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Social scientists are often confronted with theories in which one or more actors make
choices over a discrete set of options. In this article, I generalize a broad class of sta-
tistical discrete choice models, with both well-known and new nonstrategic and strategic
special cases. I demonstrate how to derive statistical models from theoretical discrete
choice models and, in doing so, I address the statistical implications of three sources of
uncertainty: agent error, private information about payoffs, and regressor error. For strate-
gic and some nonstrategic choice models, the three types of uncertainty produce different
statistical models. In these cases, misspecifying the type of uncertainty leads to biased
and inconsistent estimates, and to incorrect inferences based on estimated probabilities.

1 Introduction

Social scientists are often confronted with theories where one or more actors—be they
individuals, firms, parties, or states—make choices over discrete sets of actions (or options)
leading to a discrete set of outcomes. Economics has been the source of many of the
earliest discrete choice models, such as those of transportation choices, housing location,
and decisions concerning market entry. In American politics, scholars have constructed
models to explain why individuals vote for particular parties or candidates, why senators
vote for particular bills, and of the choices made by the President and Congress in their often
competitive relationship. Comparative research on parliamentary governments includes
similar voting and coalition formation models. Finally, the international relations literature
is replete with models attempting to explain why nations choose to attack each other,
choose to support their allies in times of crisis, and choose to become allies in the first
place.

Over the last 30 years, the most common method of statistically analyzing discrete
categorical data has been to use one variant or another of logit or probit. Usually, the
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“appropriate” model is determined by whether the dependent variable takes on more than
two values and whether those values have an explicit ordering. Most of these statistical
discrete choice models can be derived from assumptions of utility maximization, where the
actor’s utilities over outcomes include a random element with a known distribution (see,
e.g., McFadden 1974a, 1974b, 1976; Hausman and Wise 1978; Alvarez and Nagler 1998).
The randomness in the utility is often attributed to one of two sources: (1) regressor error
or (2) “bounded rationality” due to misperception or implementation error.

Experimental game theory has recently given rise to statistical equilibrium solution
concepts for extensive form games (see, e.g., Chen et al. 1996; McKelvey and Palfrey
1996, 1998; Zauner 1996). These are also based on random utility assumptions, except
that the sources of error do not overlap exactly with the statistical literature: (1) incom-
plete information due to outcome payoff disturbances or, again (2) bounded rationality.
These statistical equilibrium models have only been applied in situations where the payoffs
are held constant and the variance terms estimated—for example, using data from exper-
iments. Unfortunately, for most social scientific research, we are not at liberty to conduct
experiments—for example, by creating new economies, holding elections, starting wars, or
overthrowing governments. Instead, we often must test our theories and estimate the effects
of substantive variables using available field data.

The role of structural assumptions in statistical inference has been extensively studied in
economics. In political science, and in the context of strategic models in particular, Signorino
(1999) and Smith (1999) have noted that statistical models of nonstrategic choice are often
employed in testing explicitly strategic theories or in analyzing data assumed to have been
generated by strategic behavior. Signorino and Yilmaz (2003) formally characterize this
“strategic” specification error.

An area that has been given relatively little attention is the source of uncertainty in
these models, whether it is theoretically or econometrically motivated, and how that uncer-
tainty interacts with the structural assumptions to produce different probability models. The
primary purpose of this article is to examine how and when three sources of uncertainty—
regressor error, private information, and agent error—affect our models and inferences. In
doing so, I will demonstrate how to derive such statistical models from theoretical first
principles. Moreover, in examining the role of structure and uncertainty in discrete choice
models, we will also see that the nonstrategic and strategic choice models are all special
cases of a general class of models.

The details of deriving the models can at times be somewhat complex. However, the
basic “recipe” for doing so is straightforward. Therefore, before jumping into the models,
I will begin in the next section by providing an overview of this simple process.

Following that, I generalize a class of statistical discrete choice models that can be
specified in extensive form. The statistical model developed here is specified as a general
discrete choice model with utility maximizing actors and at least one source of uncertainty:
agent error, private information about outcome payoffs, or regressor error. The general
model has a number of well-known and new statistical models as special cases. Following
that I provide examples of nonstrategic and strategic probit choice models.

In the course of deriving these statistical discrete choice models, we will also exam-
ine how the choice structure and error assumptions interact to produce (or not produce)
different statistical models for estimation. The observational equivalence of two models
is of particular importance for correct inference and for comparative model testing. Ob-
servational equivalence may allow for more latitude in model specification, but it negates
comparative model testing. On the other hand, observational nonequivalence allows for com-
parative model testing, but makes model specification all the more important for correct
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inferences. As we will see in Section 5, making a seemingly minor misspecification such as
the type of uncertainty can at times lead to biased parameter estimates and, hence, incorrect
inferences.

2 On “Theoretical” and “Statistical” Models

Let us assume that we, as social scientists, are interested in theory testing and in making
correct inferences based on our structural models. There are many ways we might test a
theory using statistical analysis. If we have access to all the necessary data, we might test a
theory in its entirety. On the other hand, many times we have access to data only for specific
actions or outcomes in a theory, and a partial test is all that can be accomplished. Regardless,
for our inferences to be valid, we need a statistical model that accurately represents the theory
being tested. Doing this for the entire theory ensures it holds for any partial test, so I will
henceforth consider only the former. The question then becomes: How can we derive a
statistical model from our theoretical model?

I frame the question this way specifically to highlight the ways in which we employ
two types of models—theoretical models and statistical models—in our research. By “the-
oretical” model, I refer to a model that results from theory construction. Although these
may take different shapes and forms, from a choice-theoretic perspective a theoretical model
would identify the actor or actors, their sequence of choices, their options at decision nodes,
the information available to them, and their incentives for choosing particular actions or
outcomes.1 By “statistical” model, I refer to a model that guarantees positive probability
over all outcomes—for example, there is some random component in the model that induces
a probability distribution over the outcomes. In political science, we most often use these
in statistical regression analysis.

Theoretical and statistical models are certainly not mutually exclusive. They are simply
two ways of characterizing a given model. For example, suppose we wanted to model
major power war occurrence. A game-theoretic model of war with perfect and complete
information would be a theoretical but not statistical model. In contrast, logit models of war
where the regressors were randomly selected or selected via stepwise regression only to
improve fit would be examples of statistical but not necessarily theoretical models. Finally,
a game-theoretic model of war that employed a statistical equilibrium solution concept—
such as the logit quantal response equilibrium of McKelvey and Palfrey (1998)—would fall
in the category of both theoretical and statistical.

The discussion of theoretical and statistical models helps illuminate the question posed
at the beginning of this section: how to translate a theory into a statistical model. In short,
if the theory is also statistical, then the translation is done. If the theory is deterministic,
then some source of uncertainty (i.e., a random variable) must be added to produce a
statistical version of it. In general, for discrete or continuous dependent variables, one
derives a statistical model from a theoretical model using the same general steps: (1) specify
the theoretical choice model, (2) add a random component (i.e., source of uncertainty) if
none exists, (3) derive the probability model associated with one’s dependent variable,
and (4) construct a likelihood equation based on that probability model. To help clarify
these steps, I will briefly discuss the choice model, sources of uncertainty, and likelihood
equation.

1Hereafter, I will not differentiate between “theoretical model,” “theory,” or “model,” when it is clear that the
latter refers to a theoretical model.
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U2(Y3)

U1(Y4)

U2(Y4)

a1 a2

a3 a4

U1(a1)+α11 U1(a2)+α12

U2(a3)+α23 U2(a4)+α24

p1 p2

p3 p4

2

1

U1(Y1)

U1(Y3)

U2(Y3)

U1(Y4)

U2(Y4)

p1 p2

p3 p4

2

1

U1(Y1) +π11

U1(Y3) +π13

U2(Y3) +π23

U1(Y4) +π14

U2(Y4) +π24

a1 a2

a3 a4

p1 p2

p3 p4

2

1

U1(Y1) +ε11

U1(Y3) +ε13

U2(Y3) +ε23

U1(Y4) +ε14

U2(Y4) +ε24

a1 a2

a3 a4

(a) No Uncertainty      Subgame Perfection

(c) Private Information about Payoffs (d) Regressor Error

(b) Agent Error−−

Fig. 1 Four strategic discrete choice models. All of these discrete choice models share the same choice
structure and the same observed utilities, Um(Yk). The only difference is in the source of uncertainty.
In (a), there is no uncertainty. In (b), agent error αmj enters through actions at information sets. In (c),
each player has private information πmk concerning his or her outcome payoffs. And, in (d), the players
perfectly observe each other’s payoffs, but the analyst does not, resulting in regressor error εmk .

2.1 Choice Model

The choice model identifies not only the set of players, their sequence of moves, their options,
and their incentives, but also the rule players use to choose among options. Take Fig. 1a
as an example. Here, players 1 and 2 each make one of two choices. Player 1 must choose
between actions a1 and a2. If a1 is chosen, then outcome Y1 results. If a2 is chosen, then
player 2 chooses between actions a3 and a4, resulting in outcomes Y3 and Y4, respectively.

A player’s “true” utility for an action or outcome will often consist of an observable
component, related to the explanatory variables, and an unobservable component, related
to the type of uncertainty. Player m’s true utility for outcome Yk will be written as U ∗

m(Yk).
The true utility for an action a j takes the same form: U ∗

m(a j ). We will most often specify
the observable utility component as a linear function of regressors and their associated
parameters, Um(Yk) = Xmkβmk , though this need not always be the case.2 In Fig. 1a, there
is no source of uncertainty, so the true outcome utilities are simply U ∗

m(Yk) = Um(Yk).

2For a given data set, there is an implicit observation index i associated with utilities and error terms. For notational
simplicity, I will tend to suppress it.
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Finally, we need to identify how players choose among different options. In general,
we will assume that players choose actions that maximize their expected utility. Formally
specifying the choice structure and choice rule precisely relates the dependent variable—
whether it is an action or outcome in the model—to the explanatory variables, which enter
through the utilities. With these, we can then identify when actions or outcomes will be
chosen (or should be chosen if our model is correct). For example, in Fig. 1a, player 2 will
choose a3 if U ∗

2 (a3) > U ∗
2 (a4), and will choose a4 otherwise. Player 1 will choose a1 if

U ∗
1 (a1) > U ∗

1 (a2), and will choose a2 otherwise. We can also deduce which outcome results
in equilibrium:

y =




Y1 if U ∗
2 (Y4) > U ∗

2 (Y3) and U ∗
1 (Y4) < U ∗

1 (Y1), or

if U ∗
2 (Y3) > U ∗

2 (Y4) and U ∗
1 (Y3) < U ∗

1 (Y1)

Y3 if U ∗
2 (Y3) > U ∗

2 (Y4) and U ∗
1 (Y3) > U ∗

1 (Y1)

Y4 if U ∗
2 (Y4) > U ∗

2 (Y3) and U ∗
1 (Y4) > U ∗

1 (Y1)

. (1)

In words, Y1 will result in two situations: (1) if player 2 prefers Y4 to Y3 but player 1 prefers
Y1 to Y4, or (2) if player 2 prefers Y3 to Y4 but player 1 prefers Y1 to Y3. Similarly, Y3 will
be the outcome if player 2 prefers Y3 to Y4 and player 1 prefers Y3 to Y1.

With data for the explanatory variables Xmk , we could use the above choice equations
to predict the actions or outcomes that would be chosen. It is important to note that by
assuming no uncertainty in the model, we are assuming that the players are perfectly ratio-
nal, have complete information, and that we as analysts perfectly observe what comprises
their utilities. The action and outcome probabilities in Fig. 1a will be degenerate—either
zero or one—and will correspond to the subgame perfect equilibrium.3 Although this is
not a statistical model, a comparison could be made of the subgame perfect equilibrium
predictions ŷ versus the observed outcomes y.

2.2 Sources of Uncertainty

To conduct statistical analysis, we require a probability model that puts positive probability
over all outcomes. The random component enters as an assumption about (1) the information
available to the analyst concerning the players’ utilities, (2) the information available to
each player concerning the other’s utilities, or (3) both. The first point underscores a major
difference between our undertaking and that of traditional game theorists: game theorists
are omniscient with respect to their models—they know (and specify) each of the players’
utilities when they solve for the equilibria. The poor empirical analyst is not so fortunate.
We may assume an underlying game-theoretic model. However, we must allow for the fact
that we cannot know the players’ true utilities.

In this article, I consider three sources of uncertainty: agent error, private information
about outcome payoffs, and regressor error.

2.2.1 Agent Error

One source of uncertainty sometimes appealed to in the random utility literature is the
“black box” of bounded rationality. It is assumed that players sometimes misperceive each

3Throughout this article, I will assume ties in utilities over outcomes do not occur. In general, the assumption does
not need to be made on any grounds. In a few cases, it is made for mathematical and pedagogical convenience.
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other’s utilities or that they err in implementing their actions.4 Consider Fig. 1b. Agent error
is assumed to enter the model via choices or actions at information sets (i.e., at decision
points), rather than through the outcome utilities. Let player m’s true utility for action a j

be U ∗
m(a j ) = Um(a j ) + αmj , where αmj represents the error associated with player m’s

action a j . This error term is assumed to be private information to m, so player m knows
her true utility U ∗

m(a j ), but the analyst and other players know only the observable utility
component Um(a j ) and the distribution of αmj . Player m knows that everyone else knows the
distribution of αmj , and so on. Each player’s equilibrium choice probabilities are, therefore,
based on her expected utilities, which take into account the fact that everyone else may
make mistakes. Note that this form of uncertainty is purely theoretical—we are making an
assumption about what players in the game know about each other’s incentives or actions.
Hence, if we assume this as part of our theory, our theoretical model is then a statistical
model from the start.

2.2.2 Private Information About Outcome Payoffs

Another theoretical source of uncertainty would be to assume that the players have private
information concerning their own outcome payoffs. Figure 1c graphically depicts this type
of uncertainty. Let player m’s true utility for outcome Yk be U ∗

m(Yk) = Um(Yk) + πmk ,
where πmk represents the component of player m’s true utility that is private information
to m.5 We assume that player m knows his or her true utility U ∗

m(Yk), but the analyst and
other players observe only Um(Yk) and know only the distribution of πmk . Another way of
thinking about this is that the players know m’s average outcome payoff, but realize that
it varies around that average according to some distribution. As in the case of agent error,
player m knows that everyone else knows the distribution of πmk , and so on. Each player’s
equilibrium choice probabilities are, therefore, based on his or her expected utilities, which
take into account the uncertainty concerning outcome payoffs. This form of uncertainty is
also purely theoretical and results in a theoretical model that is also statistical.

2.2.3 Regressor Error

The last form of uncertainty pertains not to the players but solely to the analyst. In this case,
all of the players perfectly observe each other’s utilities, but the analyst cannot perfectly
model their utilities with the explanatory variables available. The error term here is similar
to that in traditional regression models, where the disturbance is assumed to represent
intrinsic randomness, omitted variables, or measurement error, but without any of the usual
deleterious consequences. Consider Fig. 1d. Let player m’s true utility for outcome Yk be
U ∗

m(Yk) = Um(Yk)+εmk , where εmk represents the component of player m’s true utility that
the analyst fails to capture with the regressors used to specify Um(Yk). All players observe
the true utility U ∗

m(Yk) for every other player. However, the analyst knows (or assumes)
only the distribution of εmk . In this case, the underlying theoretical model in Fig. 1d is not
statistical: it is a traditional game of complete information. What translates the theoretical
model into a statistical model is an assumption of uncertainty on the analyst’s part.

To recap, agent error αmj and private information πmk are components of our theoretical
model: the former allows for nonrational behavior or “accidents,” whereas the latter allows

4Opening the bounded rationality black box is beyond the scope of this article. Instead, I will take the stated form
of it as a given and examine the resulting statistical models.

5Because of the notation, πmk is sometimes also referred to as a “payoff disturbance.”
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for rational behavior and incomplete information. In contrast, the regressor errorεmk is due to
the analyst’s inability to specify the utilities perfectly. Additionally, the errors are associated
with different elements of the model and they differ in whether the analyst versus the players
can observe them. For example, εmk and πmk are associated with outcome payoffs, while
αmj is associated with actions at information sets; πmk and αmj are private information to
player m, while εmk is unobservable only by the analyst. Finally, we do not have to assume
that only a single source of uncertainty is present. For example, we might theorize that the
players have private information and, at the same time, suspect that we as analysts have not
perfectly specified the “observable” utilities with our regressors. Therefore, a model with
both πmk and εmk terms might be appropriate. For simplicity, however, I will focus on single
sources of uncertainty and the different probability models they produce.

2.3 Likelihood Equation

Given a choice model, a source of uncertainty, and an appropriate distribution for the
random components, we can derive probabilities for the actions and outcomes in the model.
Much of Section 4 will be spent doing exactly this for different probit choice models, so I
will postpone details on deriving the probabilities. For now, I simply note that the choice
model in combination with an appropriately specified source of uncertainty is enough to
guarantee positive probabilities over all outcomes—exactly what we need for statistical
analysis. The logic behind this can be seen by considering Fig. 1d, where the uncertainty
is due to regressor error. We previously saw that Y4 is the outcome when U ∗

2 (Y4) > U ∗
2 (Y3)

and U ∗
1 (Y4) > U ∗

1 (Y1). Substituting for the true utilities, an equivalent statement is that Y4

occurs when U2(Y4) + ε24 > U2(Y3) + ε23 and U1(Y4) + ε14 > U1(Y1) + ε11. As analysts,
we do not observe the εmk , so we cannot say with certainty whether the condition is satisfied
or not. All we can do is state the probability that Y4 will occur:

pY4 = Pr[U2(Y4) + ε24 > U2(Y3) + ε23, U1(Y4) + ε14 > U1(Y1) + ε11].

Given an appropriately specified εmk , we can derive the probability that Y4 occurs. The
Um(Yk) are functions of our explanatory variables, for example, Xmkβmk . Therefore, the
outcome probability relates the dependent variable to the explanatory variables and incor-
porates the structure of the choice model. Probabilities for the other outcomes, Y1 and Y3,
are derived in a similar manner, as are the probabilities for the actions available to each
player. In Fig. 1b–1d, the probability of action a j is denoted as p j .

With these action and outcome probabilities, we can construct a likelihood function for
our dependent variable. Assume the probabilities have been derived for one of the models in
Fig. 1b–1d. Consider the situation where our dependent variable represents which outcome
occurred. Let δk = 1 if outcome Yk occurred in the current observation, and zero otherwise.
Then the likelihood function is

L =
N∏

pδ1
Y1

pδ3
Y3

pδ4
Y4

. (2)

The outcome probabilities are functions of the explanatory variables and effects parameters.
Therefore, the maximum likelihood estimates can be found by maximizing Eq. (2) with
respect to the parameters—and standard statistical tests (e.g., t or likelihood ratio) can be
conducted.

If our dependent variable instead consists of actions taken by a player, then we would
construct a similar likelihood function, but with the corresponding action probabilities.
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For example, for a dependent variable denoting whether a1 or a2 occurred, the likelihood
function would be

L =
N∏

p
δa1
1 p

δa2
2 , (3)

where δa j = 1 if action a j was chosen, and zero otherwise. The reader familiar with tra-
ditional binomial and multinomial choice models will note that Eqs. (2) and (3) share the
same general form as in multinomial logit and probit. However, the probabilities pYk and p j

incorporate the choice structure of our theory, which may differ from nonstrategic binomial
and multinomial choice structures.

3 A General Class of Statistical Discrete Choice Models

The class of models in this section generalizes those statistical discrete choice models in
extensive form that allow for agent error, private information about payoffs, and regressor
error. Although it is based on a general specification of an extensive form game, it does not
require that the model be strategic. In words, we first need to define the choice tree, then
assign players, information sets, actions, and outcomes to the nodes of that tree, then assign
utilities to the actions and outcomes, then specify the distribution of the errors associated
with utilities over actions and outcomes, and, finally, specify the rule players use to make
decisions. The notation can be dense at times. However, the core ideas are exactly the same
as those just outlined. Concrete examples of these will be given in Section 4.

3.1 Choice Tree

The discrete choice tree is specified as a set of nodes with an asymmetric precedence
relation defined over the nodes. Let Q be the set of all nodes, with q0 the initial node. Let
≺ be an asymmetric precedence relation, such that q ≺ q ′ if node q immediately precedes
node q ′, and q ′ � q if node q ′ immediately follows q. For a node q, define the set of its
immediate successor nodes as S(q) = {q ′ | q ≺ q ′} and define a terminal node qt as one
where S(qt ) = ∅. Define the set of terminal nodes as Qt . A path P(qt ) from the initial
node q0 to a terminal node qt is a sequence of nodes (q0, . . . , qt ) that connects q0 to qt

such that for each nonterminal node in the sequence, the following node is its immediate
successor. All paths are assumed to be countably finite. This rules out games such as an
infinitely repeated prisoner’s dilemma.

3.2 Information Sets

Let M be the set of players. Define the information set containing node q and assigned to
player m as ιm(q). Define the set of information sets assigned to player m as Im and the set of
all information sets as I = ⋃

m Im . As all information sets considered here are singletons,
it will sometimes be less notationally cumbersome to refer to an information set simply by
the single node assigned to it.

3.3 Actions and Outcomes

Let a(q) be the label for the action (or option) required to reach q from its predecessor, let
A(q) = {a(q ′) | q ′ ∈ S(q)} be the set of all actions available at q for the player assigned
to q , and let A = ⋃

q A(q) be the set of all actions in the game. Define g : Qt → Y as the
function that maps terminal nodes Qt to outcomes Y . Outcomes are simply labels assigned
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to terminal nodes. Although different paths must by definition lead to different terminal
nodes, they can result in the same outcome. For example, in a crisis model, there may be
multiple paths to war.

3.4 Utilities and “Error” Terms

Utilities are defined similarly to those of traditional random utility models and statistical
equilibrium models.6 However, here we will specify in detail the types of uncertainty that
can enter into the model. Although the utilities and error terms may vary over observations
in a data set, I will continue to suppress the observation index to reduce notation.

For terminal node qt
j mapped to outcome Yk , we can alternatively speak of m’s true

utility U ∗
m(Yk) for outcome Yk or of m’s true utility U ∗

m[a(qt
j )] for the action a(qt

j ) leading
to the outcome Yk assigned to node qt

j . Let player m’s true utility U ∗
m(Yk) of outcome Yk be

U ∗
m(Yk) = Um(Yk) + εmk + πmk . (4)

Here, Um(Yk) is the observable component of m’s utility for outcome Yk—for example,
as a function of explanatory variables Xmk and effects parameters βmk . It is assumed that
the analyst and all players observe Um(Yk). εmk is the portion of the true utility that is
not captured by the regressors. We assume each player observes the εmk of every other
player, but the analyst cannot observe εmk (otherwise he or she would have included it in
the regressors). πmk is the portion of m’s true utility that is private to m. Neither the analyst
nor the other players observe player m’s πmk .

For nonterminal node q j , let player m’s true utility U ∗
m[a(q j )] for choosing action a(q j )

be defined as

U ∗
m[a(q j )] = Um[a(q j )] + αmj , (5)

where Um[a(q j )] is m’s expected utility for reaching node q j and αmj represents agent error
associated with action a(q j ). Again, αmj is assumed known only by player m.

3.5 Distribution of Errors

Let εm be the vector of m’s regressor error terms and let ε = (ε1, . . . , ε#M ) be the vector of
every players’ regressor errors.7 Similarly, let πm be the vector of m’s payoff disturbances
over each of her utilities and let π = (π1, . . . , π#M ) be the vector of every players’ payoff
disturbances. Finally, let αm be the vector of player m’s agent errors over each of his or her
actions and let α = (α1, . . . ,α#M ) be the vector of every agent’s errors. For mathematical
convenience, let ε, π, and α be distributed according to the same continuous joint density
function f (·). Denote the combined error vector as � = (ε, π, α).

3.6 Agent Utility Maximization

A multiagent representation is assumed.8 A player is represented by an “agent” at each
information set who shares the player’s payoff function but makes decisions independently

6For random utility models, see McFadden 1974a, 1974b, 1976; Hausman and Wise 1978. For statistical equi-
librium models, see McKelvey and Palfrey 1996, 1998; Chen et al. 1996; Zauner 1996.

7The notation #S is used to denote the number of elements in the set S.
8This is also referred to as “agent normal form” or “agent strategic form.”

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pg
02

0  
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/pan/mpg020


P1: XXX

mpg020 October 6, 2003 8:46

Structure and Uncertainty 325

of the other agents. At each information set ιmj (q), the agent for player m chooses the
action a(q ′) that maximizes her utility from that node in the tree: U ∗

m[a(q ′)] > U ∗
m[a(q ′′)]

∀a(q ′′) 
= a(q ′) ∈ A(q). Consequently, an equilibrium strategy must be in the interest of
every agent, even off the equilibrium path.

3.7 Statistical Discrete Choice Model

Given the above, the tuple (Q, ≺, M, I, A, Y, U, �) defines a statistical discrete choice
model with well-defined choice probabilities over each action and, hence, over each out-
come.

Define the probability of outcome Yk as

pYk = Pr[Yk]

=
∑

{qt |g(qt )=Yk }
Pr[P(qt )]. (6)

If only one terminal node qt is assigned to a particular outcome Yk , then Eq. (6) is pYk =
Pr[P(qt )], the joint probability of realizing each of the actions on the path P(qt ). If the same
outcome is assigned to multiple terminal nodes, then Eq. (6) is the sum of the probabilities
of realizing each of those paths leading to the different terminal nodes {qt | g(qt ) = Yk}
mapped to the same outcome.

Assume now that we have N observations of a dependent variable y that takes on the
values yi ∈ Y . Define j ∈ Y and let the dummies yi, j take on the value

yi, j =
{

1 if j = yi

0 otherwise
.

In other words, yi, j is a dummy that indicates whether outcome j occurred or not in ob-
servation i . Assuming that the utilities are specified in terms of explanatory variables (e.g.,
Umki (Yk) = Xmkiβmk), then we can denote the probability of Yk occurring in observa-
tion i as pYk i and estimate the parameters βmk by maximizing the multinomial likelihood
function

L =
N∏

i=1

∏
j∈Y

p
yi, j

j i (7)

with respect to the βmk . Again, Eq. (7) should not be interpreted as representing a multino-
mial logit or probit model. Rather, the data vector y has a multinomial distribution. Whether
the model implied by the tuple (Q, ≺, M, I, A, Y, U, �) is multinomial logit or probit, bi-
nomial logit or probit, a sequential model, a strategic model—or something else entirely
different—will depend on the elements of the tuple. I now turn to these special cases.

3.8 Special Cases

The general model has a number of well-known, as well as new, special cases, depending on
what we substitute for the elements of the tuple (Q, ≺, M, I, A, Y, U, �). Table 1 displays
a number of these special cases, which are defined based on the number of players #M ,
the number of information sets #I , the number of terminal nodes #Qt , the number of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pg
02

0  
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/pan/mpg020


P1: XXX

mpg020 October 6, 2003 8:46

326 Curtis S. Signorino

Table 1 Special cases of the general statistical discrete choice model
defined by the tuple (Q, ≺, M, I, A, Y, U, �).

Special cases
Players

M

Info
sets

I

Terminal
nodes

Qt
Outcomes

Y � ∼ TlEV � ∼ N(0, �)

Nonstrategic

1 1 2 2 Binomial Binomial
logit probit

1 1 ≥2 #Qt Multinomial Multinomial
logit probit

Nested logita

1 >1 >#I >1 Sequential Sequential
logit probit

1 or 2 2 3 3 Heckman
selection

Strategic

>1 ≥#M >#I >1 Logit Probit

Note. The general model includes a number of well-known, as well as new, statistical
models, depending on what we substitute for the elements of the tuple. The special
cases in the table are defined based on the number of players #M , the number of
information sets #I , the number of terminal nodes #Qt , the number of outcomes #Y ,
and whether the errors have type 1 extreme value or normal distributions. Within
the class of strategic models are further special cases that depend on which sources
of uncertainty are present: agent error, private information, regressor error, or some
combination of the three.
a� ∼ GEV.

outcomes #Y , and whether the errors � = (ε, π, α) have type 1 extreme value or normal
distributions.

For example, the main difference between nonstrategic and strategic models is that the
former usually have only a single decision maker (#M = 1), while the latter have multiple
players (#M > 1). Within the nonstrategic models, the main source of differentiation is the
number of terminal nodes and the number of information sets. Binomial logit/probit has
only one information set and is a special case of multinomial logit. These are differentiated
from sequential logit/probit, which have multiple information sets. Heckman-type selection
models may have either one or two players. Although not shown in Table 1, as we will see in
Section 4, different sequential models also arise depending on our assumptions concerning
whether a player’s agents have private information concerning their disturbances relative
to other agents of the same player (more on this later).

With the strategic models, we assume there are multiple players, at least one information
set for each player, and more terminal nodes than information sets. This last assumption
ensures that we have at least a binary decision by each player. There are a number of
existing and new special cases within the “strategic” class. For example, the logit quan-
tal response equilibrium (QRE) of McKelvey and Palfrey (1998) is the special case with
agent errors that are independently distributed type 1 extreme value. A statistical equilib-
rium model with independently normally distributed agent errors would be equivalent to a
probit version of the QRE. Signorino (2002) analyzes a model with normally distributed
agent errors that are correlated between two players, synthesizing aspects of traditional
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Heckman selection models and QRE-based strategic models. The statistical equilibrium
model in Zauner (1996) involves normally distributed payoff perturbations.9 With the ex-
ception of Signorino (1999, 2002) and Signorino and Yilmaz (2003), none of these have
been developed for use in regression analysis. Finally, these are just a few of the special
cases of the general model. Any number of other models are possible, depending on the
assumptions concerning which types of uncertainty are present, the observability of the
disturbances by the analyst and players, and the distribution and covariance structure of the
disturbances.

4 Examples: Probit Choice Models

The models generalized in Section 3 are illustrated using three examples: (1) nonstrategic
nonsequential choice models, (2) nonstrategic sequential choice models, and (3) strategic
choice models. Although the first has been addressed in detail elsewhere under the rubric of
“discrete choice” (see McFadden 1974a, 1974b, 1976; Hausman and Wise 1978; Maddala
1983; Pudney 1989) and the second has also received some (albeit much less) attention,
all three are useful for demonstrating not only how one would apply the general model
to specific applications, but also how the choice and outcome probabilities relate to the
characteristics of the tuple (Q, ≺, M, I, A, Y, U, �). In fact, the three models provide a
nice progression concerning those characteristics.

Throughout this section, I will assume that errors are normally distributed. Therefore,
the discrete choice models examined here will be nonstrategic and strategic probit models.
For a given discrete choice model, I show how it relates to the general model and how to
derive the choice probabilities.

4.1 Nonstrategic Nonsequential Choice

The simplest nontrivial discrete choice model is that depicted in Fig. 2a, where a single de-
cision maker (labeled 1) must choose between #Y = 2 outcomes. Examples might include
whether a state votes for a United Nations resolution, whether a citizen votes Democrat
or Republican, or whether a commuter takes the bus to work or drives. The tree is defined
by the set of nodes Q = {q0, q1, q2} and the precedence relation among them: q0 ≺ q1

and q0 ≺ q2. The terminal nodes Qt = {q1, q2} are mapped to outcomes Y = {Y1, Y2}.
There is only a single information set ι1(q0). The action required to reach node q j is
denoted by a j . The observation index i will be suppressed unless it is required to high-
light that the dependent variable, explanatory variables, utilities, or probabilities vary over
observations.

The theoretical story for regressor error ε and payoff disturbances π is identical here.
What usually differentiates them is that ε is observed by all players, while π is private
information. As there is only one decision maker, both represent part of a perfectly rational
decision maker’s utility that is unobserved by the analyst. The story for agent error α is
slightly different in that α is assumed to arise because of misperception or implementation
error on the decision maker’s part. Nevertheless, regardless of the underlying theoretical
story for the uncertainty, the resulting statistical models estimated will be identical, as the
choice structure in Fig. 2a contains only a single information set.

9Zauner (1996) develops a two-sided incomplete information model with normally distributed payoff disturbances
for the analysis of experimental data from the centipede game, but where payoffs are fixed and only the variance
is estimated.
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0

1 2

p1 p2

1

a1 a2

U1
*(Y1) U1

*(Y2)

0

1

p1 p2

1

2

3 4

p3 p4

1

a1 a2

a3 a4U1
*(Y1)

U1
*(Y3) U1

*(Y4)

0

1

p1 p2

1

2

3 4

p3 p4

2

a1 a2

a3 a4U1
*(Y1)

U1
*(Y3)

U2
*(Y3)

U1
*(Y4)

U2
*(Y4)

(a) Nonstrategic Nonsequential Choice

(c) Strategic  Choice

(b) Nonstrategic Sequential Choice

Fig. 2 Discrete choice examples. Parts (a) and (b) are nonstrategic choice models, consisting of a
single decision maker. Parts (b) and (c) are sequential choice models. Part (c) is a strategic choice
model, where player 1 must condition his or her choice on what he or she expects player 2 will do.
Options are denoted by a j , choice probabilities as p j , outcomes as Yk , and player m’s utility for
outcome Yk as U ∗

m(Yk).

To see this, consider that the utilities in each case are
Regressor error:

U ∗
1 (Yk) = U1(Yk) + εk (8)

Private information about outcome payoffs:

U ∗
1 (Yk) = U1(Yk) + πk (9)

Agent error:

U ∗
1 (ak) = U1(ak) + αk

= U1(Yk) + αk . (10)

A utility-maximizing decision maker will choose Y1 if U ∗
1 (Y1) > U ∗

1 (Y2). Assuming the
disturbances are normally distributed with mean zero and covariance structure � = [ σ2

1
σ12 σ2

2
],
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then in the regressor error case,

pY1 = Pr[U ∗
1 (Y1) > U ∗

1 (Y2)]

= Pr[U1(Y1) + ε1 > U1(Y2) + ε2]

= Pr[ε2 − ε1 < U1(Y1) − U1(Y2)]

= �


 U1(Y1) − U1(Y2)√

σ2
1 + σ2

2 − 2σ12


 (11)

where �(x) is the standard normal distribution. The probability that the decision maker will
choose option Y2 is simply pY2 = 1 − pY1 .

It is easy to see that the probabilities will be exactly the same (under the same conditions)
for the agent error and private information models. Hence, given the same structural and
covariance assumptions, the three forms of uncertainty lead to observationally equivalent
statistical models.

4.2 Nonstrategic Sequential Choice

This section serves as a bridge between the nonstrategic models and the strategic mod-
els. On the one hand, the sequential models presented in this section are all nonstrate-
gic and, as we will see, at times reduce to nonsequential models. On the other hand, the
sequence of decisions, observability of error terms, and calculations of expected utility
enter into the sequential models’ choice probabilities in much the same way as they do
for the strategic models. Depending on the assumptions, the choice probabilities in this
section tend to be similar either to those of the previous section or to those of the next
section.

Figure 2b displays a situation where a single decision maker (labeled 1) makes sequential
choices over actions leading to #Y = 3 outcomes. First, he or she must choose between
action a1 and a2. If a2 is chosen, then he or she must choose between a3 and a4. The tree
is defined by the set of nodes Q = {q0, q1, q2, q3, q4} and the precedence relation among
them: q0 ≺ q1, q0 ≺ q2, q2 ≺ q3, and q2 ≺ q4. The terminal nodes Qt = {q1, q3, q4} are
mapped to outcomes Y = {Y1, Y3, Y4}. There are two information sets: ι1(q0) and ι1(q2).
The action required to reach node q j is denoted by a j . Decision maker 1 has utilities U ∗

1 (Y1),
U ∗

1 (Y3), and U ∗
1 (Y4) for the three outcomes.

4.2.1 Regressor Error

In this case, the decision maker is perfectly rational and perfectly observes the utilities, but
the analyst does not observe part of the variation in the utility. Hence, U ∗

1 (Yk) = U1(Yk)+εk .
To calculate pYk , we must first determine the conditions for Yk to be realized. Given the
above assumptions, the following identifies the conditions for each of the outcomes to
occur:

y =




Y1 if U ∗
1 (Y1) > U ∗

1 (Y3) and U ∗
1 (Y1) > U ∗

1 (Y4)

Y3 if U ∗
1 (Y3) > U ∗

1 (Y4) and U ∗
1 (Y3) > U ∗

1 (Y1)

Y4 if U ∗
1 (Y4) > U ∗

1 (Y3) and U ∗
1 (Y4) > U ∗

1 (Y1)

. (12)
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As we do not perfectly observe the true utilities, we can only make probabilistic statements
concerning the outcomes. So, for example, the probability pY1 of Y1 occurring in observation
i is

pY1 = Pr[U1(Y1) + ε1 > U1(Y3) + ε3, U1(Y1) + ε1 > U1(Y4) + ε4]. (13)

Assuming that (ε1, ε3, ε4) ∼ N (0, �ε), with

�ε =

σ2

ε1

σε13 σ2
ε3

σε14 σε34 σ2
ε4


 (14)

and letting η31 = ε3 − ε1 and η41 = ε4 − ε1, then Eq. (13) can be rewritten as

pY1 = Pr[η31 < U1(Y1) − U1(Y3), η41 < U1(Y1) − U1(Y4)]

=
∫ U1(Y1)−U1(Y3)

−∞

∫ U1(Y1)−U1(Y4)

−∞
φ(η31, η41) dη41 dη31 (15)

where φ(η31, η41) is the bivariate normal density with mean zero and variance

�η =
[

σ2
ε1

+ σ2
ε3

− 2σε13

σ2
ε1

− σε13 − σε14 + σε34 σ2
ε1

+ σ2
ε4

− 2σε14

]
. (16)

The reader will notice that this is equivalent to the traditional multinomial probit probability
of choosing outcome Y1 from the set Y = {Y1, Y3, Y4}—that is, where there is only a
single information set and three outcomes (see, e.g., Hausman and Wise 1978; Alvarez and
Nagler 1998). The probabilities of choosing Y3 and Y4 yield similar multinomial probit
probabilities. Therefore, with a single perfectly rational decision maker and only regressor
error, the sequence of choices are irrelevant, and the statistical model is observationally
equivalent to a nonstrategic nonsequential model with the same number of options and the
same covariance structure.

4.2.2 Private Information About Outcome Payoffs

In Section 4.1, we saw that with only a single information set, payoff disturbances yielded
not only the same statistical model as with regressor error, but also the same underlying
story: they represent variation in outcome utilities that the decision maker observes, but the
analyst does not. With multiple information sets, that may or may not be the case, depending
on our assumption of whether payoff disturbances are observable by all “agents” of the same
player.

In the typical multiagent model (see Myerson 1991, p. 61; Osborne and Rubinstein
1994, p. 250), each player is represented at each information set by a different agent, who
has the same preferences as the player and makes a decision for the player. In the current
context, the usual multiagent representation would assume that every agent of a given player
observes the disturbances of the other agents of the same player, as they all share the same
preferences.
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A variation on this is to assume that the error terms are private information for each
individual agent of the player. In other words, each agent of the player observes her own
disturbance, but does not observe the error terms of the other agents.10 Why might we do
this, given that there is really only a single decision maker? Simply put, decision makers
may not know what their true payoffs are “down the road,” or, in the agent error models,
what errors they might make in future decisions. It may make more sense then to assume
that a player perceives her outcome payoff differently at different points in the game or
that the agent error associated with actions at an information set is observable only by the
agent at that information set. Under these assumptions, an agent must form an expected
utility for an action that leads to another information set, even when that information set is
assigned to the same player the agent represents. Examples of both the standard multiagent
representation and this variation are given in the following.

In the case where the decision maker’s agents observe each other’s payoff disturbances,
the problem is identical to one of regressor error: the decision maker is perfectly rational, the
only uncertainty is on the analyst’s part, and the uncertainty is with respect to the outcome
utilities. The sequence of choices is irrelevant. If we assume that the payoff disturbances are
normally distributed, then the resulting choice probabilities are the same multinomial probit
probabilities we derived in the regressor error case. Both are observationally equivalent with
a nonstrategic nonsequential model with any type of error, assuming the same outcomes,
utilities over outcomes, and distribution of errors.

This is not the case when the payoff disturbances are private information to each agent of
a player. In fact, this situation is equivalent to a game with multiple players, who all share the
same observable utility components Um(Yk), but have different payoff disturbances πmk .11

The probability that player 1 chooses outcome Y4 is the probability Pr[P(q4)] that the path
P(q4) is realized, which is the joint probability of the decisions along it being realized.
Denote by p j the probability that action a j is chosen at the parent information set of a j .
If we assume that the payoff disturbances are independent of each other, then the joint
probability is just the product of the two individual choice probabilities p2 and p4.12 To
calculate the choice probabilities, we will work up the tree, as decisions made at information
sets earlier in the tree are based on expected utilities that require choice probabilities for
actions later in the tree.

As we do not observe the payoff disturbances, the probability p4 that the agent at infor-
mation set ι1(q2) chooses a4 is

p4 = �


U1(Y4) − U1(Y3)√

σ2
π3

+ σ2
π4


 . (17)

The probability p2 that the agent at information set ι1(q0) chooses a2 must be written in terms
of her expected utility for choosing action a2, which is U ∗

1 (a2) = p3U ∗
1 (Y3) + p4U ∗

1 (Y4).

10Although not expressed in exactly the same way as presented here, nonstrategic “decentralized” sequential
choice models share this feature (see, e.g., Pudney 1989, pp. 122–130).

11Technically, we should let the true outcome utility of player m’s agent n at information set ιm (qn) be denoted by
U∗

1n
(Yk ) = U1(Yk ) + π1n k . Because this notation is cumbersome, I will not index agents of players. However,

the reader should keep in mind that the true utilities and error terms are implicitly indexed this way under the
assumption of multiple agents with private errors.

12I will hereafter assume that errors are independently distributed; hence, all covariances are zero. This is made
purely to simplify the math. However, it does have other implications that we will return to later.
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The agent’s probability of choosing a2 is then

p2 = Pr[U ∗
1 (a2) > U ∗

1 (a1)]

= Pr[p3U ∗
1 (Y3) + p4U ∗

1 (Y4) > U ∗
1 (Y1)]

= Pr [p3 [U1(Y3) + π3] + p4 [U1(Y4) + π4] > U1(Y1) + π1]

= �


 p3U1(Y3) + p4U1(Y4) − U1(Y1)√

p2
3σ

2
π3

+ p2
4σ

2
π4

+ σ2
π1


 . (18)

Choice probabilities p3 and p1 are, of course, 1 − p4 and p1 = 1 − p2, respectively.
Because the error terms are assumed independent, the outcome probabilities simplify to

pY1 = p1 (19)
pY3 = p2 p3 (20)
pY4 = p2 p4. (21)

These are clearly not the multinomial probit probabilities we saw in the regressor error case.
The probability of Y1 here is

pY1 = �


U1(Y1) − [p3U1(Y3) + p4U1(Y4)]√

p2
3σ

2
π3

+ p2
4σ

2
π4

+ σ2
π1


 . (22)

In contrast to the multinomial probit’s joint comparison of U1(Y1) against both U1(Y3) and
U1(Y4), here the sequential choice is reflected in the numerator of Eq. (22) by the com-
parison of U1(Y1) to a weighting of U1(Y3) and U1(Y4), where the weighting is based on
the probability that the respective outcomes will be selected. This is directly a result of
the agent at information set i1(q0) having to form an expected utility concerning action
a2 because of her uncertainty concerning her decision at i1(q2). Second, notice that while
the multinomial probit probabilities have a constant variance in their denominators, here
the variance in the denominator contains probabilities (e.g., p3 and p4) that will vary over
the observations (as they are functions of utilities that are themselves functions of explana-
tory variables that will vary over observations).

4.2.3 Agent Error

I consider only the case where agent error over actions at a particular information set is
private information to the agent at that information set. The derivation of the outcome
probabilities proceeds similarly to those in the model with private payoff disturbances.

As we do not observe the agent error, the probability p4 that the agent at information set
ι1(q2) chooses a4 is

p4 = �


U1(Y4) − U1(Y3)√

σ2
α3

+ σ2
α4


 . (23)

The probability p2 that the agent at information set ι1(q0) chooses a2 must be written in
terms of her expected utility for choosing action a2. Since the error term comes in through
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actions rather than outcomes, the expected utility is slightly different than with the payoff
disturbances model:

U ∗
1 (a2) = U1(a2) + α2

= [p3U1(a3) + p4U1(a4)] + α2. (24)

The agent’s probability of choosing a2 is then

p2 = Pr[U ∗
1 (a2) > U ∗

1 (a1)]

= Pr[p3U1(a3) + p4U1(a4) + α2 > U1(a1) + α1]

= Pr [p3U1(Y3) + p4U1(Y4) + α2 > U1(Y1) + α1]

= �


 p3U1(Y3) + p4U1(Y4) − U1(Y1)√

σ2
α1

+ σ2
α2


 . (25)

The outcome probabilities take the same general form as Eqs. (19)–(21), but substituting
the agent error versions of the p j action probabilities.

As with private payoff disturbances, these are clearly not multinomial probit probabilities.
Here, the probability of Y1 occurring is

pY1 = �


U1(Y1) − [p3U1(Y3) + p4U1(Y4)]√

σ2
α1

+ σ2
α2


 . (26)

This is somewhat similar to the corresponding probability in the (agent–private) payoff
disturbance case. However, there the outcome probabilities contained variance terms that
varied over observations, whereas here the variance terms [in the denominator of Eq. (26)]
are constant across observations.

The import of this section has been to show that the type of uncertainty specified by the
theoretical model can matter in the resulting statistical model. Although the nonstrategic
nonsequential choice models produced observationally equivalent statistical models, the
sequencing of decisions and the assumptions concerning uncertainty resulted in a number
of different statistical models here. As we will see, the same holds true for the strategic
models, to which we now turn.

4.3 Strategic Choice

The new element introduced in this section is that there are now not just multiple agents of
a single decision maker, but multiple decision makers, each of whom must condition their
behavior on the expected behavior of the others. The probabilities are therefore considered
equilibrium choice probabilities. We have actually already seen one simple example of this.
A nonstrategic sequential choice model, where disturbances are assumed private information
to each agent, can be viewed as a strategic model where each agent is a different decision
maker but all decision makers share the same observed outcome utilities Um(Yk). The
nonstrategic choice probabilities in the former are the equilibrium choice probabilities of
the latter.

Figure 2c, which displays a strategic discrete choice model in extensive form, will be
used as the referent example throughout this section. Here, we have two decision makers
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(labeled 1 and 2) who make choices in turn. Player 1 must choose between action a1 and a2.
If a2 is chosen, then player 2 must choose between a3 and a4. The tree is defined by the set of
nodes Q = {q0, q1, q2, q3, q4} and the precedence relation among them: q0 ≺ q1, q0 ≺ q2,
q2 ≺ q3, and q2 ≺ q4. The terminal nodes Qt = {q1, q3, q4} are mapped to outcomes
Y = {Y1, Y3, Y4}. There are two information sets: ι1(q0) and ι2(q2). The action required to
reach node q j is denoted by a j . Decision maker m has utility U ∗

m(Yk) for outcome Yk .

4.3.1 Regressor Error

Again, we assume that both players are perfectly rational and view each other’s payoffs
perfectly, but we (the analysts) do not observe part of the variation in the utility. Hence,
U ∗

m(Yk) = Um(Yk) + εmk . As in the sequential model, to calculate pYk , we ask ourselves:
What are the conditions for Yk to be realized? With perfectly rational players, who have com-
plete information about each other’s utilities and make decisions at singleton information
sets, that question is equivalent to asking when Yk will be the subgame perfect equilibrium
(SPE) outcome in Fig. 2c.

Without any constraints on the preferences over outcomes, a general specification of the
SPE conditions can be quite tedious for more complicated models. However, for the model
in Fig. 2c, the conditions are not terribly cumbersome. The SPE is

y =




Y1 if U ∗
2 (Y3) > U ∗

2 (Y4) and U ∗
1 (Y1) > U ∗

1 (Y3) or

if U ∗
2 (Y4) > U ∗

2 (Y3) and U ∗
1 (Y1) > U ∗

1 (Y4)

Y3 if U ∗
2 (Y3) > U ∗

2 (Y4) and U ∗
1 (Y3) > U ∗

1 (Y1)

Y4 if U ∗
2 (Y4) > U ∗

2 (Y3) and U ∗
1 (Y4) > U ∗

1 (Y1)

. (27)

As we do not perfectly observe the true utilities, we can only make probabilistic statements
concerning the outcomes. So, for example, the probability of Y1 occurring is

pY1 = Pr[U ∗
2 (Y3) > U ∗

2 (Y4), U ∗
1 (Y1) > U ∗

1 (Y3)]

+ Pr[U ∗
2 (Y4) > U ∗

2 (Y3), U ∗
1 (Y1) > U ∗

1 (Y4)]

= Pr[U2(Y3) + ε23 > U2(Y4) + ε24, U1(Y1) + ε11 > U1(Y3) + ε13]

+ Pr[U2(Y4) + ε24 > U2(Y3) + ε23, U1(Y1) + ε11 > U1(Y4) + ε14]. (28)

Denote the variance of εi j as σ2
εi j

and the covariance of εi j with εik as σεi jk . If we let
ηi jk = εi j − εik , then we can rewrite Eq. (28) as

pY1 = Pr[η243 < U2(Y3) − U2(Y4), η131 < U1(Y1) − U1(Y3)]

+ Pr[η234 < U2(Y4) − U2(Y3), η141 < U1(Y1) − U1(Y4)]

=
∫ U2(Y3)−U2(Y4)

−∞

∫ U1(Y1)−U1(Y3)

−∞
φ(η243, η131) dη131 dη243

+
∫ U2(Y4)−U2(Y3)

−∞

∫ U1(Y1)−U1(Y4)

−∞
φ(η234, η141) dη141 dη233. (29)

Both terms in Eq. (29) require integration over standardized bivariate normal densities.
Given modern computing, this is not difficult. However, if we assume that the disturbances
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are independent of each other, then the equation further simplifies to

pY1 = �


U2(Y3) − U2(Y4)√

σ2
ε23

+ σ2
ε24


 �


U1(Y1) − U1(Y3)√

σ2
ε11

+ σ2
ε13




+ �


U2(Y4) − U2(Y3)√

σ2
ε24

+ σ2
ε23


 �


U1(Y1) − U1(Y4)√

σ2
ε11

+ σ2
ε14


 . (30)

Carrying out the same steps to calculate pY3 and pY4 gives

pY3 = �


U2(Y3) − U2(Y4)√

σ2
ε23

+ σ2
ε24


 �


U1(Y3) − U1(Y1)√

σ2
ε13

+ σ2
ε11


 (31)

pY4 = �


U2(Y4) − U2(Y3)√

σ2
ε23

+ σ2
ε24


 �


U1(Y4) − U1(Y1)√

σ2
ε14

+ σ2
ε11


 . (32)

Examining Eqs. (30)–(32), a number of issues are immediately apparent. First, com-
paring the above equations to the similar nonstrategic sequential choice Eqs. (12)–(15),
we see that the strategic probability model is not a multinomial probit model, as in the
nonsequential case with regressor error, even when we assume the disturbances are inde-
pendent. Eqs. (30)–(32) reflect the observable utilities of two players, not one. In particular,
the equilibrium conditions for outcome Y1 are quite different in the two models, leading to
different probability models. Therefore, if the data-generating process is the game shown
in Fig. 2c and if the players have perfect and complete information, then employing any of
the nonstrategic models will result in specification error.

Second, it was relatively easy to specify the equilibrium conditions and derive the prob-
ability model for the game shown in Fig. 2c. However, this becomes increasingly difficult
as the complexity of the game increases. In fact, one does not need to add many more
information sets for the specification to become much more involved.

Third, and related, the complexity of the underlying game will affect the dimensionality
of the integration required for the equilibrium probabilities. In Fig. 2c, each player makes
only a single decision. The sequence of choices results in bivariate normal densities, and
the independence assumption allows us to write the equilibrium probabilities in terms of
univariate normal cdf’s. However, even if we assume the εmk disturbances are independent,
more complex games (e.g., with more information sets) will result in probability models
with multivariate normal densities of higher dimension, which could be computationally
intensive. This is an issue not just of the number of choices at information sets (e.g., as
in multinomial probit), but also of the depth of the game tree—specifically, the number of
times a player makes decisions down a particular path.

4.3.2 Private Information About Outcome Payoffs

We now assume that a decision maker m’s outcome utilities are private information: the
analyst and other players know (or assume) only the distribution of m’s outcome payoffs.
Additionally, for the payoff disturbance and agent error models, we will continue to assume
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the multiagent representation discussed in Section 4.2, where disturbances are private in-
formation to each individual agent, and where the disturbances are independent of each
other.

To derive the choice probabilities, we will work “up the tree.” The choice probabilities
in the strategic model are derived in a similar manner to those in the nonstrategic sequential
model. The probability of action a4 is

p4 = �


U2(Y4) − U2(Y3)√

σ2
π24

+ σ2
π24


 . (33)

Because player 1 is uncertain about player 2’s payoffs, she must assess the probability
that player 2 will choose a3 versus a4, and then use that probability in her expected utility
calculations for her own options. The probability p2 that player 1 chooses a2 is

p2 = Pr[U ∗
1 (a2) > U ∗

1 (a1)]

= Pr[p3U ∗
1 (Y3) + p4U ∗

1 (Y4) > U ∗
1 (Y1)]

= �


 p3U1(Y3) + p4U1(Y4) − U1(Y1)√

p2
3σ

2
π13

+ p2
4σ

2
π14

+ σ2
π11


 . (34)

Because of the independence assumption, the outcome probabilities are the product of the
action probabilities along their paths: pY1 = p1, pY3 = p2 p3, and pY4 = p2 p4.

Notice that the structure of the model can be seen in (1) the expected utility comparison in
the numerator of Equation 34, and (2) the form of the outcome probabilities. Additionally, the
equilibrium probabilities above are very similar to the nonstrategic sequential probabilities
under the assumption of independent agents. The difference between the two is that the
equilibrium probabilities here are a function of two players’ preferences, which the analyst
will likely specify with different sets of regressors.

4.3.3 Agent Error

We now assume that players are boundedly rational. As in the previous case, to determine
the strategic probit equilibrium outcome probabilities, we will proceed by first deriving the
equilibrium action probabilities.

The probability p4 that player 2 chooses action a4 is

p4 = Pr[U2(Y4) + α24 > U2(Y3) + α23]

= �


U2(Y4) − U2(Y3)√

σ2
α23

+ σ2
α24


 . (35)

The probability p2 that player 1 chooses a2 must be written in terms of her expected utility
for choosing action a2. As the error term comes in through actions rather than outcomes,
the expected utility is slightly different than with the payoff disturbances model:

U ∗
1 (a12) = U1(a12) + α12

= [p3U1(a3) + p4U1(a4)] + α12. (36)
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The agent’s probability of choosing a2 is then

p2 = Pr[U ∗
1 (a2) > U ∗

1 (a1)]

= Pr[p3U1(a3) + p4U1(a4) + α2 > U1(a1) + α1]

= �


 p3U1(Y3) + p4U1(Y4) − U1(Y1)√

σ2
α1

+ σ2
α2


 . (37)

The equilibrium outcome probabilities are, again, the product of the action probabilities
along their paths.

A few observations are in order. First, each of the three strategic models examined here
results in a different probability model. Hence, they are not observationally equivalent. The
agent error and private payoff models are similar in structure. Their numerators are identical,
reflecting the difference in the observed components of the expected utilities. The agent
error and private payoff models differ only in the variance terms in the denominators of the
probabilities. The variance term in the agent error model’s denominator is constant across
observations. Moreover, if we assume constant variance (say, σ2) across disturbances, then
a choice earlier in the game has the same amount of uncertainty as a choice later in the
game, and the variance will be the same for each observation: here,

√
2σ2.

In contrast, in a model with private information over payoffs, the variance term is a
function of the action probabilities, and will therefore vary over observations. Additionally,
for a given observation, the uncertainty in the private information model varies according to
where a player is in the choice tree. An interesting aspect of this model is that the minimum
possible uncertainty is less for choices made earlier in the game.13 For example, consider
Eqs. (33) and (34). Assuming constant variance σ2 across disturbances, the denominator
of Eq. (33) becomes

√
2σ2, while the denominator of Eq. (34) is

√
σ2(p2

3 + p2
4 + 1). The

latter will be less than the former for all values of p3 = (1 − p4), except zero and one, in
which case the two are equal.

It bears reiterating that each of the probability models examined here differ from their
nonstrategic sequential counterparts because of the incorporation of multiple players’ util-
ities and expected utility calculations. Therefore, the use of nonstrategic models to analyze
data generated by strategic behavior will result in specification error.

Finally, so far the models have been expressed solely in terms of the players’ utilities.
However, to use these models for regression analysis, the utilities will need to be specified in
terms of regressors. There is no set rule as to which regressors should be used to populate the
utilities—that should be guided by theory. Moreover, as with nonstrategic discrete choice
models, the analyst should pay close attention to model identification when populating the
strategic models with constants and regressors.

5 The Type of Uncertainty Matters. . . To a Degree

We saw in the last section that the theoretical source of uncertainty sometimes generates
different statistical models—specifically in the agent form of the nonstrategic sequential

13Using a centipede game with payoff disturbances, Zauner (1996, p. 15) makes the observation that the uncertainty
associated with choices is higher earlier in the game than later. However, this appears to be driven by the structure
and payoffs of the centipede game. In general, we can only say that the minimum possible uncertainty is less
earlier in the choice tree.
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Fig. 3 Differences in equilibrium probabilities. The figure displays Pr[Y4] for the private payoff
model (solid line), agent error model (dashed line), and regressor error model (dotted line) as a
function of σ2. The far left represents almost complete uncertainty. The far right converges on the
subgame perfect equilibrium of the complete information game.

models and in all strategic models. One implication is that, in some circumstances, we should
be able to formulate tests to differentiate between the types of uncertainty. It also implies,
however, that misspecifying the source of uncertainty may lead to incorrect inferences. In
this section, I provide some (limited) sense of the extent to which the sources of uncertainty
produce different probability models and affect our inferences.

One obvious question is: How much will the agent error and payoff disturbance prob-
abilities differ, given the same observed utilities Um(Yk)? Under certain conditions, they
will not differ at all. All three strategic probit models have the same limiting conditions.
For simplicity, let us continue to assume that the variance is constant across disturbances.
As the variance σ2 of the error terms approaches zero, the choice probabilities approach
the complete information SPE. As σ2 approaches infinity, the observed utilities offer no
information to distinguish which actions are more likely, and the action probabilities at
information sets become uniformly distributed.

Where the models differ is in the choice probabilities between these limiting conditions.
Although it remains that for the given model the choice probabilities tend to be relatively
close—especially among the agent error and private information models—the differences
in probabilities may at times be large, and will depend on the complexity of the model, on
the payoffs, and on the “signal to noise” ratio of the regressors and disturbances.

Consider Fig. 3, which displays the probability of Y4 based on the private payoff model
(solid line), agent error model (dashed line), and regressor error model (dotted line), each
as a function of the inverse of the disturbance variance.14 For illustration, the observable
utilities were assumed to be U1(Y1) = 0, U1(Y3) = −10, U1(Y4) = 1, U2(Y3) = 0, and
U2(Y4) = 0.5. The far left and right of the graph correspond to the limiting conditions
mentioned previously. On the far left, the observable utilities are negligible relative to the
disturbances. Therefore, probabilities are uniformly distributed over the actions, resulting
in a limiting probability of 0.25. On the far right, the uncertainty is vanishingly small, and
the probabilities converge on the SPE of the game with perfect and complete information.

14That ratio is logged for easier interpretation of the graph.
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In between, we see that the payoff and agent error models tend to have similar prob-
abilities. However, depending on σ2, they can differ significantly from the model with
regressor error. For example, when ln(1/σ2) = 0, Fig. 3 shows that the private payoff
model’s Pr[Y4] is almost zero, whereas the regressor error model’s probability is about 0.5.
Between ln(1/σ2) = −2.3 and ln(1/σ2) = 2.3, the model with regressor error deviates
from the private payoff probability by anywhere from 0.2 to 0.85.

The reason for the deviation is fairly intuitive. The model with regressor error takes
the theoretical model as fixed and incorporates uncertainty only into the statistical (or
econometric) model—the disturbances are the parts of the true utilities that we do not capture
with our regressors. Therefore, the regressor error model’s probability varies monotonically
from the state of complete ignorance of the true utilities (the far left side of the graph) to
complete certainty about the utilities (the far right).

In contrast, the private payoff and agent error models incorporate uncertainty into both
the econometric and theoretical aspects of the model. When there is complete certainty (as
in the far right of the graph), both the analyst and player 1 know that player 2 will choose
option a4 (refer to the utilities above). Given that, player 1 will choose option a2. However,
with even a little uncertainty concerning the payoffs (or actions, as in the agent error model),
player 1’s expected utility calculation heavily leans in favor of option a1. This is because the
observable component of player 2’s utilities are relatively close, and player 1’s utility for Y3 is
much worse than for Y1. Hence, there is a nonmonotonic relationship between Pr(Y4) and σ2.

The model in Fig. 2c is rather simple. Under most circumstances, the private payoff and
agent error probabilities should be relatively close in this model. However, that is not to say
that private payoff and agent error models will always yield virtually identical probabilities.
It is fairly easy to construct models where there is more room for divergence, and the reason
for the divergence is, again, fairly intuitive. As they share the same numerator, the only
way in which corresponding action probabilities can differ is in the denominator. The
denominator of the agent error action probabilities is the same, regardless of observation
or the information set in the model, assuming disturbances are independent and identically
distributed. However, for a given information set, the denominator of the action probabilities
in the private payoff model will be a more complicated function of the action probabilities
(1) the closer it is to the root node, (2) the deeper the game tree (in terms of sequences of
moves), and (3) the wider the tree (in terms of number of options at information sets).15

Therefore, for the private payoff versus agent error models, although the theoretical source
of the uncertainty may not make much difference in “smaller” or “simpler” choice trees, it
will be important for more complex choice structures.

5.1 Bias and Inconsistency

To assess the effect on our inferences of incorrectly modeling the uncertainty, I conducted
a series of Monte Carlo simulations. For the data-generating process, I employed the game
in Fig. 2c with the following assumptions:

• The utilities are specified as

U1(Y1) = 0, U1(Y3) = β13 X13, U1(Y4) = β14 X14,

U2(Y3) = 0, U2(Y4) = β24 X24.
16

15A more detailed example is available upon request from the author.
16U1(Y1) and U2(Y3) are normalized to zero only for simplicity. The conclusions would not change were we to

specify them differently.
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• β13 = β14 = β24 = 1.

• The uncertainty is due to private information concerning payoffs, where the distur-
bances are normally distributed with mean zero and variance V (π).

• The regressors are each uniformaly distributed with mean zero and variance V (X ).

In each iteration of the Monte Carlo simulation, a sample of 2000 observations was
generated using the behavioral assumptions of the private payoff model. For a given sample,
the private payoff model, the agent error model, and the regressor error model were each
estimated, and the estimates were saved. This was repeated 2500 times.

It seems likely that the specification error will depend in part on the extent to which
the disturbance “matters” relative to the observable component of the utility. In that regard,
Monte Carlo analyses were conducted as detailed above for the following signal-to-noise
ratios V (X )/V (π) ∈ { 1

10 , 1
3 , 1, 3, 5, 7, 10, 13, 15}.17 So, for example, V (X )/V (π) = 1

10
denotes a Monte Carlo experiment where the variance of the disturbance is 10 times
that of the regressors, representing generally greater uncertainty. Similarly, an experi-
ment with V (X )/V (π) = 10 denotes a Monte Carlo experiment where the variance
of the regressors are 10 times that of the disturbances, representing generally greater
certainty.

Figures 4a and 4b display the estimated mean squared error of the estimators of β14 and
β24, respectively, as a function of V (X )/V (π).18 The solid line represents the private payoff
model, the dashed line represents the agent error model, and the dotted line represents the
regressor error model. As Fig. 4a shows, the private payoff estimators have the smallest
estimated mean squared error for β̂14. This is not surprising, as the private payoff model

was used to generate the data. The figure shows that ̂MSE(β̂14) decreases as V (X )/V (π)
increases. Not surprisingly as well, the agent error model closely mirrors the private payoff
results, albeit with a slightly higher MSE in every case.

Somewhat more surprising is the MSE for the regressor error model (the dotted line).
As Fig. 4a displays, the MSE initially falls as V (X )/V (π) increases, until V (X )/V (π)
is somewhere around 2 or 3, at which point it begins increasing in V (X )/V (π). This
appears to be due to two dynamics. Recall that MSE(β̂) = V (β̂) + Bias(β̂)2. Although not
shown here, the results of the Monte Carlo analysis indicate that the bias decreases until
about V (X )/V (π) = 3 and then starts increasing.19 As V (X )/V (π) increases, the variance
accounts for a smaller portion of the MSE than does the bias. However, there is also a small
upturn in the variance at around V (X )/V (π) = 7. Aside from that, it is unclear why we see
this particular nonmonotonic dynamic in Fig. 4a. My conjecture is that there is an “optimal”
positive amount of uncertainty in estimating strategic models. Too much certainty (e.g., too
high a V (X )/V (π)) produces probabilities too close to zero and one, which in turn produce
ill-behaved log-likelihood functions and perhaps computer precision problems, making it
difficult for statistical computer programs to converge on a maximum.

Similar results are seen in Fig. 4b. The MSE for the private payoff model is negligible,
except for the lowest V (X )/V (π). The agent error model mirrors that. And, we see a similar
nonmonotonic relationship in the MSE for the model with regressor error.

All of these results strongly suggest that misspecifying the source of uncertainty re-
sults in biased and inconsistent estimates when the estimated model is observationally

17Perhaps “systematic versus stochastic ratio” would be a more accurate term.
18The results for β̂13 are essentially the same as those for β̂14.
19Results available upon request from the author.
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Fig. 4 Measures of deviation from the true model. In each of the graphs, the private payoff model
is assumed to be the data-generating process. Parts (a) and (b) show the estimated mean square error
of β̂14 and β̂24, respectively, for the three estimated models. Parts (c) and (d) provide a sense of
how far off on average and in the worst case, respectively, each model will be in estimating outcome
probabilities. The solid line denotes the private payoff model, the dashed line denotes the agent error
model, and the dotted line denotes the regressor error model.

nonequivalent with the data generating process. Although the MSEs in Figs. 4a and 4b are
fairly small, we would expect the MSEs to increase as the complexity of the data-generating
process increases, as the probabilities will diverge as the complexity increases.

5.2 A Broader Comparison of the Estimated Probability Models

Although the signs of parameter estimates are readily interpretable in some discrete choice
models, they are not in others. In most cases, to determine the effect of a regressor, re-
searchers interpret the effect of a variable on an outcome probability of interest. It would
be nice if we had some measure, like MSE, with which we could assess the extent to which
one model broadly diverged from another model in their estimated probabilities.

To do this, I employ the same technique as in Signorino (2002). First, consider a grid
of points over the space of our regressors X13, X14, and X24. For any given range of the
regressors, suppose we constructed a grid with 50 points along each dimension. That would
result in a total of 50 × 50 = 125, 000 points, evenly distributed across the regressor space.
Now consider the private payoff data-generating process and suppose we calculated the
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outcome probabilities for each point in that grid. Associated with each point in the grid are
three probabilities: (Pr[Y1], Pr[Y3], Pr[Y4]). We can treat that triple as a point in a simplex.
Now, we can do the same thing with one of our estimated models, say the agent error model.
For each point in the regressor grid, we would have the probability triple for the “true” model
and the estimated probability triple from the agent error model. To determine how close
those points are to each other, I simply take the Euclidean distance between them in the
simplex.20 For each point in the regressor grid, we then have a measure of the “distance”
between the two models. We can summarize the distance of the two models (i.e., the true
model and the estimated model) in a number of ways.

Figures 4c and 4d provide some sense of how far “apart” the three estimated models are
from the data-generating process. As before, the solid line denotes the estimated private
payoff model, the dashed line denotes the estimated agent error model, and the dotted line
denotes the estimated regressor error model. Figure 4c displays the average distance across
the regressor grid for each of the three models, and as a function of V (X )/V (π). As one can
see, the private payoff and agent error models are extremely close on average to the data-
generating process in terms of their estimated probabilities. The average distance between
the data-generating process and the estimated regressor error model is generally about 0.1.

Perhaps more striking are the results of Fig. 4d, which shows the maximum distance
between the estimated model and the data-generating process. Interestingly, the agent error
model’s maximum distance is fairly small. On the other hand, the maximum distance for
the regressor error model grows with V (X )/V (π), and is quite large for all but the very
smallest V (X )/V (π).21 For more complex games, one would expect the mean distance to
increase for the agent error and regressor error models. Moreover, one would expect the
maximum distance to increase, or at least not decrease.

The import of this section then is that the type of uncertainty matters in terms of our
statistical inferences, at least in strategic models. The reader should not conclude from this,
however, that the private payoff model is always preferred. Those results were due to the
fact that the private payoff model was also the data-generating process. If the data were
instead generated by a game of perfect and complete information, where we as analysts
simply did not correctly account for all variation in utilities via our regressors, then the
private payoff statistical model would have produced incorrect inferences. The point to take
from this section is that assuming the wrong type of uncertainty can lead to biased and
inconsistent parameter estimates and estimated probabilities that are far off the mark.

6 Concluding Remarks

My objectives in this article have been to (1) examine how three plausible sources of
uncertainty interact with structural assumptions to produce different statistical models and
possibly affect our inferences, (2) demonstrate how to derive such statistical models from
theoretical first principles, and (3) generalize a broad class of statistical discrete choice
models.

As we have seen, nonstrategic sequential choice models with complete information re-
duce to multinomial choice with a single information set and are observationally equivalent
to the nonsequential models. Assuming agent errors or payoff disturbances are private

20The farthest two points can be from each other in the simplex is if one is at one corner of the simplex and the
other is at another corner, resulting in a distance of

√
(2) ≈ 1.414.

21Indeed, the maximum distance is small for extremely small V (X )/V (π) only because that reflects almost
complete uncertainty, which has the same limit for all three models.
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information to a player’s agents can lead to different statistical models that are observation-
ally nonequivalent. These latter models have many similarities to the strategic models and
can actually be thought of as strategic, where agents are different players but with the same
observed outcome payoffs.

Strategic choice results in more complicated models, as the choice probabilities reflect not
just the utilities of a single decision maker, but the utilities of multiple decision makers who
must condition their behavior on the expected behavior of each other, producing equilibrium
choice probabilities. In this case, misspecifying the type of uncertainty leads to biased and
inconsistent estimates.

As I have demonstrated, constructing a strategic discrete choice model is not difficult.
From a practical perspective, however, some of the probit-based examples examined here
are subject to the same constraint as multinomial probit: integration of higher dimension
normal densities. Depending on the depth of the choice tree, the strategic probit model
with regressor error may be computationally impractical. In fact, any of the probit-based
models may be computationally impractical if the number of choices at any information
set becomes too large. Nevertheless, most social science strategic models tend to limit the
number of choices available at information sets, so the strategic probit models presented
here should be widely applicable. Moreover, logit versions of the strategic models are also
derivable (e.g., LQRE in McKelvey and Palfrey 1998; see also Signorino 1999).

Much, of course, remains to be done. First, the different variance terms in the strategic
probit models—and the fact that one varies over observations while the other is constant—
suggest that a specification test can be developed for the different models. A more general
strategic probit model that combines agent error and payoff perturbations is easy to derive
and may be useful in that respect.22 However, combining the regressor error assumption
with either of the other two types of uncertainty is much more complicated, as it requires
differentiating the information available to the players versus the analyst.

Second, as I alluded to earlier, the assumption that disturbances are independent of each
other, in combination with the multiagent representation and agent-level private information,
is not innocuous. It greatly simplifies deriving the choice probabilities, but at a price: players
cannot update in the model. Under these assumptions, a player’s agent knows nothing about
that player’s other agents’ disturbances (at subsequent information sets) beyond what the
opposing player knows. The agent’s choice is not based in any way on those disturbances,
other than knowledge of their distribution. Therefore, the opposing player cannot learn from
that agent’s choice anything about subsequent agents’ disturbances.

Again, there may be situations where this is theoretically justified. With payoff distur-
bances, we might assume that players are not completely certain what their utilities will
be at later decisions, but have a pretty good idea what they are likely to be on average.
The assumption is perhaps better justified in the case of agent error: players are unlikely
to foresee their own misperceptions or mistakes at future decision points—otherwise they
could correct for them ahead of time. These assumptions have the virtue of making the
math tractable. On the other hand, they create a different—and much more limited—
type of incomplete information game than those typically analyzed in the mainstream
game theory literature. The assumption of independent, private disturbances could be re-
laxed. The price for doing so is a more complicated model.23 Whether the complication is

22A combined payoff disturbance and agent error strategic probit model for Fig. 2c is identical to those in
Section 4.3, except that the denominators include the variance terms of both error models.

23For one example, see Signorino (2002).
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warranted, of course, is an (interesting) empirical question, but it is also a topic for another
article.
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