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Elementary abelian operator groups

Fletcher Gross

Suppose G is a finite solvable p1-group admitting the

elementary abelian p-group A as an operator group. If

n = max<nilpotent length of CQ{X) \ X 6 A \ and \A\ 2: pn+2 ,

then the nilpotent length of G is n .

1. Introduction

Suppose A is an elementary abelian p-group of order p acting as

an operator group on the finite p'-group G . If m - 3 and CQ{X) is

nilpotent for each non-identity element X in A , then Ward •[£] showed

that G is nilpotent. More recently, Ward [9] proved that if G is

solvable, m > h , and the derived group of CAX) is nilpotent for each

non-identity element X in A , then G' is nilpotent. The principal

result (Theorem 3.1) of the present paper asserts that if G is solvable,

n is the maximum of the nilpotent lengths of ^AX) where X runs

through the non-identity elements of A , and m £ n + 2 , then the

nilpotent length of G is n . Using this result, an easy argument shows

that if G is solvable, CAX) is supersolvable for each non-identity

element X in A , and m > h , then G is super-solvable. Examples are

given showing the necessity of the inequalities m 5 n + 2 and m 2 h in

these results.

These theorems depend on a rather complicated technical result

(Theorem 2.k) proved in §2 about the upper nilpotent series of a finite

solvable group G which admits an operator group A where
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(|ff| , Ml ) = 1 • The main resul ts are proved in §3 and examples are given

i n 54.

2. Notation and preliminary results

All groups considered in this paper are finite. If G is a group,

FQ(G) = 1 and Fn+A.G)/F(.G) = F(G/^(C)) equals the largest normal

nilpotent subgroup of G/F (G) . If G is solvable, l(G) is the

smallest non-negative integer n such that F (G) = G . The rest of the

notation agrees with [2]. We now prove a number of technical results

needed for the main theorems.

THEOREM 2 .1 . Suppose P is a p-group which admits the group G as

an operator group. Assume Q is a normal p'-subgroup of G which

centralizes every G-invariant proper subgroup of P but [P, Q] # 1 .

Then P is a special p-group and any proper G-invariant subgroups of P

are contained in P' .

Proof. This follows immediately from Theorem C of [6] .

LEMMA 2.2. Let P be a p-subgroup of the group G . Assume

P £ F2(G) but P £ Fi(G) . Then for some prime q t p , the Sylow

q-subgroup of Fi(G) is not centralized by P .

Proof. Let 8 tie a Hall p'-subgroup of FAG) . If 5 i s a Sylow

p-group of FAG) , then HCAH) i s a normal nilpotent subgroup of G .

Hence CAH) 5 F (G) . This implies that [H, P] * 1 . Since H is
u 1

nilpotent, the desired result follows immediately.

LEMMA 2.3. Let G be a solvable group and H a subgroup of G .

Assume that P P (n > 1) are subgroups of H and p 1 , . . . , pn

are primes satisfying the following conditions:

(a) P . is a p .-group if 1 5 i S n ;

(b) pi * Pi+1 if 1 < i < n-1 ;

(c) P.. < NJP.) if l < t < n - l ;
- i+1
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(d) P. < F.(G) if 1 < i S n ;

(e) K'Pn-l P 2 > P J *X-
Then 1{H) 2 n .

Proof. Clearly F .(H) > F .(G) n H 5 P. for 1 5 i 5 n . Suppose
If If If

l(H) < n . Then ?„_•,_(») = * • Since H/Fn_2(H) i s nilpotent and

d P J • lPn-lD = 1 • We O b t a i n &„, Pn_J S Fn-2W n Pn-1 ' Kow Pn-1

normalizes p
n _ 2

 a n d p 2 i s a P* -,-subgroup of F _2(#) • Thus

[pn, ?„_!» P
n_^] - P

n_3(f f) n p
n _ 2 • Continuing in th is way, we eventually

obtain

DV V l - • • • ' P 2 ' P J - f 0 ( f l ) n P x = 1 '

which is a contradiction. Thus l(H) i w .

THEOREM 2.4. Suppose A is an operator group on the solvable group

G where (\A\ , \G\) = 1 . Assume l(G) = n > 0 . Then there are primes

p , .. . , p and A-invariant subgroups P. P in G such that:

(a) P • is a p .-group if 1 5 i S n ;

(b) pi * pi+1 i / l S t 5 n - l ;

(a) P. < Nr{P.) if 1 £ i 5 i < n ;

W; P. 2 F.(C) fcut P. £ F. (C) i f 1 < i < « ;
Is tr % If—A.

(e) [ > i + 1 > P^=Pi if l ± i ± n ;

(f) if Q is an A-invariant proper subgroup of P , then

(g) if 1 S i £ w-1 a?7<i Q is a proper subgroup of P. which is

invariant under A J~[ P. 3 then [P-.,, QJ S F. (G) .

Proof. If n = 1 , simply let P\ be a minimal 4-invariant subgroup

of G . Suppose next n = 2 . Let P2 tie a prime dividing \G/Fi(G)\ .
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By [3, Corollary 2, p. 12kl, there is an X-invariant Sylow p2-subgroup P

in G . Let P2 be minimal with respect to: P2 5 P , P2 £ Fi(G) , and

P2 is <4-invariant. By Lemma 2.2, there is a prime p\ i- p2 such that

P2 does not centralize the Sylow pi-subgroup of F\{G) . Choose Pi to

be minimal with respect to: Pi is a pi-subgroup of Fi(G) ,

NG[P±) - P2 = ?! is d-invariant, and [>2, p j * 1 . Since

[Pl5 P2, P2] = [Pi, P2] from [3] and [Px, P2] is ^-invariant and

normalized by P2 , we must have [P2, Pi] = Pi . This proves the theorem

for n 5 2 . We now assume n > 2 and proceed by induction on n .

By [3], there is an ^-invariant Carter subgroup C of F2(G) . Let

// = NQ(C) . N n F2(G) = C and, by the Fitting argument, G = F (G)N .

Since Fz(.G)/Fi(G) is nilpotent, F2(G) = Fi(G)C . Suppose now

2 2 i 5 n . Then from G = FO(G)N follows F.(G) = F (G) {F. (G)nN) .

Since I [P. {G)/FJG)} = i - 2 and F.(G.) n N n FAG) ^ S F j i f l , we find

that l(F.(G)nN) 5 i - 1 . Hence F.(G) n tf S F. AN) . Conversely,

F. ..(AOJF'JG) is normal in NFAG) = G and
t—1 e: £:

This impl i e s t h a t F. AN) < F.(G) n ff . Hence F.{G) n N = F. ,(N) for
1—1 t t- !•—1

2 S i £ n . A consequence of this is that l(N) = w - 1 .

By induction, there are primes q , ..., q . and ^-invariant

subgroups Q.. Q in N satisfying (a) through (g) for N . For

3 < i i n , let p. = q. and P. = Q. . From the fact that

F .{G) n N = F .^(N) for 2 < j S n , it follows that P3> .... P^ satisfy

the required conditions with respect to G . It remains to chose P^ and

Now P 3 £ F2(tf) £ F3(G) but P 3 £ i ^ U ) = F2(G) n N . Lemma 2.2

a p p l i e d t o G/Fi(G) y i e l d s t h a t for some prime p 2 t P3 , P3 does not

c e n t r a l i z e t h e Sylow p2-subgroup of F2{G)/Fl(G) . Now F2(G) = FX(G)C

and C i s n i l p o t e n t . Thus i f 5 i s t h e Sylow p2-subgroup of C , S i s

i n v a r i a n t under AP^ . . . P^ and [ 5 , P 3 ] ^ F ^ G ) . Let P 2 be minimal
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with respect to: P £ 5 , P2 is invariant under AP ... P , and

[P2, P j £ FAG) . Since [>2, P.] is invariant under AP • • • pn and

[P2, P3, PJ = [P2, P j , [3], we must have [P2, Pj = P2 . It now only

remains to choose P. .

Pz — F2(G) but P2 £ Fi(G) . Hence there is a prime p\ # p2 such

that P2 does not centralize the Sylow pj-subgroup of Fi(G) . Then

there is a group p\ which is minimal with respect to: Pi is a

p -subgroup of iP1(G) , P is invariant under 4P ... P , and

[p , P j + 1 . Since [P , Pj is invariant under 4P2 ... P and

[ p ± , P 2 , P g ] = C p i ' P g l * 1 » v e m u s t h a v e [ p
a » P g l = p i • p i > • • • ' p «

now satisfy (a,) through Cg1^ and the theorem is proved.

COROLLARY 2.5. In Theorem 2.\, let Q. = P./[P.nF. (G)) /or

1 £ i £ n , Then Q^ is elementary abelian and is transformed irreduaibly

by A . If 1 £ i £ n-1 , iften Q^ is a special p .-group and any proper

subgroups of Q^ which are invariant under A ~| |" P . are contained in

Proof. This follows from Theorem 2.1 and from (f) and (g) in Theorem

2.1t.

LEMMA 2.6. Suppose G, A, n, P. , and p. for 1 £ i £ n have the

same meaning as in Theorem 2.1». Assume that every A-invariant proper

subgroup of G has nilpotent length < n . For 1 £ i £ n , let

T. = P. n F. AG) , Q. = P./T. , and C. = C.[Q.) . Then G = P^P^ ... P^

and [P . , C.] = 1 if 1 £ i £ j £ n .

Proof. P,Po ... P is /1-invariant and, from Lemma 2.3,

l(PnPo ... P) > n . Hence P^P- ... P = G . Let ff. = CD fc) . Since

C- S C , ff. is /1-invariant. From [P./T., C.] = 1 and

f|P-l, |G.|) = 1 follows H.T. = P. . Since H is 4-invariant,
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Tn ~ Fn-1( G ) ' a n d Pn ^ *Vz-l(C) ' T*"501"6111 2-k C/Mmplies that #n = P^ .

Assume new 1 £ t < n and [P., C. .] = 1 if i+1 £ j £ n .

l>i- Ci' Pi+J 5 Ff-l(C) and l>i+l' ̂ . C-] = [P£, C.] 5 F.^G) . The

3 Subgroups Lemma yields [P. , C. , P.] < F. (G) . It follows from this

that [Pi+1, C\] 5 Cp_ (̂ ) . Let if = Cp _ [QJ . Then ^ _ 1 ( G ) is
i+1 i+1

normalized by F. AG)P.P. ... P = G .• Since AF. AG)/F. AC) is

nilpotent, we must have X 5 F.(G) . A consequence of this is that

[Pi+1. C-] < T^+1 . Hence C. 5 C.+1 . Then \p., cj = 1 if

i+1 £ 3 £ n . It follows from this that H. is normalized by
Is

P-.-,Pj.o ••• P • Theorem 2.h (g) now implies that either H. = P. or
"V' A. lr*d. ft lr Ir

[pi+i5 Hi) - F i - i ( G ) • S i n c e p i = HiTi > T i - f i - i ( G ) • a n d

[P. . , P.J ^ F. (G) , we cannot have [P-,-,, #•] £ F. -.(G) . Thus

ff. = P. and the lemma is proved.

3. The main results

Throughout this section we assume A is an elementary abelian group

of order p > 1 which acts as an operator group on the p'-group G .

THEOREM 3.1. Assume G is solvable and let

n = maxh(CG(X)) f X € A#\ . If m > n+2 , then l(G) = n .

Proof. Suppose G is a counter-example of minimal order. Then if H

is an ^-invariant proper subgroup of G , we must have l(H) £ n . Also

if H is an 4-invariant non-identity normal subgroup of G , then

l(G/H) £ n . This implies that 1{G) = n + 1 .

Let P, P . be the 4-invariant subgroups of G guaranteed by
1 n+i

Theorem 2.U. Let T. = P. n F. (G) , Q. = P.IT. , and C. = C.[Q.) for
X* ^ t*—1 Is I* is Is n is

M
1 £ i £ n+1 . Now CV, (#) is ^-invariant for X (. A . Using

Corollary 2.5, we see that X Z A implies CQ (X) = 1 or
n+1
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Hence if B is a complement to C in A , we see that

(cn (X) | X (. B ) = 1 . Hence, by [4, Theorem 6.2.It], B must be

cyclic. This implies \A : C + | 5 p .

By Lemma 2.6, C. 5 C. . if I S i S n . Let B. be a complement of

C. in C. . Let X (. B • and /? = C (X) . # is -4-invariant and is

also invariant under C p (X) = P. for i < j 5 n+1 . [cp (*) = P. from

Lemma 2.6. Corollary 2.5 implies that R is one of the groups 1, Q1.,

or §. • R + Q. since X \ C. . Hence we have shown that
If If Is

(c, (X) \ X (. B^.\ £ Q'. + Q. . From [4, Theorem 6.2. U] it follows that B.
\ (% • t / I* % 't-

cyclic. Hence l̂ -+-i '• C.\ -

"+2From \A : Cn+1| < p , U| > p"+2 , and |C\+1 : C^| S p for

5 £ 5 n , we obtain |C.| S p for 1 5 •£ 5 n . Hence there is a

n-identity element X in C. . Then Lemma 2.6 implies that [P., j] = 1

for 1 5 i 5 H+l . Hence CQ(X) = G . But 1{G) = n + 1 and

Z(cc(r)) £ n for all Y Z A# . This contradiction finishes the proof.

u

LEMMA 3.2. Assume m > 3 and C^(^) is abelian for all X t A .

Then G is abelian.

Proof. Let G be a minimal counter-example. Then if H is an

4-invariant non-identity normal subgroup of G , G/H must be abelian. It

follows from this that C is a minimal ^-invariant normal subgroup of

G . From [S], G is nilpotent. Since G' n Z(G) t 1 , we must have

G' £ 2(G) . Then any subgroup of G' is normal in G . This implies that

A transforms G' irreducibly. Thus C^,(X) = 1 or = G' for each

u
X £ A . Let C = C.(C ) and let B be a complement to C in 4 . Then
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(cG,(X) | ^ B1) = 1 . Hence B must be cyclic and so \c\ > p2 .

Since C i s not cyc l ic , G = (c^X) \ X € C#\ . Let X, Y t Cff ,

H = C"GU) , and X = CQ(Y) . H and K are both abelian and

[H, K, (X)] 5 [ C , <X>] = 1 and [<X>, ff, X] = 1 . The 3 Subgroups Lemma

i m p l i e s [K, (X), H] = 1 . Now K i s ^ - i n v a r i a n t and so

K = [K, (X)]CK(X) . But CK(X) 5tf and H i s a b e l i a n . Thus

[K, H] = [K, <X>, H] = 1 . I t follows t h a t G i s a b e l i a n .

THEOREM 3.3. Assume m > it , G i s solvable, and CG(X) is

supersolvable for all X € A . Then G is supersolvable.

Proof. Suppose G ' i s a counter-example of minimal order. If H is

an ^- invariant non-identity normal subgroup of G , then G/H i s

supersolvable. I t follows from this that D(G) = 1 and there i s only one

minimal .4-invariant normal subgroup of G . Therefore F(G) i s an

elementary abelian q-group for some prime q . From Theorem 2 . 1 ,

l(G) = 2 . Hence G/F(,G) i s a nilpotent q'-group. Now if G/F{G) were

abelian of exponent dividing q - l , then from [7 , Theorem 6.13, G would

be supersolvable. Thus for some prime r t q , there i s an 4-invariant

r-subgroup R in G such that either R i s non-abelian or the exponent

of R does not divide q - 1 . Then RF(G) i s an ^-invariant subgroup

of G and i?F(G) i s not supersolvable. Thus RF(G) = G .

Let C = CA{R) and l e t B be a complement to C in A . I assert

tha t \B\ 2 p J . Suppose to the contrary that |fl| < p . Then \c\ > p

and so F(G) = ( c F ( G ) U ) | X € C#^ . Thus there would be an X € C# such

t h a t C f , G >(*) * ! • Now ^ W = R ^^ A i s a b e l i a n . Thus

i s invariant under AR . By Maschke's Theorem, there i s an AR-invariant

complement K to Cp(GAX) in F(G) . Since F(G) i s abelian, K and

) are normal in RF(G) = G . Since there i s only one minimal

.^-invariant normal subgroup in G , we must have K = 1 . Then

Cv/^AX) = F[G) which implies G = F(G)R = CAX) i s supersolvable.t\G) u
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Thus |fl| > p-3 . Now let X Z B . CR(X) # R and so CR(X)F(G) is

a proper .4-invariant subgroup of G . Thus CR(X)F(G) must be

supersolvable. It follows from this that ^D(^) is abelian of exponent

dividing (q-l).. Lemma 3.2 now implies that R is abelian. Since

R = (Cfl(*) I x € S y , the exponent of i? must divide {q-l) and the

theorem is proved.

4. Examples

1. Let A be an elementary abelian p-group of order p where

n > 1 . Then by [5], there is an odd order p'-group G on which A

operates in a fixed-point-free manner and such that l(G) = n + 1 . If

X (. A , then CAX) admits a fixed-point-free abelian operator group of

order p n . By [7], this implies that l{CG{X)} 5 n . Hence the

requirement m > n + 2 is necessary in Theorem 2.1.

2. Let G be a non-abelian group of order 27 and exponent 3 •

Let a and b be any elements generating G . Then there are

x x —1
automorphisms x and y of G such that a = a , £ > = f c ,

a = a , and ir = b . x and j/ generate an elementary abelian group

A of order 1* . CJZ) has order 3 for all Z (. A but G is notu

abelian. Thus the requirement m 2 3 is necessary in Lemma 3.2.

3. Let p, q, r , and s be four distinct odd primes such that

q = 1 (mod re) and r = 1 (mod s) . (For example, p = 5 , <? = ^3 ,

r = 7 , and s = 3 would be satisfactory.) Let A be elementary abelian

of order p3 . Using the methods of [5], it is possible to construct a

solvable group G such that:

(a) A acts in a fixed-point-free manner on G ;

(b) l(G) = 3 ;

(c) F\(.G) is an elementary abelian q-group;

(d) F2^G)/F\{G) is an elementary abelian r-group;
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(e) G/F2{G) i s an elementary abelian 8-group.

Now if X £ A , then ^AX) admits a fixed-point-free operator group

of order p2 . Thus, by [ 6 ] , l[Cc(X)) £ 2 . From ( c ) , (d) , and (e ) , i t

follows that Cff(X) i s super solvable. However, l(G) = 3 , and so G is

not supersolvable. Thus m 2 k i s necessary in Theorem 3.3.
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