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1. Introduction. Von Neumann's fundamental theorem of the theory of 
games has been extended by various authors and recently in two different 
directions by Kneser (8) and Nikaidô (9). We present here a form of the 
theorem, which is more general than that of both these authors. We develop 
some consequences of this theorem, which make it easier to decide whether 
certain classes of games have a value and we give several illustrative examples. 

2. The fundamental theorem. Our theorem concerns the following 
situation: X is a convex subset of a real linear space, F is any subset of a real 
linear space and F is the convex set generated by Y. A real function/ is defined 
on X X Y and f(x,y) is a concave function of x Ç X and a convex function 
of y £ F; i.e., for 0 < X < 1, we have both 

fiXx, + (1 - \)x2,y) > \f(xuy) + (1 - X)/ (x2,y) 

and 

f(x,\yi + (I - \)y2) < \f(x,yi) + (1 - A)/ (x,y2). 

THEOREM 1. If X is compact in a topology (no separation axiom is assumed) 
which is such that for every y £ F, f(x,y) is an upper semi-continuous function 
of .T, then 

supT ex mïy ç yf(x,y) > mîy e ?mpx çxf(x,y)-
To prove this theorem wre follow the procedure of Kneser (8) and establish 

the following 

LEMMA. / / {j\, . . . ,fn} is a finite set of real concave functions, which are 
upper semi-continuous on a compact, convex set K, and if for all x (zK, 
mini<i^nfi(x) < 0, then there is a mean 

n n 

g = J2 *ifu J2 A* = ], A* > 0, i = 1, . . . , n 
Z = l 7 = 1 

such that for all x f K, g(x) < 0. 

We prove the lemma first for two concave upper semi-continuous functions 
/ and g defined on the compact convex set K, such that mm(f(x),g(x)) < 0. 
Let F = {x :f(x) > 0} and G = {x : g(x) > 0}. These subsets are compact 
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and disjoint. If F, or G, is void, the proof is trivial. We thus assume that 
both F and G are not void. 

From the hypothesis of upper semi-continuity we may find p € F and 
g Ç G such that 

(1) max^ ^ Ff{x)/~ g(x) = f(p)/- g(p) = a > 0, 

(2) m a x x Ç G £ ( * ) / - / ( * ) = g(q)/~f(q) = P > 0. 

Since / (£) > 0 and/(g) < 0, we may find p > 0 and a > 0 so that p + <r = 1 
and p/(/>) + o/(g) = 0. Because/is concave f(pp + erg) > 0, whence by hypo
thesis and the concavity of g, 

Pg(P) + <rg{q) < g(pp + <rq) < 0. 

Thus using (2) and (1), 

Pg(P) < - *g(q) = <rff(q) = " pff(p) = pa&(p). 

But p > 0 and g(£) < 0 so that aft < 1. Now choose 7 > a, 5 > 0 so that 
70 = 1 and put 

X = (1 + 7)"1 = 0(1 + ô)-\ M = 7(1 + Y)"1 = (1 + ô)-1. 

Then if x £ F, we have /(x) > 0, g(#) < 0 whence 

X/W + /zgM < (/* - Xa)*(*) = (7 " «)(1 + 7 ) - ^ W < 0. 

Similarly, X/(x) + Mg(#) < 0 if x Ç G. H x $ F and x $ G, the statement is 
trivial. 

To extend this to w functions/1 , . . . ,/n , we put F = {# : fn(x) > 0}. The 
set F is compact and convex. Supposing the theorem true for the functions 
/1 , . . . , /n_i on the set F, we have 

n-l 

h = /Zi/i + . . . + Hn-lfn-l, £ Mi = 1, Mi > 0, i = 1, . . . , U — 1, 

such that for all x Ç F, h(x) < 0. Since a mean of concave upper semi-con
tinuous functions is concave and upper semi-continuous, we may apply the 
case n = 2 to the functions fn and h on Z" to obtain g = Xh + fjfn such that 
for all x e K, g(x) < 0. Putting 

Xi = \jjLf, i = 1, . . . , n — 1 

and Xn = M we have 
n n 

g = £ X/z, £ Xi = 1, Xf > 0, i = 1, . . . , n. 
i = l 2 = 1 

This completes the proof of the lemma. 
To prove Theorem 1, put 

(3) v = iniye?supx af(x,y). 
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We shall establish that 

(4) 3xa\/y^Y,f(X,y)>v. 

Suppose (4) is not true, then 

(5) Vx € £ 3 ^ F , f(x,y) < v. 

Put Gy = {x :f(x,y) < v], then by (5) and the hypothesis, {Gy : y Ç FJ is 
an open covering of X. Because X is compact, we may select yu . . . , yn Ç F 
so that 

^ = G!n U . . . U G,n. 

Thus 

v * e * 3 < € { i , . . , » r /<*•*>< "» 

so that the functions/*(#) = f(x,yï) — v, i = 1, . . . , w satisfy the hypothesis 
of the lemma. For some 

n 

we therefore have 
n 

^ cv> f(x>y) < 23 *tf(x,yi) < v. 

However Z^^tf'(#0^)» being an upper semi-continuous function of x G X, 
achieves its maximum. This is a contradiction of (3) so that (4) is true. 
But (4) means that 

S U P* a My É Yf{x'y) > V = i n fy € f S U P x € X / ( x ' y ) -

We have immediately two corollaries. The first is a consequence of the 
well-known inequality 

( 6 ) SUPx eX miy Ç f^X'y) < mïy G F s u p * ç X / ( x , : y ) ' 

and the second is a consequence of (6) and the fact that if f(x,y) is linear 
in y Ç F, then 

i n f 3 , ç y / ( ^ ) = ^ ç p / M -

COROLLARY 1. If Y = F, /feew 
s u p * ïxmiy <= r ^ ^ = i n f

y ç f s u p x çjf/(*-y)-

COROLLARY 2. If f(x,y) is linear in y Ç Y, then 

supT ex infy e y-^-^ = 'm{
y ç. YSUPX exf(x>yî-
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The first corollary generalizes both the theorems of Kneser (8) and Nikaidô 
(9). Our referee points out that it is the theorem of Pettis (10, Theorem 5) 
and was observed by Kuhn in his review of Kneser's paper for Mathematical 
Reviews (14, 301). In the following section we exploit Corollary 2. 

We show now that both the above corollaries generalize a theorem of 
Karlin (7, Theorem 3). We write fx{y) = f(x,y) and F = {fx : x € X). We 
define a mapping T from X onto F by Tx = fx, and we put (y,Tx) = f(x,y). 
We introduce on F a topology % which is generated by the sub-base 

{{Tx : (y,Tx) < a) : y £ F, a £ reals}. 

We shall say that the mapping T is weakly compact if the range F of T is 
compact in the topology g. Since 

[Tx: (y,Tx) < a} = [fx:f(x,y) <a}, 

it follows that the set F is ^-compact if and only if the convex set X is compact 
in the topology X generated by the sub-base 

{ {x :f(x,y) < a} : y £ Y, a £ reals}. 

We thus have that X is ï-compact if and only if T is a weakly compact 
mapping. However X is a topology for Theorem 1, so that the hypothesis of 
Theorem 1 is equivalent to the statement that T is weakly compact. 

In this form we may see that Theorem 1 and its corollaries generalize the 
theorem of Karlin cited above, for Karlin assumes that Y = Y, that f(x,y) 
is linear in y and that T is weakly compact using a topology which is finer 
than % and is therefore weakly compact in the above sense. 

The next theorem shows that it is possible to determine whether a game 
has a value, by examining another associated game. 

THEOREM 2. Iff is a function defined on X X Y and if for each y G Y there 
exist numbers <t>{y) > 0 and \f/(y) such that X is compact in a topology in which 
for all y Ç F, g(xyy) = 4>(y)f(x,y) + t(y) is a concave upper semi-continuous 
function of x, then 

S U P xà i n f ^f / ( ^ = 'm(y 6 YSUPxeXf(x'y)' 

where f is extended to X X Y by linearity in y. 

Since the set 

{x : g(x,y) < a] = {x :f(x,y) < - ^(y) + a/<t>(y)}, 

X is also compact in a topology such that for each y Ç F, f(x,y) is an upper 
semi-continuous function of x. The theorem therefore follows by Corollary 2. 

If the function / is such that for each y G F, 

(7) - oo < inî ~f(x,y) < sup ~f(x,y) < + oo, 
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then <j>(y) and \f/(y) can be chosen so that for each y Ç F, 

supx ex g^x'y>> = 1 and inix ex g('x,y"} = °* 
Thus a game (X, Y,f) satisfying (7) has a value by Corollary 2, if and only 
if a certain associated normalized game (X, Y, g) has a value by Corollary 2. 

3. Special cases. If the hypothesis of Theorem 1 is restricted further, 
we obtain the following, which is a generalization of the theorems of Choquet 
(3), Ville (11) and Wald (12). 

THEOREM 3. If X is a compact Hausdorff space, Y is any set and f is a real 
function on X X F, which is such that for each y, f(x,y) is a continuous function 
of x, then 

sup $ inf „/(£, rj) = inf , sup $/(£, rj) 

where £ ranges over the normalized measures on the Borel subsets of X, rj ranges 
over the finite mixtures 

n n 

v = X Vkyk, 1L Vk = l, Vk > 0, k = l , . . . , n 

and 

M,v) = T,' V* j x f(x,yk)dC(x). 

This is a consequence of Theorem 1. Let C(X) be the Banach space of all 
continuous real functions on X, and C*(X) its conjugate space. The space X 
of normalized measures on the Borel subsets of X is a closed convex subset (6) 
of the weak* compact unit sphere in C*(X). This is a topology such that 
if </> e C(X) then </>(£) = $(t>d£ is a continuous function of J, so it follows 
that /(£,y) = Jxf(xty)d^(x) is a continuous function of f. The hypotheses of 
Theorem 1 and its Corollary 2 are therefore satisfied. 

The same theorem may be rephrased in the following form. 

THEOREM 3'. If F is a subset of the space C(X) of real continuous functions 
on a compact Hausdorff space, if F is the convex set generated by F and X is 
the set or normalized measures on the Borel subsets of X then 

suP^xinifeF Ix fd * = int/e/?sup*ex / (x)-
We may weaken the hypothesis of the compactness of X if we restrict the 

pay-off function. Thus we obtain 

THEOREM 4. If X is a locally compact Hausdorff space, if Y is any set and 
if fis a function on X X Y such that for each y e F, there is a number m (y) such 
that f{x,y) — m(y) is a non-negative continuous function which vanishes at 
infinity, then 

sup{ infj/fo fi) = inf{Sup„/(£, y) 
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where £ ranges over the normalized measures on the Borel subsets (5) of X, 77 
ranges over the finite mixtures 

n n 

V = Z) Wk, X) Vk = 1, Vk > 0, & = 1, . . . , n 

awe/ 

Mv) = E 17* Jx/(*,:v*)dÉ(*)-

To prove this theorem we let I œ = Z U jœ j be the one-point com-
pactification of X and we define/( °° ,y) = m(y). The hypothesis of Theorem 3 
is therefore satisfied for / on Xm X Y. We thus have 

(8) sup? ex - inf„ e p/«>") = inf„ e FS U P? a°>m,l)' 

where À"œ is the set of normalized measures on the Borel subsets of X œ and 
jf(£,rj) is defined as above with the integral taken over X œ. Let X be the set 
of normalized measures on the Borel subsets of X. We shall prove that 

(9) sup ~inf /(&17) > sup ^ inf /(£,T?), 

from which the result follows by using (8) and (6). 
Let f Ç J r o be chosen arbitrarily and suppose that f (X) = 0. Choose any 

£' Ç X and define J by £(E) = (1 - 0)£'(E)_ + f (£) for every Borel subset 
E of X. Then because 0 < 1 we have that £ 6 X, and that for all E,Ç(E) < f(£) . 
Now put 

g(x,;y) = f(x,y) - m(y). 

Since #(#,3/) > 0 and g(°°,:y) = 0, we have that 

V ç F , J x g(x,;y)d £ (x) > j x g(x,y)d f (x) = J Z c o g(x,;y)d f (x). 

Thus 

and therefore 

v
f GYOC 3s ex- inf„ e f / ( ^ } > in f„ e f ^•")-

whence we may obtain the statement (9). 
If in the above we suppose, for simplicity, that for all y, m(y) = 0, we 

have the following analogue of Theorem 3 ' : 

THEOREM 4'. If C(X) is the space of continuous real functions which vanish 
at infinity on a locally compact Hausdorff space X, if F is a subset of C(X) 
consisting of non-negative functions, and F is the convex set generated by F, 
then 
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sup £ € J ? i n f / ç F jxfdi = inifeFSupxexf(x). 

We note that in Theorem 4, if X is a set with its discrete topology, then 
we obtain the theorem of Dulmage and Peck (4). 

4. Examples. We now give some examples to illustrate the results obtained 
above. The first example shows the usefulness of Theorem 1, Corollary 2, in 
determining whether a game has a value. What is significant is that, in investi
gating the compactness of the space of mixed strategies X, it is not necessary 
to consider the upper semi-continuity of f(x,y) for all mixed strategies y, but 
only for pure strategies y Ç F, This means that we are examining X in a 
weaker topology. Indeed it may happen that X is compact in this weaker 
topology and not compact in the topologies considered by Kneser (8) and 
Nikaidô (9). The following example illustrates this situation. 

Example 1. Two persons each choose a natural number, say m and n. If 
m = n the pay-off is 2m, otherwise it is zero. The spaces of pure strategies 
X and F are thus the natural numbers and the spaces of mixed strategies 
X and F are probability distributions on X and Y respectively. The pay-off 
function is f{m,n) = 2mbm>n, which when extended to mixed strategies is 

CO CO CO 

/(X>y) = 2 X) 2màm,nXmyn = 2 2 l x ^ . 
ra=l n==l i—1 

We show that X is not compact in the weakest topology such that for all 
y c F, f(x,y) is an upper semi-continuous function of x. 

Let y{n) = {0, 0, . . ., 0, £, i» i» • • •} £ Y where the weight on the first n 
coordinates is zero. Then for each x f X we have 

f(x,y(n)) = 2n(xv+1 + xn+2 + xn+3 + . . . ) • 

Let Gn = {x: f(x,y(n)) < 2n}, then each Gn is an open set in the topology 
considered. But since Gn = {x: xn+\ + x/l+o + . . . < 1} the family 
\Gn: n = 1 ,2 , . . .} is an open covering of X which has no finite sub-covering. 

However, we must also show that Y is not compact in the weakest topology 
such that for all x £ X, f(x,y) is a lower semi-continuous function of y. But 
this is simple, since if 

Hn = {y ••f(m,y) > 0} = {y : ym > 0}, 

then {Hm : m = 1 ,2 , . . . } is an open covering with no finite sub-covering. 
The compactness of X (and of F) thus fails in the stronger topology used 

by Kneser and Nikaido. However it is not difficult to show that X is compact 
in the topology of Theorem 1. As a matter of fact, this game has a value, also 
because of Theorem 4, or the theorem in (4). The value of the game is one. 
Example 1 does not satisfy the hypothesis of the theorem of Blackwell and 
Girshick (2, Theorem 2.3.3). 
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A more interesting example, similar to the above, which does not satisfy 
the hypothesis in (4), but does have a value by Theorem 4 is the following. 

Example 2. Two players each choose a real number, say x and y, and the 
pay-off is f(x,y) = yj/{x — y)ey, where \f/(s) = 1 — \s\ for \s\ < 1 and \//(s) = 0 
for \s\ > 1. The value of the game is zero. If the game is played over the 
quadrant x > a, y > a, its value is positive and lies between \ea~x and ea+l. 

The third and fourth are examples of simple games, both of which satisfy 
the conditions of Theorem 1, (both have the value zero) but which do not 
satisfy the hypotheses of the theorems of Keirlin (7, Theorem 3 and remark 
4), Berge (1, § 25), and Wald (13). 

Example 3. Both X and Y are the closed interval [0,1] and f(x,y) = 1 if 
x = yy f(x,y) = 0 il x 9e y. 

Example 4. Both X and Y are the sets of natural numbers and the pay-off 
function is the same as in Example 3. 

Example 4 is the associated normalized form of Example 1 in the sense 
of Theorem 2. 

The fifth is an example which shows that Theorem 1 still has its limitations. 
This is a game which does not satisfy the hypothesis of Theorem 1, but 
satisfies the hypotheses of the theorems of Blackwell and Girschik (2, Theorem 
2.3.3), and Wald (13). Moreover the operator T is completely continuous 
in the sense of Karlin (7, remark 4). 

Example 5. The sets of pure strategies X and Y are the natural numbers 
and the pay-off function is f(m,n) = 1 for m > n, and f(m,n) = 1 — 2~n 

for m < n. We show that neither X nor Y are compact in the topology of 
Theorem 1. Let 

Gn = {x:f(x,n) < 1 - 2~n}. 

Given x (E X we may choose n so that Sm>»xw < 2~n, whence 

f(x,fl) = \Xi + ftf2 + • • • + (1 - 21~n)xn_l +J2m>nXm < (1 ~ 21~~U) 

+ 2~n = 1 - 2~\ 

Therefore {Gn : n = 1 ,2 , . . . } is an open covering of X. However if x is the 
nth pure strategy x = n, we have for j < n that f(x,j) = 1 > 1 — 2~\ so 
that x $ G\ u . . . u Gn. Thus X is not compact. 

Now put Hm = {y • f(m,y) > 1 — 2~m). Given y £ Y we choose m so that 
ym is the first non-zero coefficient of y. Then 

f(m,y) = y« + (1 ~ 2~ m )bwi + 3W2 + . . . ) > 1 - 2~'\ 

so that 3/ Ç Hm. Therefore {Hm : m = 1, 2, . . .} is an open covering of Y. 
However it has no finite sub-covering because if y is the (m + l)th pure 
strategy y = m + 1 we have for i < m, f(i,m) = 1 — 2-*, so that 3/ $ /!/. 
Thus F is also not compact. 
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We shall omit verification tha t the game satisfies the hypotheses of the 
theorems cited above. 
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