This department welcomes short notes and problems believed to be new. Contributors should include solutions where known, or background to the problem in case the problem is unsolved. Send all communications concerning this department to Leo Moser, University of Alberta, Edmonton, Alberta.

PROBLEMS FOR SOLUTION

P 11. (Conjecture) Given n points at the vertices of a strictly convex polygon. Is it true that no distance can be determined more than 5($n-1$)/3 times? (If $n \equiv 1$ (mod 3) there is a configuration in which one distance is determined $5(\mathrm{n}-1) / 3$ times.)
P. Erdös and L. Moser

P 12. If $x_{1}, x_{2}, \ldots, x_{p}$ are p points in affine n-space, their convex hull P consists of all the points $\lambda_{1} x_{1}+\lambda_{2} x_{2}+\ldots+$ $\lambda_{\mathrm{p}} \mathrm{x}_{\mathrm{p}}$ where $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{\mathrm{P}}=1, \lambda_{i} \geqslant 0$. The point y is an extremal point of P if $y \in P$ and if y does not lie on a segment connecting two other points of P. Let D be a convex region in n-space. The function $w=f\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ associates continuously with any p-tuple of points of D another point w in their convex hull P which is not an extremal point of P. Choose $a_{1}, a_{2}, \ldots, a_{p}$ arbitrarily in D and define $a_{n+p+1}=f\left(a_{n+1}, a_{n+2}, \ldots, a_{n+p}\right)$, $n=0,1,2, \ldots$. Does the sequence a_{1}, a_{2}, \ldots necessarily converge? Cf. Azpeitia, Proc. Amer. Math. Soc. 9(1958), 428-432.
P. Scherk

P 13. Angular measure in a Minkowski plane is sometimes defined to be proportional to the area of the corresponding sector of the unit circle U, and sometimes proportional to the arc length of the sector of U. Determine all Minkowski metrics in which the two measures are proportional.

H. Helfenstein

P 14. Prove that

$$
\sum_{d=1}^{n}\left[\frac{n}{d}\right] \frac{1}{d} \prod_{p / d}(1-p)=1+1 / 2+1 / 3+\ldots+1 / n
$$

