
26 The Compiler Frontend: Parsing
and Type Checking

Compiling source code into executable programs involves a fairly complex set of

libraries, linkers, and assemblers. While Dune mostly hides this complexity from you,

it's still useful to understand how these pieces work so that you can debug performance

problems, or come up with solutions for unusual situations that aren't well handled by

existing tools.

OCaml has a strong emphasis on static type safety and rejects source code that

doesn'tmeet its requirements as early as possible. The compiler does this by running the

source code through a series of checks and transformations. Each stage performs its job

(e.g., type checking, optimization, or code generation) and discards some information

from the previous stage. The �nal native code output is low-level assembly code that

doesn't know anything about the OCaml modules or objects that the compiler started

with.

In this chapter, we'll cover the following topics:

• An overview of the compiler codebase and the compilation pipeline, and what each

stage represents

• Parsing, which goes from raw text to the abstract syntax tree

• PPX's, which further transform the AST

• Type-checking, including module resolution

The details of the remainder of the compilation process, which gets all the way to

executable code comes next, in Chapter 27 (The Compiler Backend: Bytecode and

Native code).

26.1 An Overview of the Toolchain

The OCaml tools accept textual source code as input, using the �lename extensions

.ml and .mli for modules and signatures, respectively. We explained the basics of the

build process in Chapter 5 (Files, Modules, and Programs), so we'll assume you've

built a few OCaml programs already by this point.

Each source �le represents a compilation unit that is built separately. The compiler

generates intermediate �les with di�erent �lename extensions to use as it advances

through the compilation stages. The linker takes a collection of compiled units and

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.030

448 The Compiler Frontend: Parsing and Type Checking

produces a standalone executable or library archive that can be reused by other appli-

cations.

The overall compilation pipeline looks like this:

Notice that the pipeline branches toward the end. OCaml has multiple compiler

backends that reuse the early stages of compilation but produce very di�erent �nal

outputs. The bytecode can be run by a portable interpreter and can even be transformed

into JavaScript (via js_of_ocaml1) or C source code (via OCamlCC2). The native

code compiler generates specialized executable binaries suitable for high-performance

applications.

26.1.1 Obtaining the Compiler Source Code

Although it's not necessary to understand the examples, you may �nd it useful to have

a copy of the OCaml source tree checked out while you read through this chapter. The

source code is available from multiple places:

1 http://ocsigen.org/js_of_ocaml
2 https://github.com/ocaml-bytes/ocamlcc

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

http://ocsigen.org/js_of_ocaml
https://github.com/ocaml-bytes/ocamlcc
https://doi.org/10.1017/9781009129220.030

26.2 Syntax Errors 449

• Stable releases as zip and tar archives from the OCaml download site3

• A Git repository with all the history and development branches included, browsable

online at GitHub4

The source tree is split up into subdirectories. The core compiler consists of:

asmcomp/ Native-code compiler that converts OCaml into high performance native

code executables.

bytecomp/ Bytecode compiler that converts OCaml into an interpreted executable

format.

driver/ Command-line interfaces for the compiler tools.

file_formats/ Serializer and deserializers for on-disk �les used by the compiler

driver.

lambda/ The lambda conversion pass.

middle_end/ The clambda, closure and �ambda passes.

parsing/ The OCaml lexer, parser, and libraries for manipulating them.

runtime/ The runtime library with the garbage collector.

typing/ The static type checking implementation and type de�nitions.

A number of tools and scripts are also built alongside the core compiler:

debugger/ The interactive bytecode debugger.

toplevel/ Interactive top-level console.

stdlib/ The compiler standard library, including the Pervasives module.

otherlibs/ Optional libraries such as the Unix and graphics modules.

tools/ Command-line utilities such as ocamldep that are installed with the compiler.

testsuite/ Regression tests for the core compiler.

We'll go through each of the compilation stages now and explain how they will be

useful to you during day-to-day OCaml development.

26.2 Parsing Source Code

When a source �le is passed to theOCaml compiler, its �rst task is to parse the text into a

more structured abstract syntax tree (AST). The parsing logic is implemented inOCaml

itself using the techniques described earlier in Chapter 20 (Parsing with OCamllex and

Menhir). The lexer and parser rules can be found in the parsing directory in the source

distribution.

26.2.1 Syntax Errors

TheOCaml parser's goal is to output a well-formedAST data structure to the next phase

of compilation, and so it fails on any source code that doesn't match basic syntactic

3 http://ocaml.org/docs/install.html
4 https://github.com/ocaml/ocaml

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

http://ocaml.org/docs/install.html
https://github.com/ocaml/ocaml
https://doi.org/10.1017/9781009129220.030

450 The Compiler Frontend: Parsing and Type Checking

requirements. The compiler emits a syntax error in this situation, with a pointer to the

�lename and line and character number that's as close to the error as possible.

Here's an example syntax error that we obtain by performing a module assignment

as a statement instead of as a let binding:

let () =
module MyString = String;
()

The code results in a syntax error when compiled:

$ ocamlc -c broken_module.ml
File "broken_module.ml", line 2, characters 2-8:
2 | module MyString = String;

^^^^^^
Error: Syntax error
[2]

The correct version of this source code creates the MyString module correctly via

a local open, and compiles successfully:

let () =
let module MyString = String in
()

The syntax error points to the line and character number of the �rst token that

couldn't be parsed. In the broken example, the module keyword isn't a valid token at

that point in parsing, so the error location information is correct.

26.2.2 Generating Documentation from Interfaces

Whitespace and source code comments are removed during parsing and aren't signi�-

cant in determining the semantics of the program. However, other tools in the OCaml

distribution can interpret comments for their own ends.

OCaml uses specially formatted comments in the source code to generate docu-

mentation bundles. These comments are combined with the function de�nitions and

signatures, and output as structured documentation in a variety of formats. Tools

such as odoc and ocamldoc can generate HTML pages, LaTeX and PDF documents,

UNIX manual pages, and even module dependency graphs that can be viewed using

Graphviz5 .

Here's a sample of some source code that's been annotatedwith docstring comments:

(** The first special comment of the file is the comment associated
with the whole module. *)

(** Comment for exception My_exception. *)
exception My_exception of (int -> int) * int

(** Comment for type [weather] *)
type weather =
| Rain of int (** The comment for constructor Rain *)

5 http://www.graphviz.org

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

http://www.graphviz.org
https://doi.org/10.1017/9781009129220.030

26.3 Extension Attributes 451

| Sun (** The comment for constructor Sun *)

(** Find the current weather for a country
@author Anil Madhavapeddy
@param location The country to get the weather for.

*)
let what_is_the_weather_in location =
match location with
| `Cambridge -> Rain 100
| `New_york -> Rain 20
| `California -> Sun

The docstrings are distinguished by beginning with the double asterisk. There are

formatting conventions for the contents of the comment to mark metadata. For instance,

the @tag �elds mark speci�c properties such as the author of that section of code.

There are two main tools used to manipulate docstring comments: the ocamldoc

tool that is supplied with the compiler, and the odoc tool that is developed outside the

compiler but is intended to be the long-term replacement. Try compiling the HTML

documentation and UNIX man pages by running ocamldoc over the source �le:

$ mkdir -p html man/man3
$ ocamldoc -html -d html doc.ml
$ ocamldoc -man -d man/man3 doc.ml
$ man -M man Doc

You should now have HTML�les inside the html/ directory and also be able to view

the UNIX manual pages held in man/man3. There are quite a few comment formats and

options to control the output for the various backends. Refer to the OCaml manual6

for the complete list.

You can also use odoc to generate complete snapshots of your project via integration

with dune, as described earlier in Chapter 22.2.2 (Browsing Interface Documentation).

26.3 Preprocessing with ppx

One powerful feature in OCaml is a facility to extend the standard language via

extension points. These represent placeholders in the OCaml syntax tree and are

ignored by the standard compiler tooling, beyond being delimited and stored in the

abstract syntax tree alongside the normal parsed source code. They are intended to

be expanded by external tools that select extension nodes that can interpret them. The

external tools can choose to generate further OCaml code by transforming the input

syntax tree, thus forming the basis of an extensible preprocessor for the language.

There are two primary forms of extension points in OCaml: attributes and extension

nodes. Let's �rst run through some examples of what they look like, and then see how

to use them in your own code.

6 https://ocaml.org/manual/native.html

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

https://ocaml.org/manual/native.html
https://doi.org/10.1017/9781009129220.030

452 The Compiler Frontend: Parsing and Type Checking

26.3.1 Extension Attributes

Attributes supply additional information that is attached to a node in the OCaml syntax

tree, and subsequently interpreted and expanded by external tools.

The basic form of an attribute is the [@ ...] syntax. The number of @ symbols

de�nes which part of the syntax tree the attribute is bound to:

• a single [@ binds using a post�x notation to algebraic categories such as expressions

or individual constructors in type de�nitions.

• a double [@@ binds to blocks of code, such as module de�nitions, type declarations

or class �elds.

• a triple [@@@ appears as a standalone entry in a module implementation or signature,

and are not tied to any speci�c source code node.

The OCaml compiler has some useful builtin attributes that we can use to illustrate

their usewithout requiring any external tools. Let's �rst look at the use of the standalone

attribute @@@warning to toggle an OCaml compiler warning.

module Abc = struct

[@@@warning "+non-unit-statement"]
let a = Sys.get_argv (); ()

[@@@warning "-non-unit-statement"]
let b = Sys.get_argv (); ()
end;;

Line 4, characters 11-26:

Warning 10 [non-unit-statement]: this expression should have type

unit.

module Abc : sig val a : unit val b : unit end

The warning in our example is taken from the compiler manual page7 . This warning

emits amessage if the expression in a sequence doesn't have type unit. The @@@warning

nodes in the module implementation cause the compiler to change its behavior within

the scope of that structure only.

An annotation can also be more narrowly attached to a block of code. For example, a

module implementation can be annotated with @@deprecated to indicate that it should

not be used in new code:

module Planets = struct
let earth = true
let pluto = true

end [@@deprecated "Sorry, Pluto is no longer a planet. Use the
Planets2016 module instead."];;

module Planets : sig val earth : bool val pluto : bool end

module Planets2016 = struct
let earth = true
let pluto = false

end;;
module Planets2016 : sig val earth : bool val pluto : bool end

7 https://ocaml.org/manual/native.html

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

https://ocaml.org/manual/native.html
https://doi.org/10.1017/9781009129220.030

26.3 Extension Nodes 453

In this example, the @@deprecated annotation is only attached to thePlanetsmodule,

and the human-readable argument string redirects developers to the newer code. Now

if we try to use the value that has been marked as deprecated, the compiler will issue

a warning.

let is_pluto_a_planet = Planets.pluto;;
Line 1, characters 25-38:

Alert deprecated: module Planets

Sorry, Pluto is no longer a planet. Use the Planets2016 module

instead.

val is_pluto_a_planet : bool = true

let is_pluto_a_planet = Planets2016.pluto;;
val is_pluto_a_planet : bool = false

Finally, an attribute can also be attached to an individual expression. In the next

example, the @warn_on_literal_pattern attribute indicates that the argument to the

type constructor should not be pattern matched upon with a constant literal.

type program_result =
| Error of string [@warn_on_literal_pattern]
| Exit_code of int;;

type program_result = Error of string | Exit_code of int

let exit_with = function
| Error "It blew up" -> 1
| Exit_code code -> code
| Error _ -> 100;;

Line 2, characters 11-23:

Warning 52 [fragile-literal-pattern]: Code should not depend on the

actual values of

this constructor's arguments. They are only for information

and may change in future versions. (See manual section 11.5)

val exit_with : program_result -> int = <fun>

26.3.2 Commonly Used Extension Attributes

We have already used extension points in Chapter 21 (Data Serialization with S-

Expressions) to generate boilerplate code for handling s-expressions. These are in-

troduced by a third-party library using the (preprocess) directive in a dune �le, for

example:

(library
(name hello_world)
(libraries core)
(preprocess (pps ppx_jane))

This allows you to take advantage of a community of syntax augmentation. There

are also a number of builtin attributes in the core OCaml compiler. Some are perfor-

mance oriented and give directives to the compiler, whereas others will activate usage

warnings. The full list is available in the attributes section8 of the OCaml manual.

8 https://ocaml.org/manual/attributes.html

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

https://ocaml.org/manual/attributes.html
https://doi.org/10.1017/9781009129220.030

454 The Compiler Frontend: Parsing and Type Checking

26.3.3 Extension Nodes

While extension points are useful for annotating existing source code, we also need a

mechanism to store generic placeholders within the OCaml AST for code generation.

OCaml provides this facility via the extension node syntax.

The general syntax for an extension node is [%id expr], where id is an identi�er

for a particular extension node rewriter and expr is the payload for the rewriter to parse.

An in�x form is also available when the payload is of the same kind of syntax. For

example let%foo bar = 1 is equivalent to [%foo let bar = 1].

We've already seen extension nodes in use via the Core syntax extensions earlier

in the book, where they act as syntactic sugar for error handling (let%bind), for

command-line parsing (let%map) or inline testing (let%expect_test). Extension nodes

are introduced via dune rules in the same fashion as extension attributes, via the

(preprocess) attribute.

26.4 Static Type Checking

After obtaining a valid abstract syntax tree, the compiler has to verify that the code

obeys the rules of the OCaml type system. Code that is syntactically correct but misuses

values is rejected with an explanation of the problem.

Although type checking is done in a single pass in OCaml, it actually consists of

three distinct steps that happen simultaneously:

automatic type inference An algorithm that calculates types for a module without

requiring manual type annotations

module system Combines software components with explicit knowledge of their type

signatures

explicit subtyping Checks for objects and polymorphic variants

Automatic type inference lets you write succinct code for a particular task and have

the compiler ensure that your use of variables is locally consistent.

Type inference doesn't scale to very large codebases that depend on separate com-

pilation of �les. A small change in one module may ripple through thousands of other

�les and libraries and require all of them to be recompiled. The module system solves

this by providing the facility to combine and manipulate explicit type signatures for

modules within a large project, and also to reuse them via functors and �rst-class

modules.

Subtyping in OCaml objects is always an explicit operation (via the :> operator).

This means that it doesn't complicate the core type inference engine and can be tested

as a separate concern.

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.030

26.4 Displaying Inferred Types from the Compiler 455

26.4.1 Displaying Inferred Types from the Compiler

We've already seen how you can explore type inference directly from the toplevel. It's

also possible to generate type signatures for an entire �le by asking the compiler to do

the work for you. Create a �le with a single type de�nition and value:

type t = Foo | Bar
let v = Foo

Now run the compiler with the -i �ag to infer the type signature for that �le. This

runs the type checker but doesn't compile the code any further after displaying the

interface to the standard output:

$ ocamlc -i typedef.ml
type t = Foo | Bar
val v : t

The output is the default signature for the module that represents the input �le. It's

often useful to redirect this output to an mli �le to give you a starting signature to edit

the external interface without having to type it all in by hand.

The compiler stores a compiled version of the interface as a cmi �le. This interface

is either obtained from compiling an mli signature �le for a module, or by the inferred

type if there is only an ml implementation present.

The compiler makes sure that your ml and mli �les have compatible signatures. The

type checker throws an immediate error if this isn't the case. For example, if you have

this as your ml �le:

type t = Foo

and this as your mli:

type t = Bar

then, when you try to build, you'll get this error:

$ ocamlc -c conflicting_interface.mli conflicting_interface.ml
File "conflicting_interface.ml", line 1:
Error: The implementation conflicting_interface.ml

does not match the interface conflicting_interface.cmi:
Type declarations do not match:
type t = Foo

is not included in
type t = Bar

Constructors number 1 have different names, Foo and Bar.
File "conflicting_interface.mli", line 1, characters 0-12:
Expected declaration

File "conflicting_interface.ml", line 1, characters 0-12:
Actual declaration

[2]

Which Comes First: The ml or the mli?

There are two schools of thought on which order OCaml code should be written in. It's

very easy to begin writing code by starting with an ml �le and using the type inference

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.030

456 The Compiler Frontend: Parsing and Type Checking

to guide you as you build up your functions. The mli �le can then be generated as

described, and the exported functions documented.

If you're writing code that spans multiple �les, it's sometimes easier to start by

writing all the mli signatures and checking that they type-check against one another.

Once the signatures are in place, you canwrite the implementations with the con�dence

that they'll all glue together correctly, with no cyclic dependencies among the modules.

As with any such stylistic debate, you should experiment with which system works

best for you. Everyone agrees on one thing though: no matter in what order you write

them, production code should always explicitly de�ne an mli �le for every ml �le in

the project. It's also perfectly �ne to have an mli �le without a corresponding ml �le if

you're only declaring signatures (such as module types).

Signature �les provide a place to write succinct documentation and to abstract

internal details that shouldn't be exported. Maintaining separate signature �les also

speeds up incremental compilation in larger code bases, since recompiling a mli

signature is much faster than a full compilation of the implementation to native code.

26.4.2 Type Inference

Type inference is the process of determining the appropriate types for expressions

based on their use. It's a feature that's partially present in many other languages such

as Haskell and Scala, but OCaml embeds it as a fundamental feature throughout the

core language.

OCaml type inference is based on the Hindley-Milner algorithm, which is notable

for its ability to infer the most general type for an expression without requiring any

explicit type annotations. The algorithm can deduce multiple types for an expression

and has the notion of a principal type that is the most general choice from the possible

inferences.Manual type annotations can specialize the type explicitly, but the automatic

inference selects the most general type unless told otherwise.

OCaml does have some language extensions that strain the limits of principal type

inference, but by and large, most programs you write will never require annotations

(although they sometimes help the compiler produce better error messages).

Adding Type Annotations to Find Errors

It's often said that the hardest part of writing OCaml code is getting past the type

checker�but once the code does compile, it works correctly the �rst time! This is an

exaggeration of course, but it can certainly feel true when moving from a dynamically

typed language. The OCaml static type system protects you from certain classes of

bugs such as memory errors and abstraction violations by rejecting your program

at compilation time rather than by generating an error at runtime. Learning how to

navigate the type checker's compile-time feedback is key to building robust libraries

and applications that take full advantage of these static checks.

There are a couple of tricks to make it easier to quickly locate type errors in your

code. The �rst is to introduce manual type annotations to narrow down the source of

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.030

26.4 Adding Type Annotations to Find Errors 457

your error more accurately. These annotations shouldn't actually change your types

and can be removed once your code is correct. However, they act as anchors to locate

errors while you're still writing your code.

Manual type annotations are particularly useful if you use lots of polymorphic

variants or objects. Type inference with row polymorphism can generate some very

large signatures, and errors tend to propagate more widely than if you are using more

explicitly typed variants or classes.

For instance, consider this broken example that expresses some simple algebraic

operations over integers:

let rec algebra =
function
| `Add (x,y) -> (algebra x) + (algebra y)
| `Sub (x,y) -> (algebra x) - (algebra y)
| `Mul (x,y) -> (algebra x) * (algebra y)
| `Num x -> x

let _ =
algebra (
`Add (
(`Num 0),
(`Sub (

(`Num 1),
(`Mul (

(`Nu 3),(`Num 2)
))

))
))

There's a single character typo in the code so that it uses Nu instead of Num. The

resulting type error is impressive:

$ ocamlc -c broken_poly.ml
File "broken_poly.ml", lines 9-18, characters 10-6:
9 |(
10 | `Add (
11 | (`Num 0),
12 | (`Sub (
13 | (`Num 1),
14 | (`Mul (
15 | (`Nu 3),(`Num 2)
16 |))
17 |))
18 |))
Error: This expression has type

[> `Add of
([< `Add of 'a * 'a
| `Mul of 'a * 'a
| `Num of int
| `Sub of 'a * 'a
> `Num]
as 'a) *
[> `Sub of 'a * [> `Mul of [> `Nu of int] * [> `Num of

int]]
]]

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.030

458 The Compiler Frontend: Parsing and Type Checking

but an expression was expected of type
[< `Add of 'a * 'a | `Mul of 'a * 'a | `Num of int | `Sub of

'a * 'a
> `Num]
as 'a

The second variant type does not allow tag(s) `Nu
[2]

The type error is perfectly accurate, but rather verbose and with a line number that

doesn't point to the exact location of the incorrect variant name. The best the compiler

can do is to point you in the general direction of the algebra function application.

This is because the type checker doesn't have enough information to match the

inferred type of the algebra de�nition to its application a few lines down. It calculates

types for both expressions separately, and when they don't match up, outputs the

di�erence as best it can.

Let's see what happens with an explicit type annotation to help the compiler out:

type t = [
| `Add of t * t
| `Sub of t * t
| `Mul of t * t
| `Num of int

]

let rec algebra (x:t) =
match x with
| `Add (x,y) -> (algebra x) + (algebra y)
| `Sub (x,y) -> (algebra x) - (algebra y)
| `Mul (x,y) -> (algebra x) * (algebra y)
| `Num x -> x

let _ =
algebra (
`Add (
(`Num 0),
(`Sub (

(`Num 1),
(`Mul (

(`Nu 3),(`Num 2)
))

))
))

This code contains exactly the same error as before, but we've added a closed type

de�nition of the polymorphic variants, and a type annotation to the algebra de�nition.

The compiler error we get is much more useful now:

$ ocamlc -i broken_poly_with_annot.ml
File "broken_poly_with_annot.ml", line 22, characters 14-21:
22 | (`Nu 3),(`Num 2)

^^^^^^^
Error: This expression has type [> `Nu of int]

but an expression was expected of type t
The second variant type does not allow tag(s) `Nu

[2]

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.030

26.4 Enforcing Principal Typing 459

This error points directly to the correct line number that contains the typo. Once you

�x the problem, you can remove the manual annotations if you prefer more succinct

code. You can also leave the annotations there, of course, to help with future refactoring

and debugging.

Enforcing Principal Typing

The compiler also has a stricter principal type checking mode that is activated via the

-principal �ag. This warns about risky uses of type information to ensure that the

type inference has one principal result. A type is considered risky if the success or

failure of type inference depends on the order in which subexpressions are typed.

The principality check only a�ects a few language features:

• Polymorphic methods for objects

• Permuting the order of labeled arguments in a function from their type de�nition

• Discarding optional labeled arguments

• Generalized algebraic data types (GADTs) present from OCaml 4.0 onward

• Automatic disambiguation of record �eld and constructor names (since OCaml 4.1)

Here's an example of principality warnings when used with record disambiguation.

type s = { foo: int; bar: unit }
type t = { foo: int }

let f x =
x.bar;
x.foo

Inferring the signature with -principal will show you a new warning:

$ ocamlc -i -principal non_principal.ml
File "non_principal.ml", line 6, characters 4-7:
6 | x.foo

^^^
Warning 18 [not-principal]: this type-based field disambiguation is

not principal.
type s = { foo : int; bar : unit; }
type t = { foo : int; }
val f : s -> int

This example isn't principal, since the inferred type for x.foo is guided by the

inferred type of x.bar, whereas principal typing requires that each subexpression's

type can be calculated independently. If the x.bar use is removed from the de�nition

of f, its argument would be of type t and not type s.

You can �x this either by permuting the order of the type declarations, or by adding

an explicit type annotation:

type s = { foo: int; bar: unit }
type t = { foo: int }

let f (x:s) =
x.bar;
x.foo

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.030

460 The Compiler Frontend: Parsing and Type Checking

There is now no ambiguity about the inferred types, since we've explicitly given the

argument a type, and the order of inference of the subexpressions no longer matters.

$ ocamlc -i -principal principal.ml
type s = { foo : int; bar : unit; }
type t = { foo : int; }
val f : s -> int

The dune equivalent is to add the �ag -principal to your build description.

(executable
(name principal)
(flags :standard -principal)
(modules principal))

(executable
(name non_principal)
(flags :standard -principal)
(modules non_principal))

The :standard directive will include all the default �ags, and then -principal will

be appended after those in the compiler build �ags.

$ dune build principal.exe
$ dune build non_principal.exe
File "non_principal.ml", line 6, characters 4-7:
6 | x.foo

^^^
Error (warning 18 [not-principal]): this type-based field

disambiguation is not principal.
[1]

Ideally, all code should systematically use -principal. It reduces variance in type

inference and enforces the notion of a single known type. However, there are drawbacks

to this mode: type inference is slower, and the cmi �les become larger. This is generally

only a problem if you extensively use objects, which usually have larger type signatures

to cover all their methods.

If compiling in principal mode works, it is guaranteed that the program will pass

type checking in non-principal mode, too. Bear in mind that the cmi �les generated

in principal mode di�er from the default mode. Try to ensure that you compile your

whole project with it activated. Getting the �les mixed up won't let you violate type

safety, but it can result in the type checker failing unexpectedly very occasionally. In

this case, just recompile with a clean source tree.

26.4.3 Modules and Separate Compilation

TheOCamlmodule system enables smaller components to be reused e�ectively in large

projects while still retaining all the bene�ts of static type safety. We covered the basics

of using modules earlier in Chapter 5 (Files, Modules, and Programs). The module

language that operates over these signatures also extends to functors and �rst-class

modules, described in Chapter 11 (Functors) and Chapter 12 (First-Class Modules),

respectively.

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.030

26.4 De�ning a Module Search Path 461

This section discusses how the compiler implements them in more detail. Modules

are essential for larger projects that consist of many source �les (also known as com-

pilation units). It's impractical to recompile every single source �le when changing

just one or two �les, and the module system minimizes such recompilation while still

encouraging code reuse.

The Mapping Between Files and Modules

Individual compilation units provide a convenient way to break up a big module

hierarchy into a collection of �les. The relationship between �les and modules can be

explained directly in terms of the module system.

Create a �le called alice.ml with the following contents:

let friends = [Bob.name]

and a corresponding signature �le:

val friends : Bob.t list

These two �les produce essentially the same result as the following code.

module Alice : sig
val friends : Bob.t list

end = struct
let friends = [Bob.name]

end

De�ning a Module Search Path

In the preceding example, Alice also has a reference to another module Bob. For the

overall type of Alice to be valid, the compiler also needs to check that the Bobmodule

contains at least a Bob.name value and de�nes a Bob.t type.

The type checker resolves such module references into concrete structures and

signatures in order to unify types across module boundaries. It does this by searching

a list of directories for a compiled interface �le matching that module's name. For

example, it will look for alice.cmi and bob.cmi on the search path and use the �rst

ones it encounters as the interfaces for Alice and Bob.

The module search path is set by adding -I �ags to the compiler command line with

the directory containing the cmi �les as the argument. Manually specifying these �ags

gets complex when you have lots of libraries, and is the reason why tools like dune

and ocamlfind exist. They both automate the process of turning third-party package

names and build descriptions into command-line �ags that are passed to the compiler

command line.

By default, only the current directory and the OCaml standard library will be

searched for cmi �les. The Stdlib module from the standard library will also be

opened by default in every compilation unit. The standard library location is obtained

by running ocamlc -where and can be overridden by setting the CAMLLIB environment

variable. Needless to say, don't override the default path unless you have a good reason

to (such as setting up a cross-compilation environment).

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.030

462 The Compiler Frontend: Parsing and Type Checking

Inspecting Compilation Units with ocamlobjinfo

For separate compilation to be sound, we need to ensure that all the cmi �les used to

type-check a module are the same across compilation runs. If they vary, this raises the

possibility of two modules checking di�erent type signatures for a common module

with the same name. This in turn lets the program completely violate the static type

system and can lead to memory corruption and crashes.

OCaml guards against this by recording a MD5 checksum in every cmi. Let's

examine our earlier typedef.ml more closely:

$ ocamlc -c typedef.ml
$ ocamlobjinfo typedef.cmi
File typedef.cmi
Unit name: Typedef
Interfaces imported:

cdd43318ee9dd1b187513a4341737717 Typedef
9b04ecdc97e5102c1d342892ef7ad9a2 Pervasives
79ae8c0eb753af6b441fe05456c7970b CamlinternalFormatBasics

ocamlobjinfo examines the compiled interface and displays what other compila-

tion units it depends on. In this case, we don't use any external modules other than

Pervasives. Every module depends on Pervasives by default, unless you use the

-nopervasives �ag (this is an advanced use case, and you shouldn't normally need it).

The long alphanumeric identi�er beside each module name is a hash calculated

from all the types and values exported from that compilation unit. It's used during type-

checking and linking to ensure that all of the compilation units have been compiled

consistently against one another. A di�erence in the hashes means that a compilation

unit with the same module name may have con�icting type signatures in di�erent

modules. The compiler will reject such programs with an error similar to this:

$ ocamlc -c foo.ml
File "foo.ml", line 1, characters 0-1:
Error: The files /home/build/bar.cmi

and /usr/lib/ocaml/map.cmi make inconsistent assumptions
over interface Map

This hash check is very conservative, but ensures that separate compilation remains

type-safe all the way up to the �nal link phase. Your build system should ensure that

you never see the preceding error messages, but if you do run into it, just clean out

your intermediate �les and recompile from scratch.

26.4.4 Wrapping Libraries with Module Aliases

The module-to-�le mapping described so far rigidly enforces a 1:1 mapping between

a top-level module and a �le. It's often convenient to split larger modules into separate

�les to make editing easier, but still compile them all into a single OCaml module.

Dune provides a very convenient way of doing this for libraries via automatically

generating a toplevel module alias �le that places all the �les in a given library as

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.030

26.4 Wrapping Libraries with Module Aliases 463

submodules within the toplevel module for that library. This is known as wrapping the

library, and works as follows.

Let's de�ne a simple library with two �les a.ml and b.ml that each de�ne a single

value.

let v = "hello"

let w = 42

The dune �le de�nes a library called hello that includes these two modules.

(library
(name hello)
(modules a b))

(executable
(name test)
(libraries hello)
(modules test))

If we now build this library, we can look at how dune assembles the modules into a

Hello library.

$ dune build
$ cat _build/default/hello.ml-gen
(** @canonical Hello.A *)
module A = Hello__A

(** @canonical Hello.B *)
module B = Hello__B

Dune has generated a hello.ml �le which forms the toplevel module exposed by

the library. It has also renamed the individual modules into internal mangled names

such as Hello__A, and assigned those internal modules as aliases within the generated

hello.ml �le. This then allows a user of this library to access the values as Hello.A.

For example, our test executable contains this:

let v = Hello.A.v
let w = Hello.B.w

One nice aspect about this module alias scheme is that a single toplevel module

provides a central place to write documentation about how to use all the submodules

exposed by the library. We can manually add a hello.ml and hello.mli to our library

that does exactly this. First add the hello module to the dune �le:

(library
(name hello)
(modules a b hello))

(executable
(name test)
(libraries hello)
(modules test))

Then the hello.ml �le contains the module aliases (and any other code you might

want to add to the toplevel module).

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.030

464 The Compiler Frontend: Parsing and Type Checking

module A = A
module B = B

Finally, the hello.mli interface �le can reference all the submodules and include

documentation strings:

(** Documentation for module A *)
module A : sig
(** [v] is Hello *)
val v : string

end

(** Documentation for module B *)
module B : sig
(** [w] is 42 *)
val w : int

end

If you want to disable this behavior of dune and deliberately include multiple

toplevel modules, you can add (wrapped false) to your libraries stanza. However,

this is discouraged in general due to the increased likelihood of linking clashes when

you have a lot of library dependencies, since every module that is linked into an

executable must have a unique name in OCaml.

26.4.5 Shorter Module Paths in Type Errors

Core uses the OCaml module system quite extensively to provide a complete replace-

ment standard library. It collects these modules into a single Std module, which

provides a single module that needs to be opened to import the replacement modules

and functions.

There's one downside to this approach: type errors suddenly get much more verbose.

We can see this if you run the vanilla OCaml toplevel (not utop).

$ ocaml
List.map print_endline "";;
Error: This expression has type string but an expression was expected

of type
string list

This type error without Core has a straightforward type error. When we switch to

Core, though, it gets more verbose:

$ ocaml
open Core;;
List.map ~f:print_endline "";;
Error: This expression has type string but an expression was expected

of type
'a Core.List.t = 'a list

The default Listmodule in OCaml is overridden by Core.List. The compiler does

its best to show the type equivalence, but at the cost of a more verbose error message.

The compiler can remedy this via a so-called short paths heuristic. This causes the

compiler to search all the type aliases for the shortest module path and use that as the

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.030

26.5 Examining the Typed Syntax Tree Directly 465

preferred output type. The option is activated by passing -short-paths to the compiler,

and works on the toplevel, too.

$ ocaml -short-paths
open Core;;
List.map ~f:print_endline "foo";;
Error: This expression has type string but an expression was expected

of type
'a list

The utop enhanced toplevel activates short paths by default, which is why we have

not had to do this before in our interactive examples. However, the compiler doesn't

default to the short path heuristic, since there are some situations where the type

aliasing information is useful to know, and it would be lost in the error if the shortest

module path is always picked.

You'll need to choose for yourself if you prefer short paths or the default behavior

in your own projects, and pass the -short-paths �ag to the compiler if you need

26.5 The Typed Syntax Tree

When the type checking process has successfully completed, it is combined with the

AST to form a typed abstract syntax tree. This contains precise location information for

every token in the input �le, and decorates each token with concrete type information.

The compiler can output this as compiled cmt and cmti �les that contain the typed

AST for the implementation and signatures of a compilation unit. This is activated by

passing the -bin-annot �ag to the compiler.

The cmt �les are particularly useful for IDE tools to match up OCaml source

code at a speci�c location to the inferred or external types. For example, the merlin

and ocaml-lsp-server opam packages both use this information to provide you with

tooltips and docstrings within your editor, as described earlier in Chapter 22.2.1 (Using

Visual Studio Code).

26.5.1 Examining the Typed Syntax Tree Directly

The compiler has a couple of advanced �ags that can dump the raw output of the

internal AST representation. You can't depend on these �ags to give the same output

across compiler revisions, but they are a useful learning tool.

We'll use our toy typedef.ml again:

type t = Foo | Bar
let v = Foo

Let's �rst look at the untyped syntax tree that's generated from the parsing phase:

$ ocamlc -dparsetree typedef.ml 2>&1
[
structure_item (typedef.ml[1,0+0]..[1,0+18])
Pstr_type Rec

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.030

466 The Compiler Frontend: Parsing and Type Checking

[
type_declaration "t" (typedef.ml[1,0+5]..[1,0+6])
(typedef.ml[1,0+0]..[1,0+18])
ptype_params =
[]

ptype_cstrs =
[]

ptype_kind =
Ptype_variant
[
(typedef.ml[1,0+9]..[1,0+12])
"Foo" (typedef.ml[1,0+9]..[1,0+12])
[]
None

(typedef.ml[1,0+13]..[1,0+18])
"Bar" (typedef.ml[1,0+15]..[1,0+18])
[]
None

]
ptype_private = Public
ptype_manifest =
None

]
structure_item (typedef.ml[2,19+0]..[2,19+11])
Pstr_value Nonrec
[
<def>
pattern (typedef.ml[2,19+4]..[2,19+5])
Ppat_var "v" (typedef.ml[2,19+4]..[2,19+5])

expression (typedef.ml[2,19+8]..[2,19+11])
Pexp_construct "Foo" (typedef.ml[2,19+8]..[2,19+11])
None

]
]

This is rather a lot of output for a simple two-line program, but it shows just how

much structure the OCaml parser generates even from a small source �le.

Each portion of the AST is decorated with the precise location information (in-

cluding the �lename and character location of the token). This code hasn't been type

checked yet, so the raw tokens are all included.

The typed AST that is normally output as a compiled cmt �le can be displayed in a

more developer-readable form via the -dtypedtree option:

$ ocamlc -dtypedtree typedef.ml 2>&1
[
structure_item (typedef.ml[1,0+0]..typedef.ml[1,0+18])
Tstr_type Rec
[
type_declaration t/81 (typedef.ml[1,0+0]..typedef.ml[1,0+18])
ptype_params =
[]

ptype_cstrs =
[]

ptype_kind =
Ttype_variant

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.030

26.5 Examining the Typed Syntax Tree Directly 467

[
(typedef.ml[1,0+9]..typedef.ml[1,0+12])
Foo/82
[]
None

(typedef.ml[1,0+13]..typedef.ml[1,0+18])
Bar/83
[]
None

]
ptype_private = Public
ptype_manifest =
None

]
structure_item (typedef.ml[2,19+0]..typedef.ml[2,19+11])
Tstr_value Nonrec
[
<def>
pattern (typedef.ml[2,19+4]..typedef.ml[2,19+5])
Tpat_var "v/84"

expression (typedef.ml[2,19+8]..typedef.ml[2,19+11])
Texp_construct "Foo"
[]

]
]

The typed AST is more explicit than the untyped syntax tree. For instance, the type

declaration has been given a unique name (t/1008), as has the v value (v/1011).

You'll rarely need to look at this raw output from the compiler unless you're building

IDE tools, or are hacking on extensions to the core compiler itself. However, it's

useful to know that this intermediate form exists before we delve further into the code

generation process next, in Chapter 27 (The Compiler Backend: Bytecode and Native

code).

There are several new integrated tools emerging that combine these typed AST �les

with common editors such as Emacs or Vim. The best of these is Merlin9 , which adds

value and module autocompletion, displays inferred types and can build and display

errors directly fromwithin your editor. There are instructions available on its homepage

for con�guringMerlin with your favorite editor, or its bigger siblingocaml-lsp-server

is described earlier in Chapter 22.2.1 (Using Visual Studio Code).

9 https://github.com/def-lkb/merlin

https://doi.org/10.1017/9781009129220.030 Published online by Cambridge University Press

https://github.com/def-lkb/merlin
https://doi.org/10.1017/9781009129220.030

