Elementary abelian operator groups

Fletcher Gross

Suppose G is a finite solvable p'-group admitting the elementary abelian p-group A as an operator group. If $n = \max\left\{ \text{nilpotent length of } C_G(X) \mid X \in A^{\#} \right\}$ and $|A| \ge p^{n+2}$, then the nilpotent length of G is n.

1. Introduction

Suppose A is an elementary abelian p-group of order p^m acting as an operator group on the finite p'-group G. If $m \ge 3$ and $C_G(X)$ is nilpotent for each non-identity element X in A, then Ward $[\delta]$ showed that G is nilpotent. More recently, Ward [9] proved that if G is solvable, $m \ge 4$, and the derived group of $C_G(X)$ is nilpotent for each non-identity element X in A, then G' is nilpotent. The principal result (Theorem 3.1) of the present paper asserts that if G is solvable, n is the maximum of the nilpotent lengths of $C_G(X)$ where X runs through the non-identity elements of A, and $m \ge n + 2$, then the nilpotent length of G is n. Using this result, an easy argument shows that if G is solvable, $C_G(X)$ is supersolvable for each non-identity element X in A, and $m \ge 4$, then G is super-solvable. Examples are given showing the necessity of the inequalities $m \ge n + 2$ and $m \ge 4$ in these results.

These theorems depend on a rather complicated technical result (Theorem 2.4) proved in §2 about the upper nilpotent series of a finite solvable group G which admits an operator group A where

Received 15 February 1972. The research was supported in part by a grant from the National Science Foundation of the USA.

(|G|, |A|) = 1. The main results are proved in §3 and examples are given in §4.

2. Notation and preliminary results

All groups considered in this paper are finite. If G is a group, $F_0(G) = 1$ and $F_{n+1}(G)/F_n(G) = F(G/F_n(G))$ equals the largest normal nilpotent subgroup of $G/F_n(G)$. If G is solvable, l(G) is the smallest non-negative integer n such that $F_n(G) = G$. The rest of the notation agrees with [2]. We now prove a number of technical results needed for the main theorems.

THEOREM 2.1. Suppose P is a p-group which admits the group G as an operator group. Assume Q is a normal p'-subgroup of G which centralizes every G-invariant proper subgroup of P but $[P, Q] \neq 1$. Then P is a special p-group and any proper G-invariant subgroups of P are contained in P'.

Proof. This follows immediately from Theorem C of [6].

LEMMA 2.2. Let P be a p-subgroup of the group G. Assume $P \leq F_2(G)$ but $P \not\equiv F_1(G)$. Then for some prime $q \neq p$, the Sylow q-subgroup of $F_1(G)$ is not centralized by P.

Proof. Let *H* be a Hall p'-subgroup of $F_1(G)$. If *S* is a Sylow *p*-group of $F_2(G)$, then $HC_S(H)$ is a normal nilpotent subgroup of *G*. Hence $C_S(H) \leq F_1(G)$. This implies that $[H, P] \neq 1$. Since *H* is nilpotent, the desired result follows immediately.

LEMMA 2.3. Let G be a solvable group and H a subgroup of G. Assume that P_1, \ldots, P_n (n > 1) are subgroups of H and p_1, \ldots, p_n are primes satisfying the following conditions:

(a) P_i is a P_i -group if $1 \le i \le n$;

- (b) $p_i \neq p_{i+1}$ if $1 \leq i \leq n-1$;
- (c) $P_{i+1} < N_G(P_i)$ if $1 \le i \le n-1$;

(d) $P_i \leq F_i(G)$ if $1 \leq i \leq n$; (e) $[P_n, P_{n-1}, \dots, P_2, P_1] \neq 1$.

Then $l(H) \geq n$.

Proof. Clearly $F_i(H) \ge F_i(G) \cap H \ge P_i$ for $1 \le i \le n$. Suppose l(H) < n. Then $F_{n-1}(H) = H$. Since $H/F_{n-2}(H)$ is nilpotent and $(|P_n|, |P_{n-1}|) = 1$, we obtain $[P_n, P_{n-1}] \le F_{n-2}(H) \cap P_{n-1}$. Now P_{n-1} normalizes P_{n-2} and P_{n-2} is a p'_{n-1} -subgroup of $F_{n-2}(H)$. Thus $[P_n, P_{n-1}, P_{n-2}] \le F_{n-3}(H) \cap P_{n-2}$. Continuing in this way, we eventually obtain

$$[P_n, P_{n-1}, \dots, P_2, P_1] \leq F_0(H) \cap P_1 = 1$$
,

which is a contradiction. Thus $l(H) \ge n$.

THEOREM 2.4. Suppose A is an operator group on the solvable group G where (|A|, |G|) = 1. Assume l(G) = n > 0. Then there are primes p_1, \ldots, p_n and A-invariant subgroups P_1, \ldots, P_n in G such that:

- (a) P_i is a p_i -group if $1 \le i \le n$;
- (b) $p_i \neq p_{i+1}$ if $1 \le i \le n-1$;
- (c) $P_i \leq N_G(P_i)$ if $1 \leq j \leq i \leq n$;
- (d) $P_i \leq F_i(G)$ but $P_i \notin F_{i-1}(G)$ if $1 \leq i \leq n$;

(e)
$$[P_{i+1}, P_i] = P_i \quad if \quad 1 \le i \le n$$
;

- (f) if Q is an A-invariant proper subgroup of P_n , then $Q \leq F_{n-1}(G)$;
- (g) if $1 \le i \le n-1$ and Q is a proper subgroup of P_i which is invariant under $A \prod_{i \le j} P_j$, then $[P_{i+1}, Q] \le F_{i-1}(G)$.

Proof. If n = 1, simply let P_1 be a minimal A-invariant subgroup of G. Suppose next n = 2. Let p_2 be a prime dividing $|G/F_1(G)|$. By [3, Corollary 2, p. 124], there is an A-invariant Sylow p_2 -subgroup Pin G. Let P_2 be minimal with respect to: $P_2 \leq P$, $P_2 \notin F_1(G)$, and P_2 is A-invariant. By Lemma 2.2, there is a prime $p_1 \neq p_2$ such that P_2 does not centralize the Sylow p_1 -subgroup of $F_1(G)$. Choose P_1 to be minimal with respect to: P_1 is a p_1 -subgroup of $F_1(G)$, $N_G(P_1) \geq P_2$, P_1 is A-invariant, and $[P_2, P_1] \neq 1$. Since $[P_1, P_2, P_2] = [P_1, P_2]$ from [3] and $[P_1, P_2]$ is A-invariant and normalized by P_2 , we must have $[P_2, P_1] = P_1$. This proves the **theorem** for $n \leq 2$. We now assume $n \geq 2$ and proceed by induction on n.

By [3], there is an A-invariant Carter subgroup C of $F_2(G)$. Let $N = N_G(C)$. $N \cap F_2(G) = C$ and, by the Fitting argument, $G = F_2(G)N$. Since $F_2(G)/F_1(G)$ is nilpotent, $F_2(G) = F_1(G)C$. Suppose now $2 \le i \le n$. Then from $G = F_2(G)N$ follows $F_i(G) = F_2(G)\{F_i(G)\cap N\}$. Since $l\{F_i(G)/F_2(G)\} = i - 2$ and $F_i(G) \cap N \cap F_2(G) = C \le F_1(N)$, we find that $l\{F_i(G)\cap N\} \le i - 1$. Hence $F_i(G) \cap N \le F_{i-1}(N)$. Conversely, $F_{i-1}(N)F_2(G)$ is normal in $NF_2(G) = G$ and

$$l\left(F_{i-1}(N)F_{2}(G)\right) = l\left(F_{i-1}(N)CF_{1}(G)\right) = l\left(F_{i-1}(N)F_{1}(G)\right) \leq i .$$

This implies that $F_{i-1}(N) \leq F_i(G) \cap N$. Hence $F_i(G) \cap N = F_{i-1}(N)$ for $2 \leq i \leq n$. A consequence of this is that l(N) = n - 1.

By induction, there are primes q_1, \ldots, q_{n-1} and A-invariant subgroups Q_1, \ldots, Q_{n-1} in N satisfying (a) through (g) for N. For $3 \le i \le n$, let $p_i = q_{i-1}$ and $P_i = Q_{i-1}$. From the fact that $F_j(G) \cap N = F_{j-1}(N)$ for $2 \le j \le n$, it follows that P_3, \ldots, P_n satisfy the required conditions with respect to G. It remains to chose P_1 and P_2 .

Now $P_3 \leq F_2(N) \leq F_3(G)$ but $P_3 \notin F_1(N) = F_2(G) \cap N$. Lemma 2.2 applied to $G/F_1(G)$ yields that for some prime $p_2 \neq p_3$, P_3 does not centralize the Sylow p_2 -subgroup of $F_2(G)/F_1(G)$. Now $F_2(G) = F_1(G)C$ and C is nilpotent. Thus if S is the Sylow p_2 -subgroup of C, S is invariant under $AP_3 \dots P_n$ and $[S, P_3] \notin F_1(G)$. Let P_2 be minimal with respect to: $P_2 \leq S$, P_2 is invariant under $AP_3 \dots P_n$, and $[P_2, P_3] \notin F_1(G)$. Since $[P_2, P_3]$ is invariant under $AP_3 \dots P_n$ and $[P_2, P_3, P_3] = [P_2, P_3]$, [3], we must have $[P_2, P_3] = P_2$. It now only remains to choose P_1 .

$$\begin{split} P_2 &\leq F_2(G) \text{ but } P_2 & \mbox{$\stackrel{1}{$$}$} F_1(G) \ . \ \text{Hence there is a prime } p_1 \neq p_2 \ \text{such} \\ \text{that } P_2 \ \text{does not centralize the Sylow } p_1 \text{-subgroup of } F_1(G) \ . \ \text{Then} \\ \text{there is a group } p_1 \ \text{which is minimal with respect to: } P_1 \ \text{is a} \\ p_1 \text{-subgroup of } F_1(G) \ , \ P_1 \ \text{is invariant under } AP_2 \ \cdots \ P_n \ , \ \text{and} \\ \hline \left[P_1, P_2\right] \neq 1 \ . \ \text{Since } \left[P_1, P_2\right] \ \text{is invariant under } AP_2 \ \cdots \ P_n \ \text{and} \\ \hline \left[P_1, P_2, P_2\right] = \left[P_1, P_2\right] \neq 1 \ , \ \text{we must have } \left[P_1, P_2\right] = P_1 \ \cdot \ P_1, \ \cdots, \ P_n \\ \text{now satisfy } (a) \ \text{through } (g) \ \text{and the theorem is proved.} \end{split}$$

COROLLARY 2.5. In Theorem 2.4, let $Q_i = P_i / (P_i \cap F_{i-1}(G))$ for $1 \le i \le n$. Then Q_n is elementary abelian and is transformed irreducibly by A. If $1 \le i \le n-1$, then Q_i is a special P_i -group and any proper subgroups of Q_i which are invariant under $A \prod_{i < j} P_j$ are contained in Q'_i .

Proof. This follows from Theorem 2.1 and from (f) and (g) in Theorem 2.4.

LEMMA 2.6. Suppose G, A, n, P_i , and p_i for $1 \le i \le n$ have the same meaning as in Theorem 2.4. Assume that every A-invariant proper subgroup of G has nilpotent length < n. For $1 \le i \le n$, let $T_i = P_i \cap F_{i-1}(G)$, $Q_i = P_i/T_i$, and $C_i = C_A(Q_i)$. Then $G = P_1P_2 \dots P_n$ and $[P_j, C_i] = 1$ if $1 \le i \le j \le n$.

Proof. $P_1P_2 \dots P_n$ is A-invariant and, from Lemma 2.3, $l(P_1P_2 \dots P_n) \ge n$. Hence $P_1P_2 \dots P_n = G$. Let $H_i = C_{P_i}(C_i)$. Since $C_i \supseteq C$, H_i is A-invariant. From $[P_i/T_i, C_i] = 1$ and $(|P_i|, |C_i|) = 1$ follows $H_iT_i = P_i$. Since H_n is A-invariant,
$$\begin{split} T_n &\leq F_{n-1}(G) \text{ , and } P_n & \notin F_{n-1}(G) \text{ , Theorem 2.4 } (f) \text{ implies that } H_n = P_n \text{ .} \\ \text{Assume now } 1 &\leq i \leq n \text{ and } \left[P_j, C_{i+1}\right] = 1 \text{ if } i+1 \leq j \leq n \text{ .} \\ \left[P_i, C_i, P_{i+1}\right] &\leq F_{i-1}(G) \text{ and } \left[P_{i+1}, P_i, C_i\right] = \left[P_i, C_i\right] \leq F_{i-1}(G) \text{ . The} \\ 3 \text{ Subgroups Lemma yields } \left[P_{i+1}, C_i, P_i\right] \leq F_{i-1}(G) \text{ . It follows from this} \\ \text{that } \left[P_{i+1}, C_i\right] \leq C_{P_{i+1}}(Q_i) \text{ . Let } K = C_{P_{i+1}}(Q_i) \text{ . Then } KF_{i-1}(G) \text{ is} \\ \text{normalized by } F_{i-1}(G)P_iP_{i+1} \cdots P_n = G \text{ . Since } KF_{i-1}(G)/F_{i-1}(G) \text{ is} \\ \text{nilpotent, we must have } K \leq F_i(G) \text{ . A consequence of this is that} \\ \left[P_{i+1}, C_i\right] \leq T_{i+1} \text{ . Hence } C_i \leq C_{i+1} \text{ . Then } \left[P_j, C_i\right] = 1 \text{ if} \\ i+1 \leq j \leq n \text{ . It follows from this that } H_i \text{ is normalized by} \\ P_{i+1}P_{i+2} \cdots P_n \text{ . Theorem 2.4 } (g) \text{ now implies that either } H_i = P_i \text{ or} \\ \left[P_{i+1}, H_i\right] \leq F_{i-1}(G) \text{ . Since } P_i = H_iT_i \text{ , } T_i \leq F_{i-1}(G) \text{ , and} \\ \left[P_{i+1}, P_i\right] \notin F_{i-1}(G) \text{ , we cannot have } \left[P_{i+1}, H_i\right] \leq F_{i-1}(G) \text{ . Thus } \\ H_i = P_i \text{ and the lemma is proved.} \end{split}$$

3. The main results

Throughout this section we assume A is an elementary abelian group of order $p^m > 1$ which acts as an operator group on the p'-group G.

THEOREM 3.1. Assume G is solvable and let

$$n = \max\left\{l\left(C_{G}(X)\right) \mid X \in A^{\#}\right\}$$
. If $m \ge n+2$, then $l(G) = n$.

Proof. Suppose G is a counter-example of minimal order. Then if H is an A-invariant proper subgroup of G, we must have $l(H) \leq n$. Also if H is an A-invariant non-identity normal subgroup of G, then $l(G/H) \leq n$. This implies that l(G) = n + 1.

Let P_1, \ldots, P_{n+1} be the A-invariant subgroups of G guaranteed by Theorem 2.4. Let $T_i = P_i \cap F_{i-1}(G)$, $Q_i = P_i/T_i$, and $C_i = C_A(Q_i)$ for $1 \le i \le n+1$. Now $C_{Q_{n+1}}(X)$ is A-invariant for $X \in A^{\#}$. Using Corollary 2.5, we see that $X \in A^{\#}$ implies $C_{Q_{n+1}}(X) = 1$ or Q_{n+1} . Hence if B_{n+1} is a complement to C_{n+1} in A, we see that $\left\langle C_{Q_{n+1}}(X) \mid X \in B_{n+1}^{\#} \right\rangle = 1$. Hence, by [4, Theorem 6.2.4], B_{n+1} must be cyclic. This implies $|A : C_{n+1}| \leq p$.

By Lemma 2.6, $C_i \leq C_{i+1}$ if $1 \leq i \leq n$. Let B_i be a complement of C_i in C_{i+1} . Let $X \in B_i^{\#}$ and $R = C_{Q_i}(X)$. R is A-invariant and is also invariant under $C_{P_j}(X) = P_j$ for $i \leq j \leq n+1$. $\left(C_{P_j}(X) = P_j \text{ from} \text{ Lemma 2.6.}\right)$ Corollary 2.5 implies that R is one of the groups 1, Q_i' , or $Q_i \, \cdot \, R \neq Q_i$ since $X \notin C_i$. Hence we have shown that $\left\langle C_{Q_i}(X) \mid X \in B_i^{\#} \right\rangle \leq Q_i' \neq Q_i$. From [4, Theorem 6.2.4] it follows that B_i is cyclic. Hence $|C_{i+1} : C_i| \leq p$.

From $|A : C_{n+1}| \leq p$, $|A| \geq p^{n+2}$, and $|C_{i+1} : C_i| \leq p$ for $1 \leq i \leq n$, we obtain $|C_i| \geq p^i$ for $1 \leq i \leq n$. Hence there is a non-identity element X in C_1 . Then Lemma 2.6 implies that $[P_i, X] = 1$ for $1 \leq i \leq n+1$. Hence $C_G(X) = G$. But l(G) = n + 1 and $l(C_G(Y)) \leq n$ for all $Y \in A^{\#}$. This contradiction finishes the proof.

LEMMA 3.2. Assume $m \ge 3$ and $C_G(X)$ is abelian for all $X \in A^{\#}$. Then G is abelian.

Proof. Let G be a minimal counter-example. Then if H is an A-invariant non-identity normal subgroup of G, G/H must be abelian. It follows from this that G' is a minimal A-invariant normal subgroup of G. From [8], G is nilpotent. Since $G' \cap Z(G) \neq 1$, we must have $G' \leq Z(G)$. Then any subgroup of G' is normal in G. This implies that A transforms G' irreducibly. Thus $C_G'(X) = 1$ or = G' for each $X \in A^{\#}$. Let $C = C_A(G')$ and let B be a complement to C in A. Then

 $\left\langle C_{G},(X) \mid X \in B^{\#} \right\rangle = 1$. Hence B must be cyclic and so $|C| \ge p^2$.

Since *C* is not cyclic, $G = \langle C_G(X) \mid X \in C^{\#} \rangle$. Let *X*, $Y \in C^{\#}$, $H = C_G(X)$, and $K = C_G(Y)$. *H* and *K* are both abelian and $[H, K, \langle X \rangle] \leq [G', \langle X \rangle] = 1$ and $[\langle X \rangle, H, K] = 1$. The 3 Subgroups Lemma implies $[K, \langle X \rangle, H] = 1$. Now *K* is *A*-invariant and so $K = [K, \langle X \rangle]C_K(X)$. But $C_K(X) \leq H$ and *H* is abelian. Thus $[K, H] = [K, \langle X \rangle, H] = 1$. It follows that *G* is abelian.

THEOREM 3.3. Assume $m \ge 4$, G is solvable, and $C_{C}(X)$ is

supersolvable for all $X \in A^{\#}$. Then G is supersolvable.

Proof. Suppose G is a counter-example of minimal order. If H is an A-invariant non-identity normal subgroup of G, then G/H is supersolvable. It follows from this that D(G) = 1 and there is only one minimal A-invariant normal subgroup of G. Therefore F(G) is an elementary abelian q-group for some prime q. From Theorem 2.1, l(G) = 2. Hence G/F(G) is a nilpotent q'-group. Now if G/F(G) were abelian of exponent dividing q - 1, then from [1, Theorem 6.1], G would be supersolvable. Thus for some prime $r \neq q$, there is an A-invariant r-subgroup R in G such that either R is non-abelian or the exponent of R does not divide q - 1. Then RF(G) is an A-invariant subgroup of G and RF(G) is not supersolvable. Thus RF(G) = G.

Let $C = C_A(R)$ and let B be a complement to C in A. I assert

that $|B| \ge p^3$. Suppose to the contrary that $|B| < p^3$. Then $|C| \ge p^2$ and so $F(G) = \left\langle C_{F(G)}(X) \mid X \in C^{\#} \right\rangle$. Thus there would be an $X \in C^{\#}$ such that $C_{F(G)}(X) \ne 1$. Now $C_R(X) = R$ and A is abelian. Thus $C_{F(G)}(X)$ is invariant under AR. By Maschke's Theorem, there is an AR-invariant complement K to $C_{F(G)}(X)$ in F(G). Since F(G) is abelian, K and $C_{F(G)}(X)$ are normal in RF(G) = G. Since there is only one minimal A-invariant normal subgroup in G, we must have K = 1. Then $C_{F(G)}(X) = F(G)$ which implies $G = F(G)R = C_G(X)$ is supersolvable. Thus $|B| \ge p^3$. Now let $X \in B^{\#}$. $C_R(X) \ne R$ and so $C_R(X)F(G)$ is a proper A-invariant subgroup of G. Thus $C_R(X)F(G)$ must be supersolvable. It follows from this that $C_R(X)$ is abelian of exponent dividing (q-1). Lemma 3.2 now implies that R is abelian. Since $R = \langle C_R(X) \mid X \in B^{\#} \rangle$, the exponent of R must divide (q-1) and the theorem is proved.

4. Examples

1. Let A be an elementary abelian p-group of order p^{n+1} where $n \ge 1$. Then by [5], there is an odd order p'-group G on which A operates in a fixed-point-free manner and such that l(G) = n + 1. If $X \in A^{\#}$, then $C_G(X)'$ admits a fixed-point-free abelian operator group of order p^n . By [7], this implies that $l(C_G(X)) \le n$. Hence the requirement $m \ge n + 2$ is necessary in Theorem 2.1.

2. Let G be a non-abelian group of order 27 and exponent 3. Let a and b be any elements generating G. Then there are automorphisms x and y of G such that $a^x = a$, $b^x = b^{-1}$, $a^y = a^{-1}$, and $b^y = b$. x and y generate an elementary abelian group A of order 4. $C_G(Z)$ has order 3 for all $Z \in A^{\#}$ but G is not abelian. Thus the requirement $m \ge 3$ is necessary in Lemma 3.2.

3. Let p, q, r, and s be four distinct odd primes such that $q \equiv 1 \pmod{rs}$ and $r \equiv 1 \pmod{s}$. (For example, p = 5, q = 43, r = 7, and s = 3 would be satisfactory.) Let A be elementary abelian of order p^3 . Using the methods of [5], it is possible to construct a solvable group G such that:

- (a) A acts in a fixed-point-free manner on G;
- (b) l(G) = 3;
- (c) $F_1(G)$ is an elementary abelian q-group;
- (d) $F_2(G)/F_1(G)$ is an elementary abelian r-group;

(e) $G/F_2(G)$ is an elementary abelian s-group.

Now if $X \in A^{\#}$, then $C_G(X)$ admits a fixed-point-free operator group of order p^2 . Thus, by [6], $l(C_G(X)) \leq 2$. From (c), (d), and (e), it follows that $C_G(X)$ is supersolvable. However, l(G) = 3, and so G is not supersolvable. Thus $m \geq 4$ is necessary in Theorem 3.3.

References

- [1] Roger Carter and Trevor Hawkes, "The <u>F</u>-normalizers of a finite soluble group", J. Algebra 5 (1967), 175-202.
- [2] Walter Feit and John G. Thompson, "Solvability of groups of odd order", Pacific J. Math. 13 (1963), 775-1029.
- [3] George Glauberman, "Fixed points in groups with operator groups", Math. Z. 84 (1964), 120-125.
- [4] Daniel Gorenstein, Finite groups (Harper and Row, New York, Evanston, London, 1968).
- [5] Fletcher Gross, "A note on fixed-point-free solvable operator groups", Proc. Amer. Math. Soc. 19 (1968), 1363-1365.
- [6] P. Hall and Graham Higman, "On the p-length of p-soluble groups and reduction theorems for Burnside's problem", Proc. London Math. Soc. (3) 6 (1956), 1-42.
- [7] Ernest E. Shult, "On groups admitting fixed point free abelian operator groups", *Illinois J. Math.* 9 (1965), 701-720.
- [8] J.N. Ward, "On finite groups admitting automorphisms with nilpotent fixed-point group", Bull. Austral. Math. Soc. 5 (1971), 281-282.
- [9] J.N. Ward, "On finite soluble groups and the fixed-point groups of automorphisms", Bull. Austral. Math. Soc. 5 (1971), 375-378.

University of Utah, Salt Lake City, Utah, USA.

100