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Abstract

One of the many functions of taurine is to protect cells against oxidation, by protecting mitochondrial integrity and respiration. Taurine

metabolism has attracted much attention in fish nutrition due to the fact that as plant ingredients replace fishmeal, dietary taurine has

declined. As the endogenous synthesis of taurine might be too low to protect cells against oxidative stress and apoptosis, the present

study aimed to test whether taurine may protect liver cells from apoptosis. Liver cells isolated from Atlantic salmon (Salmo salar) were

grown in media supplemented with a physiological concentration of taurine (25 (SE 0·5) mM) or without any taurine supplementation

(14 (SE 3)mM) for 3 d. To increase oxidation in the mitochondria and maximise any cellular response of taurine supplementation,

100mM-CdCl2 was added or not added to the cells at day 3. At day 4, cells were harvested and assessed for viability. As expected,

the addition of CdCl2 decreased cell viability without showing any interaction with taurine supplementation. Cells grown in the

taurine-supplemented media had lower protein abundance of active caspase-3. In addition, the protein abundance of phosphorylated

mitogen-activating phosphokinase (P-p63, P-p42/44 and P-p38) as well as cytochrome P450 were reduced when taurine was added to

the media. Cells grown without taurine supplementation had a more condensed chromatin and more smeared DNA, also pointing to a

higher apoptosis in these cells. In conclusion, taurine attenuated apoptosis in primary liver cells isolated from Atlantic salmon, and as

such, taurine may be conditionally indispensable in Atlantic salmon.
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Sulphur amino acids act as nutrient signals controlling oxidative

status through their metabolism and synthesis of glutathione

and taurine acting as intracellular antioxidants(1–4). Inflam-

mation and oxidation are important factors that regulate pro-

inflammatory signalling pathways(5). The literature supports

the notion that dietary antioxidants are useful radioprotectors

and play important roles in preventing many diseases such as

cancer, atherosclerosis, stroke, neurodegeneration and dia-

betes in different cell models(6,7–12). The b-amino acid taurine

is present in millimolar concentrations in most animal tis-

sues(1,13) including Atlantic salmon (Salmo salar)(14,15). Taurine

may protect against oxidative stress, neurodegenerative dis-

eases and atherosclerosis, and plays important roles in several

physiological processes such as osmoregulation, immunomo-

dulation and bile acid formation(16,17). Atlantic salmon produce

taurine from sulphur amino acids through trans-sulfuration(14)

and, in addition, taurine is delivered through dietary fishmeal.

As marine ingredients are exchanged with plant ingredients,

not containing any taurine, a deficiency of taurine may arise

using such diets. Deficiencies in taurine may result in increased

mitochondrial oxidation and may possibly be linked to the

increased lipid accretion reported when dietary taurine is low

in rodents(18,19) and in Atlantic salmon(20,21).

Severe taurine limitation, as observed in taurine transporter

knockout mice, may trigger liver disease and apoptosis(22,23).

Apoptosis is the cellular process in which the cell dies in a

controlled fashion either spontaneously or in response to

environmental toxicants(24,25). Mitochondria are the cell’s

sensor to oxidative stress by losing membrane potential,

releasing cytochrome c and other pro-apoptotic factors into

the cytosol. Mitochondrial permeability is regulated by the

Bcl-2 family of proteins. Bcl-2 family proteins regulate apopto-

sis by controlling mitochondrial permeability and cytochrome

c release. Bcl-2 and Bcl-xL inhibit cytochrome c release, thus

being anti-apoptotic, while other Bcl-2 family protein

members such as Bad, Bid, Bax and Bim are located in the

cytosol but may translocate to the mitochondria following

death signals and thus promote cytochrome c release(26).

The mitogen-activating phosphokinase (MAPK) signalling path-

way is highly conserved through evolution and transduces a

variety of extracellular stress signals such as temperature, irradiation,

osmotic shock, cytokines, hormones and inflammation(27).
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When cells become apoptotic, the abundance of phosphorylated

MAPK such as p63, p42/44 and p38 has been reported to

increase in cells isolated from rodents(25,28–30). Cytochrome

P450 (P450) enzymes are the most important phase I biotrans-

formation enzymes of environmental chemicals(31,32). These

enzymes are involved in the detoxification of liver cells in

fish(33). As with the abundance of phosphorylated MAPK,

P450 also has been found to increase in apoptotic cells(24,29).

It is known that Cd intoxication increases the expression of

stress genes(34), and modulates antioxidant enzymes(35,36). Pro-

phylactic treatments with taurine in rodent models reduce lipid

peroxidation following treatments with pro-oxidants such as

meththiocarb(37), Cd(24) and Fe overload(38). Hepatotoxicants

have been reported to reduce S-adenosylmethionine (SAM)

and affect the trans-sulfuration pathway(39). Transmethylation

of homocysteine to methionine by the enzyme betaine-

homocysteine methyltransferase requires methyl groups

from betaine(40). Animals have the capacity of endogenous

synthesis of both choline and betaine when intake of these

metabolites is low. Choline is synthesised from ethanolamine

through three successive transmethylation reactions consum-

ing SAM(41–43), and choline can be metabolised to betaine

within the mitochondrion(44). Glutathione is an important

detoxifying molecule for reactive oxygen species and other

reactive metabolites acting as a free radical scavenger, and

SAM is the primary precursor for glutathione; thus, the

depletion of cellular SAM has been associated with liver tox-

icity(45). As the endogenous synthesis of taurine might be

too low to protect the cells against oxidative stress and

apoptosis, the present study aimed to assess whether taurine

supplementation could improve cell viability and methylation

capacity (i.e. the SAM:S-adenosylhomocysteine (SAH) ratio) in

primary liver cells isolated from Atlantic salmon. To maximise

any protective effects of taurine administration(24), cells were

also stressed with CdCl2 for 24 h and compared with

unstressed cells.

Materials and methods

Isolation of liver cells

Liver cells were isolated from four Atlantic salmon (S. salar)

with an average body weight of 1443 (SE 71) g, two males and

two females. The fish were anaesthetised by metocaine

(MS222, 5–8 g/l) and the liver was perfused with a

0·09 M-HEPES buffer containing 1·4 M-NaCl, 0·067 M-KCl and

0·03 M-EDTA, pH 7·4, at a flow of 4 ml/min until free of blood.

Thereafter, the liver was digested with collagenase (0·1 % col-

lagenase type IV was dissolved in the 0·9 M-HEPES buffer as

used for perfusion). The isolated cells were harvested in

10 ml of 10 % PBS buffer (0·002 M-KH2PO4, 0·02 M-Na2HPO4,

0·03 M-KCl and 0·14 M-NaCl, pH 7·4), filtered (100mm filter)

and washed twice in the PBS buffer, resuspended in the

respective test media before the viability of the isolated cells

was assessed. All centrifugations were done by 50 g for 5 min.

The viability of the cells was examined with the Trypan Blue

exclusion test in accordance with the protocol supplied by

the manufacturer (Lonzo; Medprobe). The viability of the iso-

lated primary liver cells was above 90 (range 90·8–94·4) %.

The isolations of the cells were done with sterile equipment

and buffers. The experimental protocol was approved by the

Norwegian Board of Experiments with Living Animals.

In vitro study

Cells were grown in Leibovitz’s-15 medium (catalogue no.

L1518; Sigma-Aldrich) supplemented with 1 % of 2 mM-gluta-

max 100 £ (Gibco Life Technologies), 1 % antibiotics (penicil-

lin, 10 000 U/ml, streptomycin, 10 000mg/ml and amphotericin

B, 25mg/ml; Lonzo Medprobe) and 10 % fetal calf serum

(Sigma-Aldrich) to which taurine was added or not added

(Sigma-Aldrich). The mean analysed taurine concentration in

Leibovitz’s-15 medium not supplemented with taurine was

14 (SE 5)mM (n 4), while the corresponding taurine-

supplemented media contained 25 (SE 0·5) mM-taurine close

to the physiological concentration in the liver of Atlantic

salmon fed adequate methionine and cyst(e)ine (26 mM)

calculated from Espe et al.(14). Cells were grown for 3 d on

laminin-coated (1·8mg/cm2; Sigma-Aldrich) flasks and cover

slides before the addition of 100mM-CdCl2 (prepared in sterile

water as described elsewhere(46)) to half of the cells and cells

were allowed to grow for 24 h until harvested at day 4. Cells

were grown at a density of 0·5 mill cells/cm2 and a tempera-

ture of 9 ^ 0·58C in the dark in a normal atmosphere

incubator (Sanyo Incubator model MIR-253). The cell study

design is illustrated in Fig. 1.

Isolated cells

Grown in L-15 supplemented with
25 mM-taurine for 3 d

Grown in taurine-unsupplemented
L-15 for 3 d

Not added CdCl2

Not added CdCl2

Added 100 µM-CdCl2

Added 100 µM-CdCl2

Fig. 1. Schematic illustrating the design of the cell study conducted. Primary liver cells isolated from Atlantic salmon (Salmo salar) were grown in the respective

media containing 14mM- or 25 mM-taurine for 3 d before supplemented or unsupplemented with 100mM-CdCl2. Following CdCl2 supplementation, cells were grown

for 24 h before being harvested for imaging and analyses. Each cell study was repeated with cells isolated from four fish and at each trial, the four treatments

were assessed.
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Chemical analyses

Amino acid composition in deproteinised cells was deter-

mined on the Biochrom 20 plus Amino Acid Analyzer (Amer-

sham Pharmacia Biotech) equipped with a lithium column

using post-column derivatisation with ninhydrin as described

previously(47). Standards for both amino acids and N-metab-

olites were from Sigma. SAM and SAH were analysed as

described in Wang et al.(48). Total homocysteine was deter-

mined as described previously(14).

Cells were harvested and washed three times in 10 ml PBS

buffer. Thereafter, cells were lysed in 1 ml lysis buffer

(50 mM-Tris–HCl, pH 8·0, 150 mM-NaCl and 1 % NP-40 contain-

ing protease inhibitor cocktail) on ice for 30 min. The lysed

cells were spun at 10 000 g for 15 min and the supernatant

was aliquoted and stored at 2808C until analysed. Betaine

and choline were analysed in the lysed supernatants by LC

MS/MS (Bevital, www.bevital.no).

Assessment of cell viability

Viability of the cells was estimated by the In vitro Toxicology

assay kit, MTT (3-(4,5-dimethylthizol-2yl)-2,5-diphenyltetrazo-

lium bromide) following the instructions from the supplier

using a dual wavelength (570 and 690 nm, catalogue no.

M5655, M8910; Sigma-Aldrich). The assay is based on the

fact that the yellow-coloured MTT will be cleaved by mito-

chondrial dehydrogenases present in viable cells yielding a

purple colour, while dead cells will remain yellow. Thus, the

higher the absorbance, the less is the viability. Change in

absorbance was calculated relative to the absorbance of

dead cells, which was set equal to 100.

In addition, viable or dead cells were assessed by the Viabi-

lity/Cytotoxicity Assay Kit for Animal Live and Dead Cells (cat-

alogue no. 30 002; Biotum, Inc.). The EthD-III component

binds to nucleic acids and produces a red fluorescence in

dead cells. EthD-III is excluded by intact membranes and

live cells are stained green by calcein AM. The assay followed

the procedure given by the supplier. Cells were investigated

for fluorescence using a Confocal Microscope (Leica TCS

SP2 AOBS; Molecular Imagine Center, University of Bergen).

Results are given as calcein AM-positive cells as a percentage

of total cells present on each image.

Transmission electron microscopy

Cell cultures were prepared for transmission electron

microscopy (Jeol JEM-1230; Molecular Imaging Center, Univer-

sity of Bergen). Electron microscopy was used to evaluate any

structural changes in the primary liver cells following the

treatments.

DNA fragmentation

Monolayer cells (without the supernatants) were lysed in

liquid N2 before purified for total DNA using the DNeasyw

Blood & Tissue Kit (catalogue no. 69 504), following

the supplier’s instructions (Qiagen), and frozen at 2808C

until analysed. Samples were dissolved in loading buffer

(1:6, v/v, 0·25 % bromophenol blue, 0·25 % xylene cyanol

and 15 % Ficoll in distilled water). DNA fragmentation was

analysed on 1 % agarose gels, stained with GelRed Nucleic

Acid Stain (Biotium) and run with 1 £ Tris–acetate–EDTA

buffer at 70 V for 1 h. Molecular weight ladder (2log DNA

ladder 0·1-10 kb, catalogue no. NEBFN3200; BioLab, Inc.)

was used. DNA fragmentation was visualised using a Chemi

Chemiluminescence Image Capture (Syngene).

Western blot

Cells (22·5 million) were harvested and washed three times in

10 ml PBS buffer. Thereafter, cells were lysed in 1 ml lysis

buffer (50 mM-Tris–HCl, pH 8·0, 150 mM-NaCl and 1 % NP-40

containing a protease inhibitor cocktail tablet, 11697498001;

Roche) on ice for 30 min. The lysed cells were centrifuged at

10 000g for 15 min and the supernatants were stored at

2808C until analysed. Samples were prepared for SDS gel

by mixing equal amounts of sample and Laemmli sample

buffer (catalogue no. 161-0710; BioRad) before heating the

samples for 5 min at 958C. Samples and molecular weight

marker (Precision Plus Proteine WesternCe Standards, catalo-

gue no. 161-0376; BioRad) were loaded into precast 10 % SDS

gels (catalogue no. 456-1033; BioRad) using a BioRad Mini

Proteanw Cell according to the manufacturer’s instructions.

Proteins were blotted onto a polyvinylidene difluouride mem-

brane (catalogue no. 162-0176; BioRad) for 1 h at 100 V, using

the BioRad Criterione Blotter System. The membranes were

washed five times with 20 ml TPBS buffer (PBS/0·1 %

Tween-20), shaking, before blocking for 1 h with blocking

buffer (catalogue no. RPN2135; GE Healthcare) or 5 %

bovine serum albumin/TPBS, shaking. Primary antibodies

were added directly into the blocking solution (1:1000) and

incubated overnight at 48C, shaking. The following primary

rabbit antibodies from Cell Signaling (MedProbe) were as fol-

lows: b-actin (no. 4967), P-p63 (S160/162, no. 4981), P-p42/44

MAPK (T202/Y204, no. 4370), Bax (no. 2772), Bcl-2 (50E3,

no. 2870), P-p38 (Thr180/Tyr182, no. 9215), while active

caspase-3 (ab13847) and P450 (A1 þ A2 cytochrome,

no. ab37131) were purchased from AbCam. The membranes

were washed as described above. Then, horseradish peroxi-

dase-linked secondary anti-rabbit IgG (1:500, no. 7074; Cell

Signaling) and Precision Proteine StrepTactin-HRP conjugate

(catalogue no. 161-0380; BioRad) were added to freshly

made blocking buffer (catalogue no. RPN2135; GE Healthcare)

and incubated for 2 h, shaking, before washing (six times,

20 ml) with PBS buffer. The Amersham ECL-Advancee

Western Blotting detection kit (GE Healthcare, catalogue no.

RPN2135) and the Chemi Chemiluminescence Image capture

(Syngene) were used to detect the proteins.

Statistical analyses

Values are reported as means with their standard errors, based

on the liver cells isolated from four individual fish (n 4).

Results of taurine supplementation were calculated relative

to unsupplemented taurine cells and assessed by the
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Mann–Whitney U test. P values less than 0·05 were considered

as statistically different. All statistical analyses were performed

using the Statistica program (version 9; Statsoft, Inc.).

Results

Supplementation of taurine to the media improved the

viability of the cells (Fig. 2). The addition of CdCl2
strengthened this effect of taurine supplementation on cell

survival without showing any interaction between CdCl2

and taurine. Cells grown in media without taurine sup-

plementation had a more condensed nucleus, while taurine

supplementation seemed to counteract this even in the

cells stressed with CdCl2 (Fig. 3(a)). Further, the cells

with the more condensed nuclei had more smeared DNA

when compared with cells grown in taurine-supplemented

media (Fig. 3(b)). As expected, the mitochondrial mem-

branes in cells grown in media supplemented with CdCl2
were more damaged when compared with cells grown in

media unsupplemented with CdCl2. However, taurine sup-

plementation by itself did not seem to affect the mitochon-

drial membranes (Fig. 4).

Taurine supplementation increased the intracellular taurine

concentration approximately ten times (from 1093 to

10 982mM per million cells), but none of the other free

amino acids was affected by taurine supplementation (data

not shown). SAM, SAH and total homocysteine were less in

cells grown in media supplemented with taurine, but the

capacity of methylation analysed as the SAM:SAH ratio was

unaffected by taurine supplementation (Fig. 5). Neither cho-

line nor betaine was affected by taurine supplementation

(Fig. 5).

As CdCl2 increased the effects of taurine supplementation

without showing any interaction with taurine on either the via-

bility or the concentration of metabolites in sulphur amino

acid metabolism, the abundance of proteins associated with

apoptosis focused on taurine supplementation only (i.e. with-

out taurine was set equal to 100 when independent of CdCl2
administration). The abundance of active cleaved caspase-3

(P¼0·08) was reduced when cells were grown in media sup-

plemented with taurine, while Bax (P¼0·39) and Bcl-2

(P¼1·0) were unaffected by the treatment (Fig. 6). Further-

more, taurine supplementation decreased the protein abun-

dance of the phosphorylated MAPK (P-p63, P-p42/44, P-p38,

P¼0·02, P¼0·001 and P¼0·063, respectively). Additionally,

taurine supplementation reduced the abundance of P450

(P¼0·02; Fig. 6).

Discussion

Here, we report that taurine supplementation improves the

viability of primary liver cells and reduces the abundance of

some proteins associated with apoptosis (caspase-3, MAPK

and P450), while others were unaffected by the treatment

(Bax and Bcl-2). Risso-de Faverney et al.(49) analysed Bcl-2

family proteins and caspase activation following Cd-induced

apoptosis in rainbow trout. Cd increased the abundance of

caspase-3, 9 and 8, and increased cytosolic cytochrome c and

decreased mitochondrial cytochrome c. Similarly, Bax

increased in the mitochondria and decreased in the cytosol.

In accordance with the results reported by Risso-de Faverney

et al.(49), the present study found that supplementation of

CdCl2 reduced viability. The lack of significant changes in

Bax and Bcl-2 in the present experiment may be due to the

fact that whole cells were analysed and not fractionised into

mitochondrial and cytosolic fractions.

Cells grown in the media without taurine supplementation

tended to have a higher abundance of active caspase-3 and
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Fig. 2. (a) Taurine supplementation improved viability (P¼0·03), while the

addition of CdCl2 reduced the viability (P¼0·001) and no interaction between

taurine and cadmium occurred (P¼0·47). Values are means of four repeated

treatments, with their standard errors represented by vertical bars. (b) Repre-

sentative images of cells grown in media supplemented or unsupplemented

with taurine stained for viable cells. The red-coloured cells are dead while the

green-coloured cells are alive. Cells grown in media supplemented with taur-

ine had better viability (P¼0·052; Mann–Whitney U test).
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+Taurine+CdCl2

(a)

(b)

+Taurine–CdCl2

–Taurine–CdCl2–Taurine+CdCl2

Taurine
CdCl2

– + – +
– – + +

2 µm 2 µm

2 µm2 µm

Fig. 3. Representative transmission electron microscopy images of liver cells isolated from Atlantic salmon (Salmo salar) (n 4) and grown in media supplemented

or unsupplemented with taurine and CdCl2. Cells grown in media without taurine supplementation had a more condensed chromatin in the nucleus ( ! ) when

compared with cells grown in media supplemented with taurine. (a) Addition of CdCl2 to the media increased the abundance of apoptotic cells. When cells were

grown without taurine supplementation, a higher DNA smearing occurred. (b) Representative image showing the DNA smearing occurring in cells grown in the

four different media. Scale bar ¼ 2·0mm.
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showed more DNA fragmentation, indicative of increased

apoptosis when compared with cells grown in media sup-

plemented with taurine. Recently, Ghosh et al.(50) reported

that active caspase-3 increased in the heart of transgenic

mice with reduced cystathionine b-synthase activity, the

rate-limiting enzyme for trans-sulfuration(51), especially when

fed high-fat diets. Also, these mice had less total glutathione

and oxidised glutathione in the heart, but no differences in

liver glutathione status were observed. We did not analyse

glutathione status in the isolated liver cells, but neither cata-

lase nor glutathione peroxidase gene expression was affected

(data not shown) by the treatment in the present study.

Reduced cystathionine b-synthase activity not only decreases

taurine and glutathione synthesis but may also increase homo-

cysteine(51,52), especially so if betaine is limiting. In the present

study, neither betaine nor choline was affected by taurine sup-

plementation, but SAM, SAH and homocysteine all reduced

following taurine supplementation. Zulli et al.(6) reported

that elevated homocysteine present in rabbits fed an athero-

genic diet (high cholesterol and methionine) normalised

after taurine administration. However, taurine supplemen-

tation failed to improve hyperlipidaemia or the oxidative

stress system(6) in rabbits. Thus, the elevated total

–Taurine+CdCl2 –Taurine–CdCl2

+Taurine+CdCl2 +Taurine–CdCl2

0·5 µm 0·5 µm

0·5 µm 0·5 µm

Fig. 4. Representative transmission electron microscopy images of the mitochondrion in liver cells isolated from Atlantic salmon (Salmo salar) (n 4) and grown in

media supplemented or unsupplemented with taurine and CdCl2. Cells supplemented with CdCl2 had more swollen mitochondrial membranes ( ! ) in line with the

lower viability of these cells. Taurine did not seem to affect this swelling ( ! ). Scale bar ¼ 0·5mm.
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Fig. 5. Metabolites in sulphur amino acid metabolism analysed in free

monolayer liver cells isolated from Atlantic salmon (Salmo salar) and grown

for 4 d in media supplemented or unsupplemented with taurine and CdCl2
(n 4). Values are relative means, as cells grown without taurine supplemen-

tation are set equal to 100, with their standard errors represented by vertical

bars. S-adenosylmethionine (SAM), S-adenosyl homocysteine (SAH) and

total homocysteine (tHcy) all reduced (P¼0·03, 0·03 and 0·1, respectively,

without CdCl2 and P¼0·02. 0·02 and 0·03 with CdCl2 supplementation;

Mann–Whitney U test) by taurine supplementation. Capacity of methylation

(SAM:SAH ratio) and methyl donor concentration (choline and betaine) was

unaffected by the treatment (P.0·05). , Without CdCl2; , with CdCl2.
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homocysteine present in cells grown in media without taurine

supplementation also may have contributed to apoptosis in

the present study.

Previous studies have shown that phosphorylated MAPK

such as P-p63, P-p42/44 and P-p38 increase during apopto-

sis(25,28–30,53). P450 has also been reported to increase in

apoptotic cells(24,29). The data from the present study thus

support increased apoptosis in cells grown in media without

taurine supplementation. P-p38 may activate the PPARa

pathway(18,30,53), thus affecting lipid mobilisation. As cells

grown in media supplemented with taurine had less P-p38,

this suggests the involvement of MAPK signalling pathways

for the reduced fat accretion reported when Atlantic

salmon were fed diets supplemented with taurine(20,21).

Unfortunately, this could not be answered in the present

study as the gene expression of PPARa was unaffected by

the treatment (results not shown). However, cytokine

activation and lipid mobilisation deserve to be studied in

more detail both in vitro and in vivo to unravel cell

signalling linking fuel sensing, mobilisation of lipids and

MAPK signalling.

Taurine also functions as an osmolyte; therefore sup-

plementation of taurine to the media may have reduced cell

shrinkage that acts as a signal for programmed cell

death(17,40,54). This may also add to the increased apoptosis

observed in the present study.

Several investigators have reported that oxidation is a major

determinant for apoptosis and cell dysfunction(24,30,45,55). Even

though taurine administration has been reported to prevent

apoptosis in experimental inflammatory cell models, taurine

treatment alone did not affect either Bax or Bcl-2 expression,

oxidative stress or apoptosis in normal rats(55). On the

contrary, we here report that taurine administration by itself

significantly improved cell viability and reduced the phos-

phorylated MAPK. As both too little(10) and too much(56) of

the sulphur amino acids have been reported to affect the

amount of reactive oxygen species and apoptosis, further

studies are required to assess the minimum requirement of

taurine supplementation to attenuate apoptosis including

possible interactions with lipid mobilisation. In doing so, the

primary liver cells should be fractionised to enable study of

the localisation of apoptotic proteins(49).

Bax P-p63

Bcl-2 P-p42/44

Caspase-3 P-p38

β-Actin CYP450 (P450)

– + – +

– + – +

– + – +

– + – +

Taurine

CdCl2

120

100

80

60

R
el

at
iv

e 
to

 c
el

ls
 g

ro
w

th
w

it
h

o
u

t 
ta

u
ri

n
e

40

20

0

W
ith

out t
au

rin
e

Bax
/ac

tin

Bcl-
2/a

cti
n

Acti
ve

 ca
sp

as
e-

3

P-p
63

/ac
tin

P-p
42

/44
/ac

tin

P-p
38

/ac
tin

P-4
50

/ac
tin

Fig. 6. Abundance of proteins associated with apoptosis as affected by taurine supplementation. Cytochrome P450 (P¼0·02) and the phosphorylated mitogen-

activating phosphokinase decreased following taurine supplementation (P-p63 and P-p42/44, P¼0·02 and P¼0·001, respectively; Mann–Whitney U test). Also,

active caspase-3 abundance and P-p38 decreased when taurine was supplemented, but did not reach significant difference (P¼0·08 and P¼0·06, respectively).

Bax (P¼0·39) and Bcl-2 (P¼1·0) abundance was not affected by taurine supplementation. The proteins present were calculated relative to actin present in each

cell lysate, and presented as relative means, as cells grown in media without taurine supplementation is set equal to 100, with their standard errors represented

by vertical bars. Representative images from the Western blot of liver cells isolated from four fish (n 4).
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Conclusion

Taurine may be conditionally indispensable in Atlantic

salmon, as it attenuates apoptosis and protects nuclear DNA

in primary liver cells isolated from Atlantic salmon. Neither

the capacity of methylation nor betaine or choline availability

was affected by taurine treatment. More research is needed to

determine the minimum concentration of taurine necessary to

attenuate apoptosis including cell localisation and mobility of

anti-apoptotic and pro-apoptotic proteins.
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