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ON ASYMPTOTICALLY NONEXPANSIVE 
SEMIGROUPS OF MAPPINGS 

BY 
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1. Introduction. A selfmapping / of a metric space (X, d) is nonexpansive 
(e-nonexpansive) if d(f(x),f(y)) < d(x, y) for all x,yeX (respectively if d(x, y) < e). 
In [1], M. Edelstein proved that a nonexpansive mapping/of En admits a fixed 
point provided the/-closure of En (i.e. the set of all points which are cluster points 
of {fn(x)} for some x) is nonempty. R. D. Holmes [2] considered commutative 
semigroups of selfmappings of a metric space and obtained fixed point theorems 
for such semigroups under certain contractivity conditions. 

In this note, we consider asymptotically nonexpansive semigroups G which are 
defined analogously to the asymptotic contractions considered in [2]. For a general 
metric space X, we obtain results parallel to those of [1], and in the special case 
where X=En, we prove, under certain conditions, that there exists a point z such 
that G acts on the orbit of z as a semigroup of translations. As a corollary, it 
follows that if some orbit is bounded, G has a common fixed point. 

2. Definitions and Notation. Throughout, (X, d) (or simply X) will denote a 
metric space and En the «-dimensional Euclidean space. Let G: X-> X denote the 
collection of mappings g: X-> X, geG, where G is a commutative semigroup of 
mappings with identity(2). Set G(x) = {g(x): ge G} (the orbit of x), G(A) = {g(x): 
geG,xeA} and G \ A={g \ A : g G G} for A ç X. A fixed point for G will be a point 
z e X such that g(z)=z for all g in G. 

If G: X-> X, we say that G is asymptotically nonexpansive if for all x, y in X 

(2.1) there exists geG such that for al l /e G, d(fg(x)9fg(y))<d(x, y). 

If there is an e>0 such that whenever d(x,y)<e, (2.1) holds, then G is called 
e-asymptotically nonexpansive. G is said to be asymptotically (e-asymptotically) 
isometric if 

for all x,yeX(with d(x,y)<e) there exists geG such that for all/ in G, 
( 2 '2 ) d(fg(xlfg(y)) = d(x,y). 

By the G-closure of X (denoted by XG) we shall mean the set 

(2.3) {z e X | 3x e X such that V/e G, e > 0, 3# G G with d(fg(x), z) < e}. 
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In the case when G is generated by a single mapping/, the G-closure of X is pre­
cisely the/-closure of A" as defined in [1]. 

If A^EU,QO A(co A) denotes the convex hull (closed convex hull) of A, If 
G: En-> En and z e En is such that G \ G(z) is a semigroup of translations, then z 
will be called a T-point (translational point) for G. 

3. Asymptotically nonexpansive semigroups in general metric spaces. 

PROPOSITION 1. Let G\X-^X be e-asymptotically nonexpansive and zeXG. 
Then 

V / e G, e>0 3g e G such that d(fg(z), z)<e (i.e. in condition (2.3), x can be 
replaced by z). 

Proof. Let x be as in (2.3) and suppose t h a t / e G, e>0. It clearly follows from 
(2.3) that 3 g0 e G so that d(g0(x), z)<e/2, and G being e-asymptotically nonex­
pansive, 3gx G G such that V/z e G, dQig^^x), hgx(z)) < d(g0(x), z) < e/2. Replacing 
/ in (2.3) by fg±g09 we can find a g2 e G such that d(fg2g1gQ(x)9 z) < e/2. Setting 
g=g2gi and h=fg2, we have ^(g/(^),z)<rf(/g2g1(z),/g2g1g0(x)) + J(/g2g1g0(x)52) 
<e/2 + e/2 = e. 

LEMMA 1. Under the hypotheses of Proposition 1, G \ G(z) is an e-asymptotic 
isometry. 

Proof. Suppose that contrary to the assumption 3/i,/2 e G with d(f1(z),f2(z)) < e 
and such that y g e G, 3/e G for which d(fgf1(z)Jgf2(z))^d(f1(z)9f2(z)). Since G is 
e-asymptotically nonexpansive, there is & g0eG such that 

S =d(f1(z),f2(z))-d(g0f1(z), g0f2(z))>0. 

Also replacing x and y in (2.1) by g0fi(z), g0f2(z) respectively, we obtain a gxeG 
such that 

d(fgigofi(zlfglgoMz)) < digoUzlgoMz)), V/e G. 

Now by Proposition 1, d(/j0gig0(^)>z) can be made so small that the continuity of 
/ i and/a will imply the existence of an h0 e G for which 

dihog.goMzlMz)) < 8/2 and d(hoglg0f2(z),f2(z)) < 6/2. 
Hence 

<»l2 + d(gofi(z)9g0f2(z)) + BI29 

which is impossible. 
Now it follows from Lemma 1 that if G is asymptotically nonexpansive and 

z e XG, then G \ G(z) is an asymptotic isometry. An even stronger conclusion is 
obtained in the following 
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PROPOSITION 2. If G: X-^X is asymptotically nonexpansive and ze XG, then 
G | G{z) is an isometry. 

Proof. We have to show that V/i,/2, g0 e G, d(g0Mz), g0f2(z)) = rf(/i(z),/2(z)). By 
Lemma 1, 3gx, g2 e G such that for all/ , we have 

d(fgMz)jgMz)) = d{m,m) 
and 

d(fg2gofi(z)9fg2gof2(z)) = d(goMz), g0f2(z)). 

Substituting g2£o and g± for / in the first and second equalities respectively, and 
applying commutativity of G, the result follows. 

REMARKS. (1) If G is asymptotically contractive and xe XG then it is readily seen 
that x is a common fixed point for G. Thus Lemma 1 generalizes its counterpart 
(Theorem 2 in [2, p. 10]). 

(2) If the asymptotically nonexpansive semigroup G has a fixed point œ e X, then 
for each z e XG, G(z) lies on a sphere centered at a>. Indeed, if not, then 3geG with 
d(g(z),œ)^d(z,œ). In case d(g(z), aï) < d(z, œ) we set S = d(z, co) — d(g(z), œ) > 0. 
Now there is a g± e G such that V/e G, d(fg!g(z), co) < d(g(z), co) and 3/i G G with 
rf(/iSig(*),*)<8. Now, 

3 = </(z, co)-d(g(z), co) < </(z, co)-d(flglg(z), co) < d(flglg(z),z) < 8 

which is absurd. The case where d(g(z), co) > d(z, co) can be treated similarly. 

4. Asymptotically nonexpansive semigroups of mappings in Euclidean spaces. 

THEOREM 1. Let G:En->En be asymptotically nonexpansive. If xe(En)G, then 

there exists a T-point z e co G(x)for G. 

COROLLARY 1. If G: A-> A (where A^En) is asymptotically nonexpansive, A 

contains no nontrivial linear variety and there exists an xe AG with co G(x)^A, then 

co G(x) contains a unique fixed point. 
A number of properties of isometric and asymptotically nonexpansive semi­

groups of mappings in En are needed in the proof of Theorem 1. These are furnished 
in the following sequence of lemmas. 

LEMMA 2. Let G: En-^ En be asymptotically nonexpansive and A^En. If G\A 
is an isometry, then G \ no A is again an isometry. If in addition, G(A)^A, then 
G(co A) ^ co A. 

The proof is similar to the corresponding Proposition 2 of [1]. It is also clear that 

in Lemma 2, we can replace co A by co A. 
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LEMMA 3. If G: En-> En is isometric, maps the closed convex set C of En into 
itself CGj^<f> and G has a T-point in En, then G has a T-point in C. 

Proof. Let A=co G(a) for some a e CG. If x, a> e G(a), 3gx, gœ e G, such that 
x=gx(a), o)=gcû(a). Also since a e CG, given/, e>0,3geG with \\a—gf(a)\\ <e by 
Proposition 1. For z = \ x + ( 1 — A)to, 0 < À < 1, using the facts that/1 A is affine, and 
that G is isometric, we obtain 

\\z-gf(z)\\ = \\\x + (l-\)œ-gf(\x + (l-X)œ\\ 

< Hx-gf(x)\\+(l-X)\\œ-gf(co)\\ 

= HgM-gfgMW Hl-X)\\gœ(a)-gfga(a)\\ 

= X\\a-gf(d)\\Hl-mW-gf(a)\\ 

= \\<*-gf(à)\\ < £, 

implying that z e CG. It is easy to check that CG is closed, and hence we conclude 
that A s CG. 

Let x be a T-point of G. If x $ A, let y be the (unique) point of A nearest to x and 
W be the supporting hyperplane at y of the closed ball with center x and radius 
\x—y\. We claim that y is a T-point of G. 

If/(*) = * for some/G G, then/OO e ^ , \\x-f(y)\\ = | | /(x)-/(^)i | = | ! x - j | | , and 
the uniqueness property of y imply f(y)= y. Iff(x)^x and the line L containing 
f(x) and x meets JF, say at z, then since / 1 L is a translation, it is true that for 
g=f or g=f~\ x e [z, g(x)] and so \\g(x)-g(y)\\>M{\\g(x)-u\\:ueW}> \\x-y\\ 
which is impossible since g is an isometry. Hence L n W=<l> so that L is parallel 
to W. We note that the line joining x and y is perpendicular to W, and clearly so is 
the line joining/(x) and f(y). Thus f(y)-y=f(x)-x. Hence f o r / e G, either 
/( j ;)=J ; or / (<y)=j —x+/(x). If n o w , / g G G theny^(_y) is a translate of j . Since 
g(y) is a translate of y,fg(y) can be expressed as a translate of g(>>). In other words, 
y is a T-point of G. 

LEMMA 4. If G: En-> En is isometric, then G has a T-point, 

Proof. Let g be a fixed element of G. We first show that the set Ag = {z\ 3a such 
that Vy G G(z), g( j )= j + «} is nonempty. If g has a fixed point z, then clearly z G >4fl. 
So assume that g has no fixed point. Since g is a rigid motion, we can introduce an 
orthonormal system of coordinates in En so that if 

x = (xl9 x2,..., xn)9 g(x) = xM+a, 

where M is an orthogonal matrix in normal form. In particular suppose 
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where Ik9 J, are (k x k, resp. /x /) identity matrices and 

/ * ! 

R = 

R* 

\ 

K- k-l 

with = /cos<& -sin^A 
\sin fa cos ^i/ 

c/>i^m7T,m=0,± 1 ,±2, 

It is fairly easy to show (cf. [1, Lemma 2]) that there exist numbers ik +l9 ik+2,..., 
in so that 

g\Xi, X2, • • . , Xk9 çjc+ 19 fefc + 2» • • •> Sn) 

= (Xx+di, X2 + CI29 * - '9 Xk + ak> Sfc + 1» bte + 2? • • •? in) 

and note that the & are unique with the property of remaining fixed. 
Suppose/G G is of the form f(x)=xN+b9 where 

k n—k 

N= * (.PAL*) 
n-k \ D3 • I>4 / 

Now 2L$fg=gf, it is easy to see that we must have D2 = 09 Z>3 = 0. Thus if P is the 
projection defined by P(x) = (0, 0, . . . , 0, xk + l9..., xn) then we have PfP=Pf. 
Clearly PgP=Pg. Hence PgPf=Pgf=Pfg=PfPg and so P# and Pf commute. Pg 
has £=(0, 0 , . . . , 0, ik +1,..., in) as a unique fixed point, and so Pf(i) = £. In par­
ticular, if B={(xl9 x2,...9 xk, ik+1, • • -, L)}, f(B) c £, and as / was arbitrary, 
G(B) ç £. Since g | J? is a translation, 5 ç y4g. 

Note that 4̂̂  is a linear variety and that G(Ag) ç ^ . Now if V is any linear 
variety with G(V) ç F, we must have V n Ag^<f>9 for if we consider G | F, then 
the above argument shows that Af = {z e V \ 3a such that Vy e G(z)9 g(y) = y + a} is 
nonempty. But A*Ç: F and v4* ç Ag. This implies that for any/i, /2 , . . .,/n + i G G9 

Hr^i1 ^ / i^^- Consider all finite intersections of the v4ff's. Each such intersection 
is a linear variety of dimension > 0. If d denotes the smallest dimension of such in­
tersections, d>0 and there exists a finite family {A9i}9 z=l,2, ...9m so that 
dimlPlfLx Ag) = d. It is clear that if an Ag+AQi9 /=1, 2 , . . . , m9 then Ag must con­
tain p||fL ! ̂ fgp as otherwise dim {̂ g n (p|jfL x A9i)} < d9 a contradiction. This shows 
that P|geG Ag^(j>9 and clearly any point of the intersection is a T-point. 

Proof of Theorem 1. As x G (En)G
9 we know by Proposition 2 that G | G(x) is 

isometric and thus F=G | co G(x) is isometric (Lemma 2). As in 3.4, Lemma 1 
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of [1], F can be extended to H on all of En such that H is isometric and commuta­
tive. By Lemma 4, H has a T-point to and as H (co G(x)) c co G(x), Lemma 3 implies 
that H has a T-point z e co G(x). But H | co G(x) = G | co G(x) and z is thus a 
r-point of G. 

Proof of Corollary 1. As in the proof of Theorem 1, G | co G(x) is isometric and 
thus we can conclude that co G(x) contains a T-point z. As A contains no nontrivial 
linear variety, the only translations of G(z) are the trivial ones, i.e. g(z) = z Vg e G. 
Uniqueness of z follows from Remark (2) (in the same manner as the corresponding 
assertion in [1] follows from Remark 2.3 there). 

In Corollary 1, we cannot relax the requirement that A contains no nontrivial 
linear variety. This is exhibited by the example where n = l, A — E1 and G is the 
group of all translations on E1. Clearly AG = E1, and co G(x) = E1 contains no fixed 
point of G. 
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