Elementary abelian operator groups

Fletcher Gross

Suppose G is a finite solvable p^{\prime}-group admitting the elementary abelian p-group A as an operator group. If $n=\max \left\{\right.$ nilpotent length of $\left.C_{G}(X) \mid X \in A^{\#}\right\}$ and $|A| \geq p^{n+2}$, then the nilpotent length of G is n.

1. Introduction

Suppose A is an elementary abelian p-group of order p^{m} acting as an operator group on the finite p^{\prime}-group G. If $m \geq 3$ and $C_{G}(X)$ is nilpotent for each non-identity element X in A, then Ward [8] showed that G is nilpotent. More recently, Ward [9] proved that if G is solvable, $m \geq 4$, and the derived group of $C_{G}(X)$ is nilpotent for each non-identity element X in A, then G^{\prime} is nilpotent. The principal result (Theorem 3.1) of the present paper asserts that if G is solvable, n is the maximum of the nilpotent lengths of $C_{G}(X)$ where X runs through the non-identity elements of A, and $m \geq n+2$, then the nilpotent length of G is n. Using this result, an easy argument shows that if G is solvable, $C_{G}(X)$ is supersolvable for each non-identity element X in A, and $m \geq 4$, then G is super-solvable. Examples are given showing the necessity of the inequalities $m \geq n+2$ and $m \geq 4$ in these results.

These theorems depend on a rather complicated technical result (Theorem 2.4) proved in $\$ 2$ about the upper nilpotent series of a finite solvable group G which admits an operator group A where

Received 15 February 1972. The research was supported in part by a grant from the National Science Foundation of the USA.
$(|G|,|A|)=1$. The main results are proved in $\S 3$ and examples are given in 84.

2. Notation and preliminary results

All groups considered in this paper are finite. If G is a group, $F_{0}(G)=1$ and $F_{n+1}(G) / F_{n}(G)=F\left(G / F_{n}(G)\right)$ equals the largest normal nilpotent subgroup of $G / F_{n}(G)$. If G is solvable, $Z(G)$ is the smallest non-negative integer n such that $F_{n}(G)=G$. The rest of the notation agrees with [2]. We now prove a number of technical results needed for the main theorems.

THEOREM 2.1. Suppose P is a p-group which admits the group G as an operator group. Assume Q is a normal p^{\prime}-subgroup of G which centralizes every G-invariant proper subgroup of P but $[P, Q] \neq 1$. Then P is a special p-group and any proper G-irovariant subgroups of P are contained in P^{\prime}.

Proof. This follows immediately from Theorem C of [6].
LEMMA 2.2. Let P be a p-subgroup of the group G. Assume $P \leq F_{2}(G)$ but $P \neq F_{1}(G)$. Then for some prime $q \neq p$, the Sylow q-subgroup of $F_{1}(G)$ is not centralized by P.

Proof. Let H be a Hall p^{\prime}-subgroup of $F_{1}(G)$. If S is a Sylow p-group of $F_{2}(G)$, then $H C_{S}(H)$ is a normal nilpotent subgroup of G. Hence $C_{S}(H) \leq F_{1}(G)$. This implies that $[H, P] \neq 1$. Since H is nilpotent, the desired result follows immediately.

LEMMA 2.3. Let G be a solvable group and H a subgroup of G. Assume that $P_{1}, \ldots, P_{n}(n>1)$ are subgroups of H and p_{1}, \ldots, p_{n} are primes satisfying the following conditions:
(a) P_{i} is a p_{i}-group if $1 \leq i \leq n$;
(b) $\quad p_{i} \neq p_{i+1}$ if $1 \leq i \leq n-1$;
(c) $P_{i+1}<N_{G}\left(P_{i}\right)$ if $1 \leq i \leq n-1$;
(d) $P_{i} \leq F_{i}$ (G) if $1 \leq i \leq n$;
(e) $\left[P_{n}, P_{n-1}, \ldots, P_{2}, P_{1}\right] \neq 1$.

Then $\quad Z(H) \geq n$.
Proof. Clearly $F_{i}(H) \geq F_{i}(G) \cap H \geq P_{i}$ for $1 \leq i \leq n$. Suppose $\mathcal{L}(H)<n$. Then $F_{n-1}(H)=H$. Since $H / F_{n-2}(H)$ is nilpotent and $\left(\left|P_{n}\right|,\left|P_{n-1}\right|\right)=1$, we obtain $\left[P_{n}, P_{n-1}\right] \leq F_{n-2}(H) \cap P_{n-1}$. Now P_{n-1} normalizes P_{n-2} and P_{n-2} is a P_{n-1}^{\prime}-subgroup of $P_{n-2}(H)$. Thus $\left[P_{n}, P_{n-1}, P_{n-2}\right] \leq F_{n-3}(H) \cap P_{n-2}$. Continuing in this way, we eventually obtain

$$
\left[p_{n}, P_{n-1}, \ldots, P_{2}, P_{1}\right] \leq F_{0}(H) \cap P_{1}=1
$$

which is a contradiction. Thus $Z(H) \geq n$.
THEOREM 2.4. Suppose A is an operator group on the solvable group G where $(|A|,|G|)=1$. Assume $Z(G)=n>0$. Then there are primes p_{1}, \ldots, p_{n} and A-invariant subgroups P_{1}, \ldots, P_{n} in G such that:
(a) P_{i} is a p_{i}-group if $1 \leq i \leq n$;
(b) $p_{i} \neq p_{i+1}$ if $1 \leq i \leq n-1 ;$
(c) $P_{i} \leq N_{G}\left(P_{j}\right)$ if $1 \leq j \leq i \leq n$;
(d) $P_{i} \leq F_{i}(G)$ but $P_{i} \neq F_{i-1}^{(G)}$ if $1 \leq i \leq n$;
(e) $\left[P_{i+1}, P_{i}\right]=P_{i}$ if $1 \leq i \leq n \quad ;$
(f) if Q is an A-invariant proper subgroup of P_{n}, then $Q \leq F_{n-1}(G) ;$
(g) if $1 \leq i \leq n-1$ and Q is a proper subgroup of P_{i} which is invariant under $A \prod_{i<j} P_{j}$, then $\left[P_{i+1}, Q\right] \leq F_{i-1}(G)$.

Proof. If $n=1$, simply let P_{1} be a minimal A-invariant subgroup of G. Suppose next $n=2$. Let p_{2} be a prime dividing $\left|G / F_{1}(G)\right|$.

By [3, Corollary 2, p. 124], there is an A-invariant Sylow p_{2}-subgroup P in G. Let P_{2} be minimal with respect to: $P_{2} \leq P, P_{2} \neq F_{1}(G)$, and P_{2} is A-invariant. By Lemma 2.2, there is a prime $p_{1} \neq p_{2}$ such that P_{2} does not centralize the Sylow p_{1}-subgroup of $F_{1}(G)$. Choose P_{1} to be minimal with respect to: P_{1} is a p_{1}-subgroup of $F_{1}(G)$, $N_{G}\left(P_{1}\right) \geq P_{2}, P_{1}$ is A-invariant, and $\left[P_{2}, P_{1}\right] \neq 1$. Since $\left[P_{1}, P_{2}, P_{2}\right]=\left[P_{1}, P_{2}\right]$ from [3] and $\left[P_{1}, P_{2}\right]$ is A-invariant and normalized by P_{2}, we must have $\left[P_{2}, P_{1}\right]=P_{1}$. This proves the theorem for $n \leq 2$. We now assume $n>2$ and proceed by induction on n.

By [3], there is an A-invariant Carter subgroup C of $F_{2}(G)$. Let $N=N_{G}(C) . N \cap F_{2}(G)=C$ and, by the Fitting argument, $G=F_{2}(G) N$
Since $F_{2}(G) / F_{1}(G)$ is nilpotent, $F_{2}(G)=F_{1}(G) C$. Suppose now $2 \leq i \leq n$. Then from $G=F_{2}(G) N$ follows $F_{i}(G)=F_{2}(G)\left(F_{i}(G) \cap N\right)$. Since $Z\left(F_{i}(G) / F_{2}(G)\right)=i-2$ and $F_{i}(G) \cap N \cap F_{2}(G)=C \leq F_{1}(N)$, we find that $Z\left(F_{i}(G) \cap N\right) \leq i-1$. Hence $F_{i}(G) \cap N \leq F_{i-1}(N)$. Conversely, $F_{i-1}(N) F_{2}(G)$ is normal in $N F_{2}(G)=G$ and

$$
Z\left(F_{i-1}(N) F_{2}(G)\right)=Z\left(F_{i-1}(N) C F_{1}(G)\right)=2\left(F_{i-1}(N) F_{1}(G)\right) \leq i .
$$

This implies that $F_{i-1}(N) \leq F_{i}(G) \cap N$. Hence $F_{i}(G) \cap N=F_{i-1}(N)$ for $2 \leq i \leq n$. A consequence of this is that $Z(N)=n-1$.

By induction, there are primes q_{1}, \ldots, q_{n-1} and A-invariant subgroups Q_{1}, \ldots, Q_{n-1} in N satisfying (a) through (g) for N. For $3 \leq i \leq n$, let $p_{i}=q_{i-1}$ and $P_{i}=Q_{i-1}$. From the fact that $F_{j}(G) \cap N=F_{j-1}(N)$ for $2 \leq j \leq n$, it follows that P_{3}, \ldots, P_{n} satisfy the required conditions with respect to G. It remains to chose P_{1} and P_{2}.

Now $P_{3} \leq F_{2}(N) \leq F_{3}(G)$ but $P_{3} \neq F_{1}(N)=F_{2}(G) \cap N$. Lemma 2.2 applied to $G / F_{1}(G)$ yields that for some prime $p_{2} \neq p_{3}, P_{3}$ does not centralize the Sylow p_{2}-subgroup of $F_{2}(G) / F_{1}(G)$. Now $F_{2}(G)=F_{1}(G) C$ and C is nilpotent. Thus if S is the Sylow p_{2}-subgroup of C, S is invariant under $A P_{3} \ldots P_{n}$ and $\left[S, P_{3}\right] \neq F_{1}(G)$. Let P_{2} be minimal
with respect to: $P_{2} \leq S, P_{2}$ is invariant under $A P_{3} \ldots P_{n}$, and $\left[P_{2}, P_{3}\right] \not \equiv F_{1}(G)$. Since $\left[P_{2}, P_{3}\right]$ is invariant under $A P_{3} \ldots P_{n}$ and $\left[P_{2}, P_{3}, P_{3}\right]=\left[P_{2}, P_{3}\right],[3]$, we must have $\left[P_{2}, P_{3}\right]=P_{2}$. It now only remains to choose. P_{1}.
$P_{2} \leq F_{2}(G)$ but $P_{2} \neq F_{1}(G)$. Hence there is a prime $p_{1} \neq p_{2}$ such that P_{2} does not centralize the Sylow p_{1}-subgroup of $F_{1}(G)$. Then there is a group p_{1} which is minimal with respect to: P_{1} is a P_{1}-subgroup of $F_{1}(G), P_{1}$ is invariant under $A P_{2} \cdots P_{n}$, and $\left[P_{1}, P_{2}\right] \neq 1$. Since $\left[P_{1}, P_{2}\right]$ is invariant under $A P_{2} \ldots P_{n}$ and $\left[P_{1}, P_{2}, P_{2}\right]=\left[P_{1}, P_{2}\right] \neq 1$, we must have $\left[P_{1}, P_{2}\right]=P_{1}, P_{1}, \ldots, P_{n}$ now satisfy (a) through (g) and the theorem is proved.

COROLLARY 2.5. In Theorem 2.4, Let $Q_{i}=P_{i} /\left(P_{i} \cap F_{i-1}(G)\right)$ for $1 \leq i \leq n$. Then Q_{n} is elementary abelian and is transformed irreducibly by A. If $1 \leq i \leq n-1$, then Q_{i} is a special p_{i}-group and any proper subgroups of Q_{i} which are invariant under $A \prod_{i<j} P_{j}$ are contained in Q_{i}^{\prime}.

Proof. This follows from Theorem 2.1 and from (f) and (g) in Theorem 2.4.

LEMMA 2.6. Suppose G, A, n, P_{i}, and p_{i} for $1 \leq i \leq n$ have the same meaning as in Theorem 2.4. Assume that every A-invariant proper subgroup of G has nilpotent length $<n$. For $1 \leq i \leq n$, let $T_{i}=P_{i} \cap F_{i-1}(G), Q_{i}=P_{i} / T_{i}$, and $C_{i}=C_{A}\left(Q_{i}\right)$. Then $G=P_{1} P_{2} \ldots P_{n}$ and $\left[p_{j}, C_{i}\right]=1$ if $1 \leq i \leq j \leq n$.

Proof. $P_{1} P_{2} \cdots P_{n}$ is A-invariant and, from Lemma 2.3, $\mathcal{L}\left(P_{1} P_{2} \cdots P_{n}\right) \geq n$. Hence $P_{1} P_{2} \cdots P_{n}=G$. Let $H_{i}=C_{P_{i}}\left(C_{i}\right)$. Since $c_{i} \subseteq C, H_{i}$ is A-invariant. From $\left[P_{i} / T_{i}, C_{i}\right]=1$ and $\left(\left|P_{i}\right|,\left|C_{i}\right|\right)=1$ follows $H_{i} T_{i}=P_{i}$. Since H_{n} is A-invariant,
$T_{n} \leq F_{n-1}(G)$, and $P_{n} \ddagger F_{n-1}(G)$, Theorem $2.4(f)$ implies that $H_{n}=P_{n}$. Assume now $1 \leq i<n$ and $\left[p_{j}, c_{i+1}\right]=1$ if $i+1 \leq j \leq n$. $\left[P_{i}, C_{i}, P_{i+1}\right] \leq F_{i-1}(G)$ and $\left[P_{i+1}, P_{i}, C_{i}\right]=\left[P_{i}, C_{i}\right] \leq F_{i-1}(G)$. The 3 Subgroups Lemma yields $\left[P_{i+1}, C_{i}, P_{i}\right] \leq F_{i-1}(G)$. It follows from this that $\left[P_{i+1}, C_{i}\right] \leq C_{P_{i+1}}\left(Q_{i}\right)$. Let $K=C_{P_{i+1}}\left(Q_{i}\right)$. Then $K F_{i-1}(G)$ is normalized by $F_{i-1}(G) P_{i} P_{i+1} \cdots P_{n}=G$. Since $K F_{i-1}(G) / F_{i-1}(G)$ is nilpotent, we must have $K \leq F_{i}(G)$. A consequence of this is that $\left[P_{i+1}, C_{i}\right] \leq T_{i+1}$. Hence $C_{i} \leq c_{i+1}$. Then $\left[P_{j}, c_{i}\right]=1$ if $i+1 \leq j \leq n$. It follows from this that H_{i} is normalized by $P_{i+1} P_{i+2} \cdots P_{n}$. Theorem $2.4(\mathrm{~g})$ now implies that either $H_{i}=P_{i}$ or $\left[P_{i+1}, H_{i}\right] \leq F_{i-1}(G)$. Since $P_{i}=H_{i} T_{i}, T_{i} \leq F_{i-1}(G)$, and $\left[P_{i+1}, P_{i}\right] \neq F_{i-1}(G)$, we cannot have $\left[P_{i+1}, H_{i}\right] \leq F_{i-1}(G)$. Thus $H_{i}=P_{i}$ and the lemma is proved.

3. The main results

Throughout this section we assume A is an elementary abelian group of order $p^{m}>1$ which acts as an operator group on the p^{\prime}-group G.

THEOREM 3.1. Assume G is solvable and let $n=\max \left\{\tau\left(C_{G}(X)\right) \mid X \in A^{\#}\right\}$. If $m \geq n+2$, then $\quad \tau(G)=n$.

Proof. Suppose G is a counter-example of minimal order. Then if H is an A-invariant proper subgroup of G, we must have $Z(H) \leq n$. Also if H is an A-invariant non-identity normal subgroup of G, then $Z(G / H) \leq n$. This implies that $\quad \mathcal{Z}(G)=n+1$.

Let P_{1}, \ldots, P_{n+1} be the A-invariant subgroups of G guaranteed by Theorem 2.4. Let $T_{i}=P_{i} \cap F_{i-1}(G), Q_{i}=P_{i} / T_{i}$, and $C_{i}=C_{A}\left(Q_{i}\right)$ for $1 \leq i \leq n+1$. Now $C_{Q_{n+1}}(X)$ is A-invariant for $X \in A^{\#}$. Using Corollary 2.5, we see that $x \in A^{\#}$ implies $C_{Q_{n+1}}(x)=1$ or Q_{n+1}.

Hence if B_{n+1} is a complement to C_{n+1} in A, we see that $\left\langle C_{Q_{n+1}}(X) \mid X \in B_{n+1}^{\#}\right\rangle=1$. Hence, by [4, Theorem 6.2.4], B_{n+1} must be cyclic. This implies $\left|A: C_{n+1}\right| \leq p$.

By Lemma 2.6, $C_{i} \leq C_{i+1}$ if $I \leq i \leq n$. Let B_{i} be a complement of C_{i} in C_{i+1}. Let $X \in B_{i}^{\#}$ and $R=C_{Q_{i}}(X) . \quad R$ is A-invariant and is also invariant under $C_{P_{j}}(X)=P_{j}$ for $i<j \leq n+1 . \quad\left\{C_{P_{j}}(X)=P_{j}\right.$ from Lemma 2.6. $\}$ Corollary 2.5 implies that R is one of the groups $1, Q_{i}^{\prime}$, or $Q_{i} . R \neq Q_{i}$ since $X \neq C_{i}$. Hence we have shown that $\left\langle C_{Q_{i}}(X) \mid X \in B_{i}^{\#}\right\rangle \leq Q_{i}^{\prime} \neq Q_{i}$. From [4, Theorem 6.2.4] it follows that B_{i} is cyclic. Hence $\left|C_{i+1}: C_{i}\right| \leq p$.

From $\left|A: C_{n+1}\right| \leq p, \quad|A| \geq p^{n+2}$, and $\left|C_{i+1}: C_{i}\right| \leq p$ for $1 \leq i \leq n$, we obtain $\left|C_{i}\right| \geq p^{i}$ for $1 \leq i \leq n$. Hence there is a non-identity element X in C_{1}. Then Lemma 2.6 implies that $\left[P_{i}, X\right]=1$ for $1 \leq i \leq n+1$. Hence $C_{G}(X)=G$. But $Z(G)=n+1$ and $Z\left(C_{G}(Y)\right) \leq n$ for all $Y \in A^{\#}$. This contradiction finishes the proof.

LEMMA 3.2. Assume $m \geq 3$ and $C_{G}(X)$ is abelian for aZl $X \in A^{\#}$. Then G is abelian.

Proof. Let G be a minimal counter-example. Then if H is an A-invariant non-identity normal subgroup of $G, G / H$ must be abelian. It follows from this that G^{\prime} is a minimal A-invariant normal subgroup of G. From [8], G is nilpotent. Since $G^{\prime} \cap Z(G) \neq 1$, we must have $G^{\prime} \leq Z(G)$. Then any subgroup of G^{\prime} is normal in G. This implies that A transforms G^{\prime} irreducibly. Thus $C_{G^{\prime}}(X)=1$ or $=G^{\prime}$ for each $X \in A^{\#}$. Let $C=C_{A}\left(G^{\prime}\right)$ and let B be a complement to C in A. Then
$\left\langle C_{G^{\prime}}(X) \mid X \in B^{\#}\right\rangle=1$. Hence B must be cyclic and so $|C| \geq p^{2}$.
Since C is not cyclic, $G=\left\langle C_{G}(X) \mid X \in C^{\#}\right\rangle$. Let $X, Y \in C^{\#}$, $H=C_{G}(X)$, and $K=C_{G}(Y) . H$ and K are both abelian and $[H, K,\langle X\rangle] \leq\left[G^{\prime},\langle X\rangle\right]=1$ and $[\langle X\rangle, H, K]=1$. The 3 Subgroups Lemma implies $[K,\langle X\rangle, H]=1$. Now K is A-invarient and so $K=[K,(X)] C_{K}(X)$. But $C_{K}(X) \leq H$ and H is abelian. Thus $[K, H]=[K,\langle X\rangle, H]=1$. It follows that G is abelian.

THEOREM 3.3. Assume $m \geq 4, G$ is solvable, and $C_{G}(X)$ is supersolvable for all $X \in A^{\#}$. Then G is supersolvable.

Proof. Suppose G^{\prime} is a counter-example of minimal order. If H is an A-invariant non-identity normal subgroup of G, then G / H is supersolvable. It follows from this that $D(G)=1$ and there is only one minimal A-invariant normal subgroup of G. Therefore $F(G)$ is an elementary abelian q-group for some prime q. From Theorem 2.1, $Z(G)=2$. Hence $G / F(G)$ is a nilpotent q^{\prime}-group. Now if $G / F(G)$ were abelian of exponent dividing $q-1$, then from [1, Theorem 6.1], G would be supersolvable. Thus for some prime $r \neq q$, there is an A-invariant r-subgroup R in G such that either R is non-abelian or the exponent of R does not divide $q-1$. Then $R F(G)$ is an A-invariant subgroup of G and $R F(G)$ is not supersolvable. Thus $R F(G)=G$.

Let $C=C_{A}(R)$ and let B be a complement to C in A. I assert that $|B| \geq p^{3}$. Suppose to the contrary that $|B|<p^{3}$. Then $|C| \geq p^{2}$ and so $F(G)=\left\langle C_{F(G)}(X) \mid X \in C^{\#}\right\rangle$. Thus there would be an $X \in C^{\#}$ such that $C_{F(G)}(X) \neq 1$. Now $C_{R}(X)=R$ and A is abelian. Thus $C_{F(G)}(X)$ is invariant under $A R$. By Maschke's Theorem, there is an $A R$-invariant complement K to $C_{F(G)}(X)$ in $F(G)$. Since $F(G)$ is abelian, K and $C_{F(G)}(X)$ are normal in $R F(G)=G$. Since there is only one minimal A-invariant normal subgroup in G, we must have $K=1$. Then $C_{F(G)}(X)=F(G)$ which implies $G=F(G) R=C_{G}(X)$ is supersolvable.

Thus $|B| \geq p^{3}$. Now let $X \in B^{\#} \cdot C_{R}(X) \neq R$ and so $C_{R}(X) F(G)$ is a proper A-invariant subgroup of G. Thus $C_{R}(X) F(G)$ must be supersolvable. It follows from this that $C_{R}(X)$ is abelian of exponent dividing ($q-1$). Lemma 3.2 now implies that R is abelian. Since $R=\left\langle C_{R}(X) \mid X \in B^{\#}\right\rangle$, the exponent of R must divide $(q-1)$ and the theorem is proved.

4. Examples

1. Let A be an elementary abelian p-group of order p^{n+1} where $n \geq 1$. Then by [5], there is an odd order p^{\prime}-group G on which A operates in a fixed-point-free manner and such that $\mathcal{Z}(G)=n+1$. If $X \in A^{\#}$, then $C_{G}(X)^{\prime}$ admits a fixed-point-free abelian operator group of order p^{n}. By [7], this implies that $Z\left(C_{G}(X)\right) \leq n$. Hence the requirement $m \geq n+2$ is necessary in Theorem 2.1.
2. Let G be a non-abelian group of order 27 and exponent 3 . Let a and b be any elements generating G. Then there are automorphisms x and y of G such that $a^{x}=a, b^{x}=b^{-1}$, $a^{y}=a^{-1}$, and $b^{y}=b, x$ and y generate an elementary abelian group A of order $4, C_{G}(Z)$ has order 3 for all $Z \in A^{\#}$ but G is not abelian. Thus the requirement $m \geq 3$ is necessary in Lemma 3.2.
3. Let p, q, r, and s be four distinct odd primes such that $q \equiv 1(\bmod r s)$ and $r \equiv 1(\bmod s)$. (For example, $p=5, q=43$, $r=7$, and $s=3$ would be satisfactory.) Let A be elementary abelian of order p^{3}. Using the methods of [5], it is possible to construct a solvable group G such that:
(a) A acts in a fixed-point-free manner on G;
(b) $Z(G)=3$;
(c) $F_{1}(G)$ is an elementary abelian q-group;
(d) $F_{2}(G) / F_{1}(G)$ is an elementary abelian r-group;
(e) $G / F_{2}(G)$ is an elementary abelian s-group. Now if $X \in A^{\#}$, then $C_{G}(X)$ admits a fixed-point-free operator group of order p^{2}. Thus, by [6], $Z\left(C_{G}(X)\right) \leq 2$. From (c), (d), and (e), it follows that $C_{G}(X)$ is supersolvable. However, $Z(G)=3$, and so G is not supersolvable. Thus $m \geq 4$ is necessary in Theorem 3.3.

References

[1] Roger Carter and Trevor Hawkes, "The F-normalizers of a finite soluble group", J. Algebra 5 (1967), 175-202.
[2] Walter Feit and John G. Thompson, "Solvability of groups of odd order", Pacific J. Math. 13 (1963), 775-1029.
[3] George Glauberman, "Fixed points in groups with operator groups", Math. Z. 84 (1964), 120-125.
[4] Daniel Gorenstein, Finite groups (Harper and Row, New York, Evanston, London, 1968).
[5] Fletcher Gross, "A note on fixed-point-free solvable operator groups", Proc. Amer. Math. Soc. 19 (1968), 1363-1365.
[6] P. Hall and Graham Higman, "On the p-length of p-soluble groups and reduction theorems for Burnside's problem", Proc. London Math. Soc. (3) 6 (1956), 1-42.
[7] Ernest E. Shult, "On groups admitting fixed point free abelian operator groups", IlZinois J. Math. 9 (1965), 701-720.
[8] J.N. Ward, "On finite groups admitting automorphisms with nilpotent fixed-point group", Bull. Austral. Math. Soc. 5 (1971), 281-282.
[9] J.N. Ward, "On finite soluble groups and the fixed-point groups of automorphisms", BulZ. Austral. Math. Soc. 5 (1971), 375-378.

University of Utah,
Salt Lake City,
Utah, USA.

