eigenfunctions of the standard Laplacian on $S G_{w}$. We compare and contrast this with the Fourier series type expansions of $L^{2}$ functions on $S G_{w}$ of Teplyaev [10]

In Section 2 we present the construction of the covering maps $\pi_{n}$ and $\pi_{n}^{\prime}$. In Section 3 we prove the two "repeating patterns" characterizations of periodic functions, the second one involving invariance under a family of local isometries. In Section 4 we examine some possible symmetries of periodic functions, arising from the fact that $O S G_{n}$ has an isometry group isomorphic to the 24-element permutation group $S_{4}$. In this section we identify another family of compact fractafolds $C S G_{n}$ covered by $O S G_{n}$ and hence by $S G_{w}$. As far as we know, these two families are the only compact fractafolds without boundary that have locally isometric covering maps from $S G_{w}$. It would be interesting to know if there are any others.

Section 5 is devoted to the Fourier series type expansions of periodic functions. We make use of the results of [7] to identify the eigenfunctions of the Laplacian on
$O S G_{n}$, and lift this to periodic functions. Using the results of [8], we get uniform convergence of eigenfunction expansions. We also discover that there is a family of periodic eigenfunctions with eigenvalues that do not occur in the $L^{2}$ spectrum of $S G_{w}$. These eigenfunctions, built from the discrete eigenvalue 4, were described in [1]. The value 4 is a fixed point of the polynomial $\lambda(5-\lambda)$ which forms the basis for the spectral decimation method [4] that underlies the explicit description of eigenfunctions. We also briefly discuss the spectrum for almost periodic functions, which is the union of all the spectra for periodic functions. These are the only eigenvalues that are known to have bounded eigenfunctions. In [1] there is some speculation that perhaps there are no others. It would be interesting to resolve this question.

The reader should consult $[5,9]$ for more detailed description of analysis on SG. The material in Section 5 is based on [7].

## 2 Covering Maps

First we construct a covering map $\pi: S G_{w} \rightarrow O S G$ (all the covering maps in this section will be local isometries). We adopt the following notation. OSG is the union of four 0 -cells that are denoted $K_{0}, K_{1}, K_{2}, K_{3}$, with the intersection $K_{0} \cap K_{i}$ consisting of the point $q_{i 0}$, while $K_{1} \cap K_{2}=\left\{q_{31}\right\}, K_{2} \cap K_{3}=\left\{q_{11}\right\}$, and $K_{3} \cap K_{1}=\left\{q_{21}\right\}$. (See Figure 2.1.) To define the covering map, in which each 0 -cell is mapped to one of the $K_{i}$, it suffices to describe the image of the boundary points of each 0 -cell, namely $\pi\left(F_{[w]_{m}}^{-1} F_{w^{\prime}} q_{i}\right)$.

Definition 2.1 The parity functions $p_{i}\left([w]_{m}, w^{\prime}\right), i=1,2,3$, which we write simply as $p_{i}$ when $[w]_{m}$ and $w^{\prime}$ are fixed, are defined to be $p_{i}=0$ if $i$ occurs an even number of times among $\left(w_{1}, \ldots, w_{m}, w_{1}^{\prime}, \ldots, w_{m}^{\prime}\right)$, and 1 if it occurs an odd number of times.


Figure 2.1: OSG, with dotted lines indicating identified points. Each $K_{i}$ is a copy of $S G$.

Note that if $\left|w^{\prime}\right|=m$, then $p_{1}+p_{2}+p_{3}$ must be even, so if we write $p=$ $\left(p_{1}, p_{2}, p_{3}\right)$, then there are just four possibilities for $p$, namely $(0,0,0),(0,1,1)$, $(1,0,1)$, or $(1,1,0)$. We will define $\pi$ to map the 0 -cell $F_{[w] m}^{-1} F_{w^{\prime}}(S G)$ to $K_{0}, K_{1}, K_{2}, K_{3}$ in each of these cases. More precisely, we set

$$
\begin{equation*}
\pi\left(F_{[w]_{m}}^{-1} F_{w^{\prime}} q_{i}\right)=q_{i p_{i}} . \tag{2.1}
\end{equation*}
$$

Lemma 2.2 This definition is unambiguous.
Proof First, we note that $F_{[w]_{m}}^{-1} F_{w^{\prime}}=F_{[w]_{m+1}}^{-1} F_{w^{\prime \prime}}$ where $w^{\prime \prime}=\left(w_{m+1}, w_{1}^{\prime}, \ldots, w_{m}^{\prime}\right)$, but in this case $p_{i}\left([w]_{m}, w^{\prime}\right)^{m}=p_{i}\left([w]_{m+1}, w^{\prime \prime}\right)$ because we have added two occurences of $w_{m+1}$. Thus the mapping depends only on the 0 -cell, not the way it is represented. Second, we need to check that when cells intersect, the mapping agrees at the intersection point. Here we see the advantage of using the IFS with "twists", because the intersections all occur with $F_{w^{\prime}} q_{i}=F_{w^{\prime}} q_{i}$, and the index $i$ occurs the same number of times in $w^{\prime}$ and $w^{\prime \prime}$ (in fact $w^{\prime}$ and $w^{\prime \prime}$ agree at all places except one, namely the last $k$ for which $w_{k}^{\prime} \neq i$, and there $w_{k}^{\prime \prime}$ is the third index). Thus $F_{w^{\prime}} q_{i}=F_{w^{\prime \prime}} q_{i}$ implies $p_{i}\left([w]_{m}, w^{\prime}\right)=p_{i}\left([w]_{m}, w^{\prime \prime}\right)$ so (2.1) yields the same image point in both cases.

In Figure 2.2 we illustrate the mapping restricted to $F_{[w]_{m}}^{-1}(S G)$ for $m=3$. Note that each type of cell $(0,1,2,3)$ intersects neighboring cells of the other three types. It is clear where each vertex is mapped because of the types of cells it bounds. For example, a vertex on the boundary of cells of type 2 and 3 is mapped to $q_{11}$, etc. Of course, the mapping depends on $[w]_{m}$. However, since OSG has a symmetry group $S_{4}$, there are 24 different possibilities, all obtained from each other by permutation of the labels $0,1,2,3$. Note that when $m$ is even, there will be one label that appears one more time than the others, and it appears in the three corner cells. When $m$ is odd, the three corner cells have distinct labels, and the missing label appears one time less than the others.


Figure 2.2: The number $i$ inside a triangle indicates that the corresponding cell is mapped to $K_{i}$.

Theorem $2.3 \pi=\pi_{0}$ is a locally isometric covering map.
Proof This follows almost immediately from the definition, since the preimage of $K_{i} \cup K_{j}$ for any $i \neq j$ is a disconnected union of pairs of intersecting 0 -cells.

Definition 2.4 We define $\pi_{n}: S G_{w} \rightarrow O S G_{n}$ as follows. We can identify $O S G_{n}$ with Figure 2.1 if we simply take each $K_{i}$ to be a cell of level $-n$ (containing $3^{n} 0$-cells). We can identify $O S G_{n}$ with Figure 2.1 if we simply take each $K_{i}$ to be a cell of level $-n$ (containing $3^{n} 0$-calls). To define $\pi_{n}$ we need to map ( $-n$ )-cells of $S G_{w}$ to one of the $K_{i}$. All $(-n)$-cells have the form $F_{[w]_{m}}^{-1} F_{w^{\prime}}(S G)$ where now $\left|w^{\prime}\right|=m-n$. When $n$ is even we use (2.1) to define $\pi_{n}$ on the boundary of the $(-n)$-cell, and continuing isometrically to the interior of the cell. The description of which $K_{i}$ is the image of $F_{[w]_{m}}^{-1} F_{w^{\prime}}(S G)$ is the same as before. When $n$ is odd, then $p_{1}+p_{2}+p_{3}$ is also odd, so we need to replace $p_{i}$ by $1-p_{i}$ in (2.1).

We would also like to have a description of $\pi_{n}$ on the level 0 cells. To do this, we need to introduce some more notation for the $4 \cdot 3^{n} 0$-cells in $O S G_{n}$. When $n=1$, we split each of the four $(-1)$-cells $K_{j}$ into three 0 -cells $K_{j k}$ for $k \neq j$, and we make $K_{j k}$ intersect $K_{k j}$ (as well as the other 0 -cells $K_{j \ell}$ in $K_{j}$ ). In general $O S G_{n}$ will have 0 -cells labeled $K_{j_{1}, \ldots, j_{n+1}}$ with consecutive indices distinct. The 0 -cell $K_{j_{1}, \ldots, j_{n}}$ in $O S G_{n-1}$ will split into three intersecting 0 -cells $K_{j_{1}, \ldots, j_{n}, k}$ in $O S G_{n}$ with $k \neq j_{n}$. Moreover, if $K_{j_{1}, \ldots, j_{n}}$ intersects $K_{j_{1}^{\prime}, \ldots, j_{n-1}^{\prime}, k}$ in $O S G_{n-1}$, then $K_{j_{1}, \ldots, j_{n}, k}$ will also intersect $K_{j_{1}^{\prime}, \ldots, j_{n-1}^{\prime}, k, j_{n}}$ in $\operatorname{OSG}_{n}$. Figure 2.3 illustrates the cases $n=1,2$.

Definition 2.5 In terms of the above description it is easy to define the covering maps $\pi_{n}^{\prime}: \operatorname{OSG}_{n} \rightarrow \operatorname{OSG}_{n-1}$ by deleting the first index: $\pi_{n}^{\prime}\left(K_{j_{1}, \ldots, j_{n+1}}\right)=K_{j_{2}, \ldots, j_{n+1}}$.

For this to make sense we need to verify that if $K_{j_{1}^{\prime}, \ldots, j_{n+1}^{\prime}}$ and $K_{j_{1}, \ldots, j_{n+1}}$ intersect in $O S G_{n}$, then $K_{j_{2}^{\prime}, \ldots, j_{n+1}^{\prime}}$ and $K_{j_{2}, \ldots, j_{n+1}}$ intersect in $O S G_{n}$, so

$$
\pi_{n}^{\prime}\left(K_{j_{1}, \ldots, j_{n+1}} \cap K_{j_{1}^{\prime}, \ldots, j_{n+1}^{\prime}}\right)=K_{j_{2}, \ldots, j_{n+1}} \cap K_{j_{2}^{\prime}, \ldots, j_{n+1}^{\prime}}
$$

But this intersection property follows from the inductive construction above.
Theorem 2.6 The following diagram of covering maps commutes.


Proof Consider the map $\pi_{1}: S G_{w} \rightarrow O S G_{1}$. A 0 -cell has the form

$$
F_{[w]_{m}}^{-1} F_{w^{\prime}}(S G) \quad \text { for } w^{\prime}=\left(w_{1}^{\prime}, \ldots, w_{m}^{\prime}\right)
$$

and it lies in the $(-1)$-cell $F_{[w]_{m}}^{-1} F_{\left(w_{1}^{\prime}, \ldots, w_{m-1}^{\prime}\right)}(S G)$. (We can always take $m \geq 1$.) We know the $K_{i}$ cells of level -1 in $O S G_{1}$ to which this gets mapped, depending on $p\left(\left[w_{m}\right], w_{1}^{\prime}, \ldots, w_{m-1}^{\prime}\right)$. Let us define the index function $I(p)$ by the following rules:

$$
\begin{align*}
& I(0,0,0)=I(1,1,1)=0  \tag{2.2}\\
& I(0,1,1)=I(1,0,0)=1, \\
& I(1,0,1)=I(0,1,0)=2 \\
& I(1,1,0)=I(0,0,1)=3 .
\end{align*}
$$



Figure 2.3: OSG $_{n}$ for $n=1,2$.

Then $\pi_{1}\left(F_{[w]_{m}}^{-1} F_{\left(w_{1}^{\prime}, \ldots, w_{m-1}^{\prime}\right)}(S G)\right)=K_{j_{1}}$ for $j_{1}=I\left(p\left([w]_{m},\left(w_{1}^{\prime}, \ldots, w_{m-1}^{\prime}\right)\right)\right.$, and $\pi_{1}\left(F_{[w]_{m}}^{-1} F_{w^{\prime}}(S G)\right)=K_{j_{1} j_{2}}$ for $j_{2}=I\left(p\left([w]_{m},\left(w_{1}^{\prime}, \ldots, w_{m}^{\prime}\right)\right)\right.$. Note that

$$
p_{i}\left([w]_{m},\left(w_{1}^{\prime}, \ldots, w_{m-1}^{\prime}\right)\right) \quad \text { and } \quad p_{i}\left([w]_{m},\left(w_{1}^{\prime}, \ldots, w_{m}^{\prime}\right)\right)
$$

differ only for $i=w_{m}^{\prime}$, so it follows from (2.2) that $j_{2} \neq j_{1}$. For this to make sense we need to verify that if $F_{w^{\prime}}(S G)$ and $F_{w^{\prime \prime}}(S G)$ intersect $\left(w^{\prime}=\left(w_{1}^{\prime}, \ldots, w_{m}^{\prime}\right)\right.$
and $\left.w^{\prime \prime}=\left(w_{1}^{\prime \prime}, \ldots, w_{m}^{\prime \prime}\right)\right)$, then so do $K_{j_{1}^{\prime}, j_{2}^{\prime}}=\pi_{1}\left(F_{[w]_{m}}^{-1} F_{w^{\prime}}(S G)\right)$ and $K_{j_{1}^{\prime \prime}, j_{2}^{\prime \prime}}=$ $\pi_{1}\left(F_{[w]_{m}}^{-1} F_{w^{\prime}}(S G)\right)$. There are two ways this can happen. The first is if $F_{w^{\prime}}(S G)$ and $F_{w^{\prime \prime}}(S G)$ belong to the same $(m-1)$-cell, in which case $w_{1}^{\prime}=w_{1}^{\prime \prime}, \ldots, w_{m-1}^{\prime}=w_{m-1}^{\prime \prime}$ and $w_{m}^{\prime} \neq w_{m}^{\prime \prime}$. In this case clearly $j_{1}^{\prime}=j_{1}^{\prime \prime}$ and $j_{2}^{\prime} \neq j_{2}^{\prime \prime}$, so $K_{j_{1}^{\prime}, j_{2}^{\prime}}$ and $K_{j_{1}^{\prime \prime}, j_{2}^{\prime \prime}}$ are different 0 -cells in the same $(-1)$-cell $K_{j_{1}^{\prime}}$, and so intersect. Or, we could have $F_{w^{\prime}}(S G)$ and $F_{w^{\prime \prime}}(S G)$ belong to intersecting $(m-1)$-cells, in which case $w_{m}^{\prime}=w_{m}^{\prime \prime}=k$, and moreover $w_{1}^{\prime}=w_{1}^{\prime \prime}, \ldots, w_{\ell}^{\prime}=w_{\ell}^{\prime \prime}$ (for some $\ell \leq m-2$ ), $w_{\ell+1}^{\prime}, w_{\ell+1}^{\prime \prime}$, and $k$ are distinct, and $w_{\ell+2}^{\prime}=\cdots=w_{m}^{\prime}=w_{\ell+2}^{\prime \prime}=\cdots=w_{m}^{\prime \prime}=k$. For example, $w^{\prime}=\left(w_{1}^{\prime}, \ldots, w_{\ell}^{\prime}, 1,2, \ldots, 2\right), w^{\prime \prime}=\left(w_{1}^{\prime}, \ldots, w_{\ell}^{\prime}, 3,2, \ldots, 2\right)$. In this case, if $p\left([w]_{m}, w^{\prime}\right)=\left(p_{1}, p_{2}, p_{3}\right)$, then $\left.p([w])_{m}, w^{\prime \prime}\right)=\left(1-p_{1}, p_{2}, 1-p_{3}\right)$. But when we delete that last $w_{m}^{\prime}=w_{m}^{\prime \prime}=2$, we flip $p_{2}$ and leave the others alone, so $p\left([w]_{m},\left(w_{1}^{\prime}, \ldots, w_{m-1}^{\prime}\right)\right)=\left(p_{1}, 1-p_{2}, p_{3}\right)$ and $p\left([w]_{m},\left(w_{1}^{\prime \prime}, \ldots, w_{m-1}^{\prime \prime}\right)\right)=$ $\left(1-p_{1}, 1-p_{2}, 1-p_{3}\right)$. Thus $I\left(p\left([w]_{m},\left(w_{1}^{\prime}, \ldots, w_{m-1}^{\prime}\right)\right)=I\left(p\left([w]_{m},\left(w_{1}^{\prime \prime}, \ldots, w_{m}^{\prime \prime}\right)\right)\right.\right.$ and $I\left(p\left([w]_{m},\left(w_{1}^{\prime \prime}, \ldots, w_{m-1}^{\prime \prime}\right)\right)=I\left(p\left([w]_{m},\left(w_{1}^{\prime}, \ldots, w_{m}^{\prime}\right)\right)\right.\right.$. This means $j_{1}^{\prime}=j_{2}^{\prime \prime}$ and $j_{1}^{\prime \prime}=j_{2}^{\prime}$, so $K_{j_{1}^{\prime}, j_{2}^{\prime}}$ and $K_{j_{1}^{\prime \prime}, j_{2}^{\prime \prime}}$ intersect in $O S G_{1}$. Figure 2.4 shows $\pi_{1}$ restricted to $F_{[w]_{3}}^{-1}(S G)$.

The description of $\pi_{n}$ is similar. Without loss of generality we may take $m \geq n$. Define $j_{k}=I\left(p\left([w]_{m},\left(w_{1}^{\prime}, \ldots, w_{m-n-1+k}^{\prime}\right)\right.\right.$ for $k=1, \ldots, n+1$. Then

$$
\pi_{n}\left(F_{[w]_{m}}^{-1} F_{\left(w_{1}^{\prime}, \ldots, w_{m}^{\prime}\right)}(S G)\right)=K_{j_{1}, \ldots, j_{m-1}}
$$

Essentially the same reasoning as in the case $n=1$ shows that this makes sense and agrees with our previous definition in terms of $(-n)$-cells.

It is clear from the descriptions that

$$
\begin{equation*}
\pi_{n}^{\prime} \circ \pi_{n}=\pi_{n-1} \tag{2.3}
\end{equation*}
$$

This can be seen in Figures 2.2 and 2.4: if you delete all the first labels in Figure 2.4 (the action of $\pi_{1}^{\prime}$ ), you obtain Figure 2.2.

## 3 Characterization of Periodic Functions

Let $\operatorname{Per}_{n}$ denote the periodic functions of level $n$ on $S G_{w}$. Recall that $F \in \operatorname{Per}_{n}$ if and only if $F$ is continuous, and there exists a continuous function $f$ on $O S G_{n}$ such that $F=f \circ \pi_{n}$ (so $F$ is the lift of $f$ ). (Functions here may be real-valued, complex-valued, or vector-valued.) Note that $\operatorname{Per}_{n}$ is an increasing family of function spaces because of (2.3). We will give two characterizations of periodic functions based on repeating patterns. The first is a simple consequence of the definition of $\pi_{n}$.

Theorem 3.1 A continuous function $F$ is in $\mathrm{Per}_{n}$ if and only if

$$
\begin{equation*}
F\left(F_{[w]_{m}}^{-1} F_{w^{\prime}} x\right)=F\left(F_{[w]_{m}}^{-1} F_{w^{\prime}} x\right) \text { for } x \in S G \tag{3.1}
\end{equation*}
$$

whenever $\left|w^{\prime}\right|=\left|w^{\prime \prime}\right|=m-n$ and

$$
\begin{equation*}
p\left([w]_{m}, w^{\prime}\right)=p\left([w]_{m}, w^{\prime \prime}\right) \tag{3.2}
\end{equation*}
$$



Figure 2.4: The map $\pi_{1}$ restricted to $F_{[w]_{3}}^{-1}(S G)$. Each 0 -cell is labeled $j k$ if it is mapped to $K_{j k}$.

Proof If $F=f \circ \pi_{n}$ then (3.1) holds because $\pi_{n} \circ F_{\left.[w]_{m}\right]}^{-1} F_{w^{\prime}}=\pi_{n} \circ F_{[w]_{n}}^{-1} F_{w^{\prime}}$ on $S G$ if (3.2) holds by Definition 2.4. Conversely, if (3.1) holds, then define $f$ on $O S G_{n}$ by $f(x)=F\left(\pi_{n}^{-1}(x)\right)$, where the value of $F$ at any pre-image is the same because of (3.1).

Although there are no global isometries of $S G_{w}$, there are local isometries, and these can be used to characterize periodicity. These can be imagined as "conveyer belt" rotations around cycles. A cycle of $(-n)$-c ells of order $k(k=0,1,2, \ldots)$ is a union of $3 \cdot 2^{k}(-n)$-cells surrounding the inner deleted triangle in a $(-n-k-1)$ cell. Every $(-n)$-cell belongs to exactly three cycles, one being of order 0 and the other two being of order greater than 0 . The cells in the cycle are cyclicly ordered, with consecutive cells intersecting. The rotation $\rho$ is defined to move each cell to its neighbor, counterclockwise, translating along each of the three sides of the cycle, and rotating around the three corners, conveyer-belt style. A cycle of 0 -cells of order 2 is shown in Figure 3.1.

Periodicity is essentially characterized by invariance under $\rho^{3}$. Note that for cycles of order 0 , we have $\rho^{3}$ equal to the identity, so we need only consider $k \geq 1$.

Theorem 3.2 A continuous function $F$ on $S G_{w}$ is in $\operatorname{Per}_{n}$ if and only if its restriction to every cycle of $(-n)$-cells is invariant under $\rho^{3}$.

Proof For clarity of exposition we just treat the case $n=0$. First we prove that functions in $\operatorname{Per}_{0}$ have the $\rho^{3}$ invariance. We want to give an induction argument, not directly on the order $k$, but essentially on the size of a cell containing the cycle. Observe that the three outer edges of a cell are part of a larger cycle. So we assume the following induction hypothesis: for any cell $C$ of order $-k, F$ is invariant under $\rho^{3}$ for any cycle in $C$, and also $F$ is invariant under translation by three 0 -cells along each of the three outer edges of $C$. For $k=1$ these statements are vacuously true. We need to show that the induction hypothesis implies the same statement for $k+1$.


Figure 3.1: A cycle of 0-cells of order 2.

Now each $(-k-1)$-cell $C$ splits into three $(-k)$-cells $C_{1}, C_{2}$ and $C_{3}$, and the induction hypothesis covers all cycles of order less than $k$, since they lie in one of the $(-k)$-cells. So it suffices to prove the invariance for the central cycle of order $k$, and for the three outer edges of $C$. Note that we already have the invariance for the portions of these cycles lying in $C_{1}, C_{2}$ and $C_{3}$, so we only have to check that the invariance persists near the three corners. By symmetry it suffices to see what happens at one such corner. In Figure 3.2 we show a neighborhood of the corner where $C_{1}$ and $C_{3}$ intersect when $k=2$ and 3 (the labels in the 0 -cells are the last $k+1$ indices in $w^{\prime}$ ). Along the inner cycle we verify $p(131)=p(322)=(0,0,1), p(121)=p(323)=(0,1,0)$, and $p(122)=p(313)=(1,0,0)$ when $k=2$, and $p(1213)=p(3222)=(0,1,1)$, $p(1223)=p(3221)=(1,0,1)$, and $p(1222)=p(3231)=(1,1,0)$ when $k=3$. Along the outer edge we verify $p(113)=p(322)=(0,0,1), p(123)=p(321)=$ $(1,1,1)$, and $p(122)=p(331)=(1,0,0)$ when $k=2$, and $p(1231)=p(3222)=$ $(0,1,1), p(1221)=p(3223)=(0,0,0)$, and $p(1222)=p(3213)=(1,1,0)$ when $k=3$. In general, the even $k$ 's are like $k=2$ and the odd $k$ 's are like $k=3$, the only difference being an even number of indices 2 inserted after the first index, which does not change the parities. This completes the induction argument.

For the converse, assume the invariance holds for all cycles. We want to prove (3.1) holds if (3.2) holds. We do this again by induction on $k$, under the additional hypothesis that $F_{[w]_{m}}^{-1} F_{w^{\prime}}(S G)$ and $F_{[w]_{m}}^{-1} F_{w^{\prime \prime}}(S G)$ belong to the same $(-k)$-cell. This is trivially true when $k=1$ because (3.2) never holds for distinct 0 -cells. For the induction argument, assume it is true for $k$. Let $C$ be any $(-k-1)$-cell, and split it into $(-k)$-cells $C_{1}, C_{2}, C_{3}$ as before. By the induction hypothesis, (3.1) holds for any pair of 0 -cells satisfying (3.2) and both lying in the same $C_{j}$. So we just need to verify that the pairs match up across different $C_{j}$ 's. But this follows from our previous analysis of what happens in a neighborhood of the corner points, running the argument backward. We also need to observe that all four indices $I(p)$ occur.


Figure 3.2: A neighborhood of the corner where $C_{1}$ and $C_{3}$ intersect.

We define $A P$, the space of almost periodic functions on $S_{w}$ to be the closure (in the uniform norm) of $\bigcup_{n=0}^{\infty} \operatorname{Per}_{n}$. In other words, almost periodic functions are uniform limits of periodic functions. We have the following characterization analogous to Theorem 3.1.

Theorem 3.3 A continuous function $F$ on $S G_{w}$ is in $A P$ if and only if for all $\varepsilon>0$ there exists $n$ such that

$$
\left|F\left(F_{[w]_{m}}^{-1} F_{w^{\prime}} x\right)-F\left(F_{[w]-m}^{-1} F_{w^{\prime}} x\right)\right| \leq \varepsilon \text { for } x \in S G
$$

whenever $\left|w^{\prime}\right|=\left|w^{\prime \prime}\right|=m-n$ and (3.2) holds.
We omit the straightforward proof.
It is also possible to characterize AP functions in terms of the analog of a Bohr compactification of $S G_{w}$. For this we consider the inverse (sometimes called "projective") limit of the sequence of covering maps

$$
\text { OSG }_{0} \xrightarrow{\pi_{1}^{\prime}} \longleftarrow \text { OSG }_{1} \xrightarrow{\pi_{2}^{\prime}} \longleftarrow \longleftarrow \text { OSG }_{2} \longleftarrow \cdots,
$$

defined to be the compact subset of the infinite product $\prod_{n=0}^{\infty} O S G_{n}$ of sequences $\left(x_{0}, x_{1}, \ldots\right)$ satisfying $x_{n-1}=\pi_{n}^{\prime}\left(x_{n}\right)$ for all $n$. We denote this space $O S G_{\infty}$. We define a map $\pi_{\infty}: S G_{w} \rightarrow O S G_{\infty}$ by $\pi_{\infty}(x)=\left(\pi_{0}(x), \pi_{1}(x), \ldots\right)$. This map is not a covering map. It is easy to see that it is injective, since if $x \neq y$ in $S G_{w}$, then $\pi_{n}(x) \neq$ $\pi_{n}(y)$ for $n$ sufficiently large, but it is not onto, and the dense image $\pi_{\infty}\left(S G_{w}\right)$ will depend on $w$. We use $\pi_{\infty}$ to identify $S G_{w}$ with a subset of $O S G_{\infty}$. Any function $F=f \circ \pi_{n}$ in $\operatorname{Per}_{n}$ extends to a continuous function $\widetilde{F}$ on $O S G_{\infty}$ via $\widetilde{F}\left(x_{1}, x_{2}, \ldots\right)=$ $f\left(x_{n}\right)$. It follows that every AP function on $S G_{w}$ extends to a continuous function on $O S G_{\infty}$. The converse is also true. It is not clear, however, that this point of view leads to any nontrivial conclusions.

## 4 Symmetries of Periodic Functions

Periodic functions may have additional symmetries. These can be understood best by considering the isometry group of $\operatorname{OSG}\left(\right.$ or $\left.O S G_{n}\right)$, which is isomorphic to the 24 -element permutation group $S_{4}$. For example, the vertical reflection in Figure 2.1 preserves $K_{0}$ and $K_{1}$ and permutes $K_{2}$ and $K_{3}$. We denote the symmetry $S((2,3))$, and identify it with the permutation $(2,3)$. Similarly, there are symmetries $S((j, k))$ for $0 \leq j<k \leq 3$, and the permutations $(j, k)$ generate $S_{4}$.

For any subgroup $\mathcal{G}$ of $S_{4}$, we can consider the subspace of $\operatorname{Per}_{n}$ of functions that are lifts of functions on $\operatorname{OSG}_{n}$ invariant under isometries in $\mathcal{G}$. (More generally, we could also consider lifts of functions transforming according to different irreducible representations of $\mathcal{G}$.)

We will look closely at two examples. The first is the 4 -element group $\mathcal{G}_{4}$ consisting of all double pair permutations:

$$
(0,1)(2,3),(0,2)(1,3),(0,3)(1,2)
$$

as well as the identity. Note that $S((0,1)) S((2,3))$ permutes $K_{0}$ and $K_{1}$ by fixing $q_{10}$ and rotating, so $q_{20}$ and $q_{21}$ are permuted, as are $q_{30}$ and $q_{31}$, with a similar story for $K_{2}$ and $K_{3}$. Thus any continuous function on $O S G_{n}$ invariant under $\mathcal{G}_{4}$ is uniquely determined by its restriction to $K_{0}$, and then extended to $K_{1}, K_{2}, K_{3}$ by rotation. In particular, there is no restriction on the values on the boundary points $q_{10}, q_{20}, q_{30}$. The extended function satisfies $f\left(q_{10}\right)=f\left(q_{11}\right), f\left(q_{20}\right)=f\left(q_{21}\right), f\left(q_{30}\right)=f\left(q_{31}\right)$.

Lifts of such functions will be called extended periodic functions, with the class of functions denoted $E P_{n}$. The characterization analogous to Theorem 3.1 is that (3.1) holds whenever $\left|w^{\prime}\right|=\left|w^{\prime \prime}\right|=m-n$, without imposing condition (3.2). There is also a characterization analogous to Theorem 3.2, but, instead of the conveyer belt rotation $\rho$, we must rotate the cells by $1 / 3$, pivoting on the intersection point of neighboring cells. If we call this map $\widetilde{\rho}$, we have $\widetilde{\rho}^{3}=\rho^{3}$. A function belongs to $E P_{n}$ if and only if it is invariant under $\widetilde{\rho}$ on every cycle of $(-n)$-cells. Figure 4.1 shows the boundary values on 0 -cells for a function in $E P_{0}$ restricted to a cell of order -2 . Again the containments $E P_{0} \subseteq E P_{1} \subseteq E P_{2} \subseteq \cdots$ hold.


Figure 4.1: Values of a function in $E P_{0}$.

Because the isometries in $\mathcal{G}_{4}$ have fixed points, we cannot factor out the fractafolds $O S G_{n}$ under the action of $\mathcal{G}_{4}$ within the category of fractafolds. (The quotients will
be fractal analogs of orbifolds, but there does not appear to be a strong imperative to develop a theory of such objects at this time.) In other words, we cannot characterize extended periodic functions as lifts of covering maps to specific fractafolds.

On the other hand, there are subgroups $\mathcal{G}$ of $S_{4}$ whose action on $O S G_{n}$ is fixed point free. There are four such subgroups, all conjugate, so we describe just one, which we denote $\mathcal{G}_{3}$. It is a three element group corresponding to the permutations that fix 0 and cyclicly permute 1, 2, 3. The action in Figure 2.1 just consists of rotations by $1 / 3$ and $2 / 3$. Regarding Figure $2.3(n=1)$ as a diagram of $(1-n)$-cells in $O S G_{n}$, it is clear that the union of the cells $K_{10}, K_{12}, K_{13}, K_{01}$ is a fundamental domain for the action of $\mathcal{G}_{3}$. Because of identification of boundary points we end up with the fractafold $C S G_{n}$ shown in Figure 4.2, with the four $(1-n)$-cells labeled $J_{0}, J_{1}, J_{2}, J_{3}$. The covering map $\pi_{n}^{\prime \prime}: \operatorname{OSG}_{n} \rightarrow C S G_{n}$ is shown $n$ Figure 4.3. We call the fractafolds $C S G_{n}$ conical since they can be wrapped around a double cone. We then have a covering map $\pi_{n}^{\prime \prime} \circ \pi_{n}: S G_{w} \rightarrow C S G_{n}$, and a periodic function in $\operatorname{Per}_{n}$ is $\mathcal{G}_{3}$ invariant if and only if it is a lift of a continuous function on $C S G_{n}$. A portion of this covering map is shown in Figure 4.4.


Figure 4.2: The conical fractafold $\operatorname{CSG}_{n}$, with each $J_{k}$ being a $(1-n)$-cell, and dotted lines indicating identified points.

We note that there are also covering maps $\pi_{n}^{\prime \prime \prime}: C S G_{n} \rightarrow C S G_{n-1}$, as illustrated in Figure 4.5. This leads to the commutative diagram of covering maps



Figure 4.3: The covering map $\pi_{n}^{\prime \prime}: \operatorname{OSG}_{n} \rightarrow \operatorname{CSG}_{n}$, each index $j$ indicating that the cell is mapped to $J_{j}$, with arrows lining up.

## 5 Eigenfunction Expansions

Let $\Delta$ denote the standard Laplacian on any of our spaces [5,9]. We can expand functions on $O S G_{n}$ in an infinite series of eigenfunctions of $\Delta$ on $O S G_{n}$, and then lift the eigenfunctions to eigenfunctions of $\Delta$ on $S G_{w}$ in $\operatorname{Per}_{n}$, and so obtain an eigenfunction expansion for functions in $\operatorname{Per}_{n}$. The exact spectrum of $\Delta$ on $O S G_{n}$ is described in [7] generalizing the spectral decimation method on SG of [4]. It is interesting to compare it with the $L^{2}$ spectrum of $\Delta$ on $S G_{w}$ as described in [10]. As usual we write the eigenfunction equation as $-\Delta u=\lambda u$. Since $O S G_{n}$ is compact, it has a complete set of eigenfunctions with nonnegative eigenvalues tending to infinity. It is remarkable that $S G_{w}$, although not compact, also has a complete set of eigenfunctions (in fact compactly supported), but each eigenvalue has infinite multiplicity.

Let $\Lambda_{n}$ denote the set of distinct eigenvalues of $\Delta$ on $O S G_{n}$, with the multiplicity of $\lambda \in \Lambda_{n}$ denoted $m_{n}(\lambda)$. It is convenient to subdivide $\Lambda_{n}$ into four disjoint series,

$$
\Lambda_{n}=\Lambda_{n}^{(0)} \cup \Lambda_{n}^{(4)} \cup \Lambda_{n}^{(5)} \cup \Lambda_{n}^{(6)}
$$

Here $\Lambda_{n}^{(0)}$ consists of the single eigenvalue $\lambda=0$ with multiplicity one, and the corresponding eigenfunction is constant. Eigenvalues in the other series have a "generation of birth" $m_{0}$, and are determined by a sequence $\left\{\lambda_{k}\right\}$ for $k \geq m_{0}$, with $\lambda_{m_{0}}=4,5$ or 6 depending on the series. The values $\lambda_{k}$ are interpreted as eigenvalues of the graph Laplacian $\Delta_{k}$ on the graph of vertices $V_{k}$ (the boundary points of $k$-cells) in $O S G_{n}$, with the restriction of the eigenfunction $u$ on $O S G_{n}$ to $V_{k}$ giving the associated eigenfunction of $\Delta_{k}$. Since $O S G_{n}$ is built of $(-n)$-cells, we have $k \geq-n$, with $V_{-n}$ consisting of the six vertices $\left\{q_{10}, q_{20}, q_{30}, q_{11}, q_{21}, q_{22}\right\}$ in Figure 2.1, and $\# V_{-n}=2 \cdot 3^{k+n+1}$.


Figure 4.4: A portion of the covering map $\pi_{n}^{\prime \prime} \circ \pi_{n}: S G_{w} \rightarrow C S G_{n}$, with index $j$ in a $(1-n)$-cell of $S G_{w}$ indicating it is mapped to $J_{j}$, with the arrows lining up.

The eigenvalues $\lambda_{k}$ and $\lambda_{k+1}$ are related by the quadratic equation

$$
\lambda_{k}=\lambda_{k+1}\left(5-\lambda_{k+1}\right)
$$

which we can solve

$$
\lambda_{k+1}=\frac{1}{2}\left(5+\varepsilon_{k} \sqrt{25-4 \lambda_{k}}\right)
$$

for $\varepsilon_{k}= \pm 1$. The value of $\lambda$ is then given by $\lambda=\lim _{k \rightarrow \infty} 5^{k} \lambda_{k}$. For the limit to exist we must have all but a finite number of $\varepsilon_{k}=-1$. We also have a few specific rules.
(i) If $\lambda \in \Lambda_{n}^{(6)}$, then $\varepsilon_{m_{0}}=+1$ so $\lambda_{m_{0}+1}=3$.
(ii) If $\lambda \in \Lambda_{n}^{(5)}$, then $m_{0} \geq-n+1$.
(iii) If $\lambda \in \Lambda_{n}^{(4)}$, then $m_{0}=-n$.

$$
m_{n}(\lambda)= \begin{cases}3 & \text { if } \lambda \in \Lambda_{n}^{(4)} \\ 2 \cdot 3^{m_{0}+n} & \text { if } \lambda \in \Lambda_{n}^{(6)} \\ 2 \cdot 3^{m_{0}+n-1}+1 & \text { if } \lambda \in \Lambda_{n}^{(5)}\end{cases}
$$

The spectra are nested: $\Lambda_{n} \subseteq \Lambda_{n+1}, m_{n}(\lambda) \leq m_{n+1}(\lambda)$ (this is not obvious for the 4 -series, but it follows from the observation that if $\lambda_{k}=4$ and we take $\varepsilon_{k}=+1$, we obtain $\lambda_{k+1}=4$ ). We also have the relationship $\Lambda_{n+1}=\frac{1}{5} \Lambda_{n}$. Figure 5.1 illustrates the eigenfunctions with $m_{0}=-n$, and Figure 5.2 illustrates the eigenfunctions with $m_{0}=1-n$. For $m_{0}>1-n$ the eigenfunctions are miniaturized versions of the $m_{0}=1-n$ case. For $\lambda_{m_{0}}=6$ there is one for every vertex in $V_{m_{0}-1}$. For $\lambda_{m_{0}}=5$ there is one for every independent cycle of length $3 \cdot 2^{k}$ for $1 \leq k \leq m_{0}+n$ (there is one linear relation). The actual eigenfunctions on $O S G_{n}$ are then determined by the choices of $\varepsilon_{k}$ (the discrete eigenvalue equation determines the extension from $V_{k}$ to $V_{k+1}$, and $V_{*}=\bigcup_{k} V_{k}$ is dense).


Figure 4.5: The covering map $\pi_{n}^{\prime \prime \prime}: \operatorname{CSG}_{n} \rightarrow \operatorname{CSG}_{n-1}$. The index $j$ in a $(2-n)$-cell of $\operatorname{CSG}_{n}$ indicates that it is mapped to the $(2-n)$-cell $J_{j}$ in $C S G_{n-1}$, with the arrows lining up.

Note that in the cases of high multiplicity we have bases for the eigenspaces that are not orthogonal.

For each eigenspace there is a projection operator $P_{\lambda}^{(n)}$ from functions on $O S G_{n}$ to eigenfunctions, and there is a corresponding Fourier series expansion

$$
\begin{equation*}
f=\sum_{\lambda \in \Lambda_{n}} P_{\lambda}^{(n)} f \tag{5.1}
\end{equation*}
$$

As shown in [8], this series actually converges uniformly for continuous functions $f$ if we take appropriate partial sums (for example, up to the first $\# V_{k}$ eigenvalues, counting multiplicity). All this lifts to $\operatorname{Per}_{n}$ functions on $S G_{w}$ (lifts of eigenfunctions are again eigenfunctions). Thus, without changing notation, we can view (5.1) as a Fourier expansion for $\operatorname{Per}_{n}$ functions on $S G_{w}$.

The eigenfunctions on $S G_{w}$ corresponding to the 4 -series were first described in [1], where it was observed that they are bounded. The eigenvalues in $\Lambda_{n}^{(5)}$ and $\Lambda_{n}^{(6)}$ are also in the $L^{2}$ spectrum of $S G_{w}$, but, of course, the $\operatorname{Per}_{n}$ eigenfunctions are never in $L^{2}$. In fact, the entire discrete $L^{2}$ spectrum is just the union of $\Lambda_{n}^{(5)}$ and $\Lambda_{n}^{(6)}$ for all $n$. An interesting observation about the $L^{2}$ spectrum is that the eigenfunctions all have total integral zero. This implies that the $L^{2}$ eigenfunction expansion does not converge in $L^{1}$ no matter how well behaved the function is. (The analogous statements are true for Haar series and related wavelet series.) This appears to rule out any analog of the Poisson summation formula. Indeed, it is easy to define a periodization map from $L^{\prime}\left(S G_{w}\right)$ to $L^{1}\left(O S G_{n}\right)$ by summing over pre-images

$$
\Pi_{n} f(x)=\sum f\left(\pi_{n}^{-1}(x)\right)
$$

However, there is no relationship between the spectral projections of $f$ and $\Pi_{n} f$, at least for the $\Lambda_{n}^{(0)}$ and $\Lambda_{n}^{(4)}$ eigenvalues.


Figure 5.1: Examples of discrete eigenfunctions on $O S G_{n}$ with $m_{0}=-n, \lambda_{-n}=6$ and $\lambda_{-n}=4$. (Values shown on $V_{-n}$.) Under the symmetry group $\mathcal{G}_{3}$ they generate eigenspaces of multiplicity 2 and 3 .


Figure 5.2: Examples of discrete eigenfunctions on $O S G_{n}$ with $m_{0}=1-n, \lambda_{1-n}=6$ and $\lambda_{1-n}=5$. (Values shown on $V_{1-n}$.) Under the symmetry group $S_{4}$ they generate eigenspaces of multiplicity 6 and 3 .

We can also describe explicitly the spectrum for periodic functions with symmetry. For the extended periodic functions there are no 4 -series eigenfunctions. It is clear that the discrete eigenfunction in Figure 5.1 with $\lambda_{n}=4$ is orthogonal to all $\mathcal{G}_{4}$ invariant functions because it is skew-symmetric with respect to one of the $\mathcal{G}_{4}$ symmetries, and this orthogonality persists on $O S G_{n}$. On the other hand, the eigenfunction with $\lambda_{-n}=6$ in Figure 5.1 is clearly $\mathcal{G}_{4}$ invariant. Altogether, the spectrum of $E P_{0}$ functions is identical (including multiplicities) to the Neumann spectrum of SG, as the Neumann boundary conditions are exactly what is needed to obtain an eigenfunction in the extension from $K_{0}$ to $O S G$. There is a similar description of the spectrum for $\mathcal{G}_{3}$ invariant periodic functions. The cell graph of $C S G_{1}$ has spectrum $\{0,1,4,5\}$, and this can be used with the results of [7] to obtain the explicit spectrum of $C S G_{n}$. We omit the details.

Finally, we discuss briefly the spectral theory of AP functions. First we note the
existence of the analog of the Bohr mean,

$$
M(F)=\lim _{m \rightarrow \infty} 3^{-m} \int_{F_{[w]_{m}}^{-1}(S G)} F d \mu
$$

where $\mu$ is the standard measure on $S G_{w}$. If $F=f \circ \pi_{n}$ is in $\operatorname{Per}_{n}$ then $M(F)$ is just the mean value of $f$ on $O S G_{n}$. It follows easily that $M(F)$ exists for AP functions.

The projection operators $P_{\lambda}^{(n)}$ on $\operatorname{Per}_{n}$ functions may be written as integral operators on $O S G_{n}$. If $u_{1}, \ldots, u_{m(\lambda)}$ is an orthonormal basis for the $\lambda$-eigenspace on $O S G_{n}$, then

$$
P_{\lambda}^{(n)} f(x)=\int_{O S G_{n}} P_{\lambda}^{(n)}(x, y) f(y) d \mu(y)
$$

for $P_{\lambda}^{(n)}(x, y)=\sum_{j=1}^{m(\lambda)} u_{j}(x) u_{j}(y)$. We may lift this to $S G_{w}\left(F=f \circ \pi_{n}\right.$, etc.) to obtain

$$
\begin{equation*}
P_{\lambda}^{(n)} F(x)=M\left(P_{\lambda}^{(n)}(x, \cdot) F(\cdot)\right) \tag{5.2}
\end{equation*}
$$

Now if $F \in A P$, then $F=\lim _{n \rightarrow \infty} F_{n}$ with $F_{n} \in \operatorname{Per}_{n}$. It follows easily that $F$ is the uniform limit of sums of periodic eigenfunctions with eigenvalues in $\bigcup_{n=0}^{\infty} \Lambda_{n}$. However, we would like to say more than this. Note that (5.2) makes sense for $F \in A P$. We would like to take the limit as $n \rightarrow \infty$ to define

$$
P_{\lambda} F(x)=\lim P_{\lambda}^{(n)} F(x)=M\left(P_{\lambda}(x, \cdot) F(\cdot)\right)
$$

for $P_{\lambda}(x, y)=\lim _{n \rightarrow \infty} P_{\lambda}^{(n)}(x, y)$. It is not hard to see that this holds in the $L^{2}$ mean norm $\|F\|_{2}^{2}=M\left(|F|^{2}\right)$. However, this does not imply that $P_{\lambda} F$ is in AP, or even that it is bounded. It is possible that the limits exist uniformly; one way to prove this would be to prove supnorm estimates on $P_{\lambda}^{(n)}$ that are independent of $n$. If that were the case, one could try to prove that

$$
\begin{equation*}
F=\lim _{n \rightarrow \infty} \sum_{\varepsilon_{n} \leq \lambda \leq N_{n}} P_{\lambda} F \tag{5.3}
\end{equation*}
$$

uniformly for some sequences $\varepsilon_{n} \rightarrow 0$ and $N_{n} \rightarrow \infty$. Again it is true that (5.3) holds in the $L^{2}$ mean norm (for any such sequences). We leave this to the future.

## References

[1] N. Ben-Gal, A. Shaw-Krauss, R. Strichartz, and C. Young, Calculus on the Sierpinski gasket. II. Point singularities, eigenfunctions, and normal derivatives of the heat kernel. Trans. Amer. Math. Soc. 358(2006), no. 9, 3883-3936.
[2] A. Blasiak, R. Strichartz, and B. Ugurcan, Spectra of self-similar Laplacians on the Sierpinski gasket with twists. Fractals 16(2008), no. 1, 43-68.
[3] M. Cucuringu and R. Strichartz, Self-similar energy forms on the Sierpinski gasket with twists. Potential Anal. 27(2007), no. 1, 45-60.
[4] M. Fukushima and T. Shima, On a spectral analysis for the Sierpinski gasket. Potential Anal. 1(1992), no. 1, 1-35.
[5] J. Kigami, Analysis on Fractals. Cambridge Tracts in Mathematics 143. Cambridge University Press, Cambridge, 2001.
[6] R. Strichartz, Fractals in the large. Canad. J. Math. 50(1998), no. 3, 638-657.
[7] , Fractafolds based on the Sierpinski gasket and their spectra. Trans. Amer. Math. Soc. 355(2003), no. 10, 4019-4043.
[8] $\longrightarrow$, Laplacians on fractals with spectral gaps have nicer Fourier series. Math. Res. Lett. 12(2005), no. 2-3, 269-274.
[9] Differential Equations on Fractals: A Tutorial. Princeton University Press, Princeton, NJ, 2006.
[10] A. Teplyaev, Spectral analysis on infinite Sierpiński gaskets. J. Funct. Anal. 159(1998), no. 2, 537-567.

Mathematics Department, Malott Hall, Cornell University, Ithaca, NY 14853, USA
e-mail: str@math.cornell.edu


[^0]:    Received by the editors February 7, 2007.
    The author's research was supported in part by the National Science Foundation, grant DMS0140194.

    AMS subject classification: 28A80.
    (C)Canadian Mathematical Society 2009.

