
16
Parity violation in inclusive electron scattering

The measurement of parity violation in the scattering of longitudinally
polarized electrons in inclusive deep-inelastic electron scattering from
deuterium at SLAC is a classic experiment that played a pivotal role in
the establishment of the weak neutral current structure of the standard
model [Pr78, Pr79]. The measurement of parity violation in inclusive
electron scattering from nuclear and nucleon targets A(e, e′)pv, promises
to play a central role in future developments in nuclear physics [Pa90]. In
this chapter we use the previous results to develop a general description
of this process.

Conservation of parity in the strong and electromagnetic interactions
implies that there can be no difference in the cross section for the process
A(e, e′) upon reversal of the longitudinal polarization of the electron
if the target is unpolarized and unobserved. This follows from general
principles, for it would effectively imply a non-zero expectation value
for the pseudoscalar quantity 〈σ · k1〉. That the helicity-dependent lepton
contribution to the cross section indeed vanishes with one photon exchange
can be seen immediately from our preceeding analysis. Equation (15.2)
states that a longitudinally polarized electron has an additional term in
the response tensor of the form h εμνλρk2λk1ρ. When contracted with the
response tensor for an unpolarized and unobserved hadronic target in Eq.
(11.27), the result vanishes since the first expression is antisymmetric in
the interchange of the indices μ and ν and the second is symmetric.

Parity violation necessitates the inclusion of the weak interaction. In
addition to the exchange of a virtual photon, it is possible for an electron
to exchange a Z (0), the heavy neutral weak vector boson with mass
MZ = 91.19 GeV. The interaction takes place through the weak neutral
current, which we now know is accurately described by the standard model
of the electroweak interactions [Sa64, We67, Gl70, We72].

To start the discussion of parity violation, consider the scattering of
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Fig. 16.1. Contributing Feynman diagrams (unitary gauge) for parity-violating
asymmetry in scattering of longitudinally polarized electrons from point protons.
Here q = k2 − k1.

a relativistic (massless) longitudinally polarized electron from a point
proton. The contributing diagrams in the unitary gauge are shown in Fig.
16.1. The standard model is presented in detail in chapter 26 and [Wa95].
Here we simply anticipate that development and use the fact that the
Feynman rules for the weak neutral current interaction of the standard
model imply that the S-matrix is given by

Sf i =
−(2π)4i

Ω2
δ(4)(k1 + p − k2 − p′)

{
ū(k2)(eγμ)u(k1)

δμν

q2
ū(p′)(−eγν)u(p)

+ ū(k2)

[ −gγμ

4 cos θW
[(1 − 4 sin2 θW ) + γ5]

]
u(k1)

(δμν + qμqν/m
2
Z )

q2 + m2
Z

×ū(p′)
[

gγν

4 cos θW
[(1 − 4 sin2 θW ) + γ5]

]
u(p)

}
(16.1)

At low energy one has |q|/MZ � 1, and the momentum-dependent terms
can be neglected in the Z-propagator. Take the standard model values

e2 = 4πα

g2

8m2
Z cos2 θW

=
G√
2

=
1.024 × 10−5

√
2 m2

p

a = −(1 − 4 sin2 θW ) ; sin2 θW = 0.2315

b = −1 (16.2)

Then

Sf i =
−(2π)4i

Ω2
δ(4)(k1 + p − k2 − p′)Tf i

Tf i = −4πα

q2

{
ū(k2)γμu(k1)ū(p

′)γμu(p) − Gq2

4πα
√

2
ū(k2)γμ[a + bγ5]u(k1)

× ū(p′)γμ

[
1

2
(1 + γ5) − 2 sin2 θW

]
u(p)

}
(16.3)

This result is easily extended to point neutrons using the Feynman rules
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16 Parity violation in inclusive electron scattering 117

of [Wa95] through the replacement

Tf i = −4πα

q2

{
ū(k2)γμu(k1)ū(p

′)γμ
1

2
(1 + τ3)u(p)

− Gq2

4πα
√

2
ū(k2)γμ[a + bγ5]u(k1)

×ū(p′)γμ[(1 + γ5)
1

2
τ3 − 2 sin2 θW

1

2
(1 + τ3)]u(p)

}
(16.4)

At this juncture one can redefine things so that the result is more general
than for just point nucleons

Sf i =
−(2π)4i

Ω
δ(4)(k1 + p − k2 − p′)Tf i

Tf i =
4πα

q2

{
iū(k2)γμu(k1)〈p′|Jγμ(0)|p〉

− Gq2

4πα
√

2
iū(k2)γμ(a + bγ5)u(k1)〈p′|J(0)

μ (0)|p〉
}

(16.5)

Now these are single-nucleon matrix elements of the full electromagnetic
and weak neutral current densities taken between exact Heisenberg states;
for point nucleons, this expression reduces to Eq. (16.4).

The dimensionless ratio Gq2/4πα
√

2 forms the small parameter in these
nuclear physics parity-violation calculations.

The first term in Eq. (16.5) leads to the electron scattering cross section
derived in chapter 11

dσ =
4α2

q4

d3k2

2ε2

1√
(k1 · p)2

ημνWμν

ημν = −2ε1ε2
1

2

∑
s1

∑
s2

ū(k1)γνu(k2)ū(k2)γμu(k1)

= k1μk2ν + k1νk2μ − (k1 · k2)δμν

Wμν = (2π)3
∑
i

∑
f

δ(4)(q + p′ − p)〈p|Jγν (0)|p′〉〈p′|Jγμ(0)|p〉(ΩEp)

= W
γ
1 (q2, q · p)

(
δμν − qμqν

q2

)

+W
γ
2 (q2, q · p) 1

M2
T

(
pμ − p · q

q2
qμ

)(
pν − p · q

q2
qν

)
(16.6)

It is important to note that at this point we have again generalized the
target response tensor to include the possibility of inelastic processes.
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Fig. 16.2. Cross sections for right- and left-handed electrons.

From appendix D and chapter 15 we know that the following are
projections for right- and left-handed (massless) Dirac electrons

P↑ =
1

2
(1 − γ5) P↓ =

1

2
(1 + γ5) (16.7)

To calculate the cross sections for such particles (Fig. 16.2) one sim-
ply modifies ημν with the appropriate insertion of these projections and
removes the average over the initial helicities1

for dσ↑ : η↑
μν = . . .

omit︷ ︸︸ ︷(
1

2

)∑
s1

∑
s2

ū(k1) . . .
1

2
(1 − γ5)u(k1)

for dσ↓ : η↓
μν = . . .

∑
s1

∑
s2

ū(k1) . . .
1

2
(1 + γ5)u(k1)

for dσ↑ − dσ↓ : η(−)
μν = . . .

∑
s1

∑
s2

ū(k1) . . . (−γ5)u(k1)

for dσ↑ + dσ↓ : η(+)
μν = . . .

∑
s1

∑
s2

ū(k1) . . . (1)u(k1) (16.8)

Thus one now has either (−γ5) or (1) in the lepton trace. Since all common
factors cancel in the ratio the asymmetry is given by

A ≡ dσ↑ − dσ↓
dσ↑ + dσ↓

= − Gq2

4πα
√

2

η(1)
μν W

(1)
μν + η(2)

μν W
(2)
μν

2ημνWμν
(16.9)

Here

η(1)
μν = −2ε1ε2

∑
s1

∑
s2

ū(k1)γνu(k2)ū(k2)γμ(a + bγ5)(−γ5)u(k1) (16.10)

W (1)
μν = (2π)3

∑
i

∑
f

δ(4)(q + p′ − p)〈p|Jγν (0)|p′〉〈p′|J(0)
μ (0)|p〉(ΩEp)

η(2)
μν = −2ε1ε2

∑
s1

∑
s2

ū(k1)γν(a + bγ5)u(k2)ū(k2)γμ(−γ5)u(k1)

W (2)
μν = (2π)3

∑
i

∑
f

δ(4)(q + p′ − p)〈p|J(0)
ν (0)|p′〉〈p′|Jγμ(0)|p〉(ΩEp)

1 Note dσ↑ + dσ↓ = 2dσunpolarized.
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16 Parity violation in inclusive electron scattering 119

The lepton traces have been evaluated in chapter 15. The result is2

η(1)
μν = η(2)

μν = −2(bημν + aεμνρσk1ρk2σ) (16.11)

Thus in the numerator of Eq. (16.9) one needs η(1)
μν (W (1)

μν + W (2)
μν ) and

W (1)
μν + W (2)

μν = (2π)3
∑
i

∑
f

δ(4)(q + p′ − p)
[
〈p|Jγν (0)|p′〉〈p′|J(0)

μ (0)|p〉

+〈p|J(0)
ν (0)|p′〉〈p′|Jγμ(0)|p〉

]
(ΩEp) (16.12)

Now separate the weak neutral current into its Lorentz vector and axial
vector parts

J(0)
μ = J(0)

μ + J
(0)
μ5 ; V − A (16.13)

Since the asymmetry is already explicitly of order Gq2/4πα
√

2, one can
then use the good parity of the nuclear states to write

W (1)
μν + W (2)

μν = W int
μν + WV−A

μν (16.14)

Here the first term W int
μν comes from J(0)

μ ; it has the same general structure

as Wγ
μν in Eq. (16.6)3

W int
μν = W int

1 (q2, q · p)
(
δμν − qμqν

q2

)

+W int
2 (q2, q · p) 1

M2
T

(
pμ − p · q

q2
qμ

)(
pν − p · q

q2
qν

)
(16.15)

The second term in Eq. (16.14), coming from J
(0)
μ5 , is a pseudotensor;

the only pseudotensor that can be constructed from the two four-vectors
(pμ, qμ) is4

WV−A
μν = W8(q

2, q · p) 1

M2
T

εμνρσpρqσ (16.16)

Now combine these expressions with Eq. (16.11). The result follows from
simple algebra and kinematics of the type carried out previously. The only
non-zero terms are [see Eq. (11.35)]

2ημνWμν = 4ε1ε2[W
γ
2 cos2

θ

2
+ 2W

γ
1 sin2 θ

2
]

−2bημνW
int
μν = (−b)4ε1ε2[W

int
2 cos2

θ

2
+ 2W int

1 sin2 θ

2
] (16.17)

2 Note that the first term is symmetric in μ ↔ ν, while the second is antisymmetric.
3 The proof of this result uses the fact that the current J (0)

μ is conserved.
4 Note that this expression is antisymmetric in μ ↔ ν.
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120 Part 2 General analysis

and (
−2aεμνρσk1ρk2σ

) [
W8(q

2, q · p) 1

M2
T

εμναβpαqβ

]

= −
(

4a

M2
T

W8

)
(k1 · p k2 · q − k1 · q k2 · p)

= −
(

2a

M2
T

W8

)
q2 p · (k1 + k2)

=

(
2a

MT
W8

)
4ε1ε2 sin

θ

2

(
q2 cos2

θ

2
+ q2 sin2 θ

2

)1/2

(16.18)

The ERL is assumed with q = k2 − k1, and the results are written in the
laboratory frame. The last line follows from the following manipulations
in that frame

q2 cos2
θ

2
+ q2 sin2 θ

2
= q2 − q2

0 cos2
θ

2

= ε22 + ε21 − 2ε1ε2 cos θ − (ε2 − ε1)
2 cos2

θ

2

= (ε1 + ε2)
2 sin2 θ

2
(16.19)

The final result is[
dσ↑ − dσ↓
dσ↑ + dσ↓

] [
W

γ
2 cos2

θ

2
+ 2W

γ
1 sin2 θ

2

]
=

Gq2

4πα
√

2

×
{
b

[
W int

2 cos2
θ

2
+ 2W int

1 sin2 θ

2

]

−a

(
2W8

MT

)
sin

θ

2

(
q2 cos2

θ

2
+ q2 sin2 θ

2

)1/2
}

(16.20)

Several features of this result are of interest:

• This is the general expression for the parity-violating asymmetry
in relativistic polarized electron scattering from a hadronic target
arising from the interference of one-photon and one-Z exchange
(Fig. 16.1).5

• The left hand side is the product of the asymmetry A [Eq. (16.9)]
and the basic (e, e′) response [Eqs. (16.6) and (16.17)].

5 Additional contributions to the parity-violating asymmetry can arise from parity ad-

mixtures in the nuclear states coming from weak parity-violating nucleon–nucleon

interactions. These contributions are generally negligible, except perhaps at very small

q2 [Se79, Dm92].
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16 Parity violation in inclusive electron scattering 121

• The characteristic scale of parity violation in nuclear physics from
the process (e, e′) is set by the dimensionless parameter Gq2/4πα

√
2

appearing on the right hand side.

• The parameter b characterizes the lepton axial-vector weak neutral
current [Eq. (16.2)]; its coefficient here arises from the interference
of the vector part of the weak neutral and electromagnetic hadronic
currents [Eqs. (16.12), (16.13), and (16.15)]

W int
μν = (2π)3

∑
i

∑
f

δ(4)(q + p′ − p)
[
〈p|Jγν (0)|p′〉〈p′|J(0)

μ (0)|p〉

+〈p|J(0)
ν (0)|p′〉〈p′|Jγμ(0)|p〉

]
(ΩEp)

= W int
1 (q2, q · p)

(
δμν − qμqν

q2

)

+W int
2 (q2, q · p) 1

M2
T

(
pμ − p · q

q2
qμ

)(
pν − p · q

q2
qν

)
(16.21)

• The parameter a characterizes the lepton vector weak neutral current
[Eq. (16.2)]; its coefficient here arises from the interference of the
axial vector part of the weak neutral and electromagnetic hadronic
currents [Eqs. (16.12)–(16.14) and (16.16)]

WA−V
μν = (2π)3

∑
i

∑
f

δ(4)(q + p′ − p)
[
〈p|Jγν (0)|p′〉〈p′|J(0)

μ5 (0)|p〉

+〈p|J(0)
ν5 (0)|p′〉〈p′|Jγμ(0)|p〉

]
(ΩEp)

= W8(q
2, q · p) 1

M2
T

εμνρσpρqσ (16.22)

• The three response functions on the right hand side of Eq. (16.20)
can be separated by varying the electron scattering angle θ at fixed
(q2, q · p).6

• The parity violation arises from the interference of the transition
matrix element of the electromagnetic and the weak neutral cur-
rents. If the electromagnetic matrix elements have been measured,
then parity violation in (e, e) and (e, e′) provides a measurement of the
matrix elements of the weak neutral current in nuclei at all q2.

We give one example [Wa84, Wa95]. Consider elastic scattering from
a 0+ target (Fig. 16.3a). Then from Lorentz covariance and current con-

6 This is known as a Rosenbluth separation.
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(a) (b)
0+ 0+.0

Fig. 16.3. Example of parity-violating asymmetry in scattering from (a) Jπ = 0+,
and (b) (Jπ, T ) = (0+, 0) target.

servation the transition matrix elements of the electromagnetic and weak
neutral currents must have the form7

〈p′|Jγμ(0)|p〉 =

(
M2

T

EE′Ω2

)1/2

F
γ
0 (q

2)
1

MT

(
pμ − p · q

q2
qμ

)

〈p′|J(0)
μ (0)|p〉 =

(
M2

T

EE′Ω2

)1/2

F
(0)
0 (q2)

1

MT

(
pμ − p · q

q2
qμ

)

〈p′|J(0)
μ5 (0)|p〉 = 0 (16.23)

The last relation follows since it is impossible to construct an axial vector
from only two four-vectors (pμ, qμ).

Insertion of these relations in the defining equations yields

W int
1 = WA−V = 0

A =
Gq2

4πα
√

2
b
2F

(0)
0 (q2)

F
γ
0 (q

2)
(16.24)

Hence

A = − Gq2

2πα
√

2

F
(0)
0 (q2)

F
γ
0 (q

2)
(16.25)

This expression allows one to measure the ratio of the weak neutral current
and electromagnetic form factors — the latter measures the distribution
of electromagnetic charge in the 0+ target, and the former the distribution
of weak neutral charge.

Now suppose that, in addition, the target has isospin T = 0 (Fig. 16.3b).
Then only isoscalar operators can contribute to the matrix elements. In
the nuclear domain of (u, d) quarks and antiquarks, the only isoscalar
piece of the weak neutral current in the standard model arises from the
electromagnetic current itself, and hence in this case (see chapter 26)

J(0)
μ

.
= −2 sin2 θWJγμ (16.26)

This implies

F
(0)
0 (q2) = −2 sin2 θWF

γ
0 (q

2) (16.27)

7 Hermiticity of the current implies that the form factors, as defined here, are real.
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16 Parity violation in inclusive electron scattering 123

The ratio of form factors is then the constant −2 sin2 θW at all q2 — a
truly remarkable prediction!8 Insertion of this equality in the expression
for the asymmetry leads to [Fe75]

A =
Gq2

πα
√

2
sin2 θW (16.28)

Several comments are of interest:

• It is important to note that this result holds to all orders in the
strong interactions (QCD);

• This expression is linear in q2 with a coefficient that depends only
on fundamental constants;

• It can be used to measure sin2 θW in the low-energy quark sector,
complementing other measurements of this quantity;

• It can be used to test the remarkable prediction in Eq. (16.27) that
holds in the nuclear domain.

A measurement of this parity-violating asymmetry for elastic scattering
from 12C at q = 150 MeV has been carried out in a tour de force
experiment at the Bates Laboratory [So90]. Take

q = 150 MeV sin2 θW = 0.2315

α−1 = 137.0 G =
1.024 × 10−5

m2
p

A = 1.868 × 10−6 (16.29)

Then, with an electron beam polarization Pe, one has [So90, Mo90]

APe = 0.691 × 10−6 ; theory (Pe = 0.37)

APe = 0.60 ± 0.14 ± 0.02 × 10−6 ; experiment (16.30)

The first error is statistical. Note that the systematic error, the key to these
experiments, has been reduced to 2 × 10−8. This experiment provides the
prototype for the next generation of electron scattering parity-violation
studies.

Consider next the extended domain of (u, d, s, c) quarks and their anti-
quarks. The standard model then has an additional isoscalar term in the
weak neutral current (see chapter 26)

δJ(0)
μ =

i

2
[c̄γμ(1 + γ5)c − s̄γμ(1 + γ5)s] (16.31)

8 This result depends on the assumption of isospin invariance that is broken to O(α) in

nuclei.
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124 Part 2 General analysis

Table 16.1. Quark sector used in discussion of parity-violating deep-inelastic
electron scattering from the nucleon (see chapter 26).

u d s

Q
(0)
i 1/2 − (4/3) sin2 θW −1/2 +(2/3) sin2 θW −1/2 +(2/3) sin2 θW

Q
(05)
i 1/2 −1/2 −1/2

This leads to an additional contribution δF
(0)
0 in the form factor in Eq.

(16.27); the asymmetry for elastic scattering of polarized electrons on a
(0+, 0) nucleus such as 4He then takes the form

A =
Gq2

πα
√

2
sin2 θW

[
1 − δF

(0)
0 (q2)

2 sin2 θWF
γ
0 (q

2)

]
(16.32)

The additional weak neutral current form factor comes from the vector
current in Eq. (16.31), and is expected to arise predominantly from the
much lighter strange quarks. Hence one has a direct measure of the
strangeness current in nuclei. The total strangeness of this nucleus must
vanish in the strong and electromagnetic sector, and hence δF

(0)
0 (0) = 0;

however, just as with electromagnetic charge in the neutron, there can be
a strangeness distribution, which is determined in this experiment.

The quark–parton model predictions for parity violation in deep-inelastic
scattering from the nucleon follow directly from the previous analysis. Go
back to the intermediate step in Eq. (14.34) and identify in the quark
response tensor

Q2
i [p

′
μpν + p′

νpμ − (p · p′)δμν] → Q2
i

4
trace [γν(γρp

′
ρ)γμ(γσpσ)] (16.33)

In the response tensor arising from the interference of the electromagnetic
and vector weak neutral currents, one has instead

QiQ
(0)
i

4
trace [γν(γρp

′
ρ)γμ(γσpσ) + γν(γρp

′
ρ)γμ(γρpρ)] =

2QiQ
(0)
i [p′

μpν + p′
νpμ − (p · p′)δμν] (16.34)

Here Q
(0)
i is the weak neutral charge of the quarks, shown for the first few

quarks in Table 16.1. The arguments proceed precisely as those following
Eq. (14.34), with the result that the following combinations of response
functions are predicted to satisfy Bjorken scaling

2W int
1 (ν, q2) → H1(x) = 2

∑
i

QiQ
(0)
i fi(x)

(
ν

m

)
W int

2 (ν, q2) → H2(x) = xH1(x) = 2x
∑
i

QiQ
(0)
i fi(x) (16.35)
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16 Parity violation in inclusive electron scattering 125

For the interference term between the axial vector and electromagnetic
currents, the corresponding replacement in Eq. (16.33) is

QiQ
(05)
i

4
trace [γν(γρp

′
ρ)γμγ5(γσpσ) + γνγ5(γρp

′
ρ)γμ(γσpσ)] =

−2QiQ
(05)
i εμνρσp

′
ρpσ (16.36)

Hence a repetition of the arguments following Eq. (14.34) allows one to
conclude that the following combination must scale

−
(
ν

m

)
W8(ν, q

2) → H8(x) = 2
∑
i

QiQ
(05)
i fi(x) (16.37)

Here Q
(05)
i are the axial vector couplings of the quarks, also shown for the

first few quarks in Table 16.1. Note that if Qi and fi(x) are known from
DIS through the electromagnetic interaction, then the parity violation
measurements allow one to determine the weak neutral current couplings
of the quarks.9

We will return to the subject of parity violation in the discussion of
applications and future directions.

9 Parity violation in DIS from the nucleon is further analyzed in [Ka78].
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