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CHARACTERIZATIONS OF p-SPACES 
BY 

C. M. PAREEKC) 

1. Introduction. The concept of /espace is quite recent. It was introduced by 
ArhangeFskii [2]. The definition of /?-space given in [2] involves compactification of 
the space. In view of the interesting properties of/?-spaces obtained in [2], Alexa-
droff [1] suggested a problem of finding a direct intrinsic definition (without appeal 
to compactification). The main aim of this note is to answer the above problem. 

I am grateful to Dr. S. K. Kaul for his comments. 

2. Preliminary. We require the following definitions: 

DEFINITION 2.1. A completely regular space X is called a p-space iff there is a 
countable family {VJ£i of open covers of Xin any one (hence in all) of its Haus-
dorff compactifications such that f}?m i St(x, V^c: X9 for all xe X. 

DEFINITION 2.2. Let {As \ s e S} be a family of subsets of a set X and {Vi}<°i i be a 
countable family of covers of X. Then, we say that the family {As\se S} has sets 
which are base point strictly small relative to {V,}^ ± iff there exists xQe X such that 
for each i, there is st e S and V* e Vt for which no x0 e V1 and ASi<=- V{. 

Unless otherwise specified, we use the terminology of Engelking [3]. 

3. Characterizations of ̂ -spaces. 

THEOREM 3.1. A completely regular space X is a p-space iff there exists a countable 
family {Vjf0! x of open covers of X such that for every family of closed sets {Fs \ s e S} 
which has the finite intersection property and contains sets which are base point 
strictly small relative to {VJ.̂  i the inequality f)(F8\seS)^0 holds. 

Proof. Let us suppose that there exists in X a countable family {V^i of open 
covers of X which has the required property. Let Vf={V* | s e S^ for i = 1, 2 , . . . , 
and let W\ denote an open set in f$X (the Stone Cech compactification of X) such 
that WinX= Fjfor,?eSiandi = l ,2, . . ..Evidently,{W,}£iwhereWf=W \seS} 
is a countable family of open covers of X in pX for each /. We now show that 
fit" i St(jc, W,)<= X for all xeX. 

Let y e f)?L iSt(x, Wf), and let B(y) be the family of all its neighborhoods in f$X. 
The family {(cl̂ x B) n X \ B e B(y)} consists of closed subsets of the space X and 
has the finite intersection property. Also for each / there exists st such that x, y is in 

0) This note is a part of the author's dissertation at the Univ. of Alberta, prepared under 
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Wit. By the regularity of fiXthere is BeB(y) depending on i such that yeB and 
cl̂ x fie wl

8i. This implies that the family {(cl^ B) n X \ B e B(y)} contains sets 
which are base point strictly small relative to {Vi}^l5 the base point being x. 
Therefore by the hypothesis 

H (Xn(cl,xB) \BeB(y)) = Xn (H(cW B \ B e B( y))) * 0. 

But f)(c\exB \ BeB(y))=y, hence yeX. Since y is an arbitrary member of 
nr«i St(y, Vf). Consequently, f|i" 1 St(x, V,)c jr. 

Conversely, let us assume that Zis a^-space, i.e. there exists a countable family 
{VJii 1 of open covers of X in j8Z such that for each xe XWQ have P)£ x St(x, V4) 
<= X For each x e l and i = l, 2 , . . . , let flPj be an open set in jSX such that 
x G FPjJcclflx ^ i c ^ for some Ve\{. We shall show that the countable family 
{Ui}(L 1 of open covers of the space X, where Vi-{X n W^\xeX) has the required 
property. 

Let {Fs I 5 6 £} be a family of closed subsets of Z which has the finite intersection 
property and contains sets which are base point strictly small relative to {UJiix. 
The family {cl̂ x Fs \ s e S} has the finite intersection property and consists of 
closed subsets oîpX. Therefore, by the compactness of fix, H (cW FS\SE S)^0. 
Suppose x G H (CW Fs\se S). Since Fs=X n (cl^x Fs), in order that x e (~)(FS \seS)9 

it is enough to show that x e X. 
Because {Fs\seS} has sets which are base point strictly small relative to 

{Ui}£i> there exists x0e X such that for each i, one can choose steS and U{ e Ut 

such that F8. <=• U* and x0 e UK Since 

x e d,* F8i c d, z tf « c= d,x W*t c St(x0, V,), 

it follows that x e St(jc0, Vf) for all 1; but, by the hypothesis p|i°=i St(jc0, V,)c= X. 
Consequently, xe X. Hence the theorem is proved. 

We can formulate the following result, which is similar in flavor to various 
results of Tamano [4]: 

THEOREM 3.2. Let X be a completely regular space and pX be the Stone Cech 
compactification ofX. Then Xis ap-space iff there exists a sequence {G^=1 of open 
sets in XxfiXsuch that &x^DiLi G^XxX, where kx={(x, x)\xe X}. 

We leave the proof to the reader. 

REFERENCES 

1. P. S. Alexandroff, On some basic directions in general topology, Russian Math. Surveys 
19 (1964), 1-39. 

2. A. V. Arhangel'skii, A class of spaces containing all metric and locally compact spaces, 
Mat. Sb. 67 (1965), 55-85. 

3. E. Engelking, Outline of general topology, North-Holland, Amsterdam, 1968. 
4. H. Tamano, On compactifications, J. Math. Kyoto Univ. 1-2 (1962), 162-193. 

UNIVERSITY OF SASKATCHEWAN, 

REGINA, SASKATCHEWAN 

https://doi.org/10.4153/CMB-1971-084-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1971-084-7

