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THE NON-LINEAR THEORY OF SPIRAL STRUCTURE 
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ABSTRACT 

The main steps of the non-linear theory of spiral 
structure are described. Near each of the main resonances 
the basic periodic orbits are calculated, and the sets of 
non-periodic orbits that follow them are found. A different 
integral of motion is applicable for each set, besides the 
Jacobi integral. Then the initial distribution function, f, 
is expressed as a function of the two integrals and the 
corresponding angles. The final distribution function is 
found by averaging over the angles: f_. = ̂ f X Then by 
integrating <?f> over all velocities we find the response 
density or e . In order that ° r e s D should be equal to the 
imposed density, aimD w e mus"t adjust the parameters of the 
imposed spiral field. The form of o r e S D away from resonances 
can be derived explicitely for tight ana open spirals or 
bars; however near the resonances a r e s p can be only calculated 
numerically. If the imposed field has almost constant 
amplitude, then the amplitude of the response is very large 
near the Inner Lindblad Resonance. In the case of a tight 
spiral the azimuth of the response density maximum with 
respect to the imposed density maximum tends to zero outside 
the ILR, while it tends to -90° inside the ILR. One possible 
self-consistent solution has zero amplitude inside the ILR 
both in the case of tight spirals and of bars. Finally an 
important quadrupole term was found near the ILR. 

1. INTRODUCTION 

The most important non-linear effects in a galaxy are 
due to its main resonances, namely the Inner and Outer Lind
blad Resonances (ILR and OLR) and the Particle Resonance (PR). 
Near these resonances the basic , assumption of the linearized 
theory is not applicable. In fact, if we write the imposed 
potential in the form 
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V = V t V. ( 1 ) 

where V is the axisymmetric part. V] the spiral part, and 
the corresponding distribution function is 

+ f. (2) 

then near the main resonances we have |f J }|f I, and there
fore f - cannot be considered as a small correction term. 
This is the opposite of what happens away from resonances. 
Thus a different approximation scheme has to be used near 
the resonances, as in other resonant problems of Celestial 
Mechanics and Stellar Dynamics (Whittaker 1904, Born 1927, 
Contopoulos 1963). Previous work on the non-linear theory 
of galactic resonances is contained in the papers of 
Contopoulos (1970, 1973, 1975 a,b) and Vandervoort (1973, 
1975; see also Vandervoort and Monet 1975). 

The existence and positions of the main galactic 
resonances depend on the form of the rotation curve (angula 
velocity Si versus r) and on the value of the angular velo 
city of the spiral pattern Si . 

At the ILR and OLR we have 

Si = SI - x / 2 , (3) 

where x is the epicyclic frequency, and at the PL 

Si Si . co
i f the galaxy has a sharp increase of density inwards, 

with a point mass at its center, then the curve f! - x/2 goes 
to infinity as r —» 0, therefore for any Sls we have an ILR 
( Fig. la ). However, if the galaxy has a smoother 
increase of density inwards (e.g. an almost homogeneous 
nucleus at its center), then SI - x/2 tends to zero as r —* 0 
therefore we have, in general, either two ILR's, or no ILR 
at all (Fig. lb). 

On the other hand we have always a PR, and an OLR, 
although these resonances may be in the outermost parts of 
the galaxy. 

II. THE DISTRIBUTION FUNCTION 

The basic steps in the non-linear theory of spiral 
structure are the following: 

1) Find the appropriate integrals of motion for each 
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F-tg. 1. The poiltloni o& the ILR, PR, and OLK aie at the 
inteiiectioni o{, the auivei Si - x/2, Si, and Si t x/2 
bij the tine si = const. The two poalble fioumi ofa 
the cu.ft.ve Si - x/2 ane deicftlbed In the text. 

resonant (and non-resonant ) case. 

2) Express the distribution function f in terms of these 
integrals. 

3) Calculate the response density a by integrating f 
over all velocities, and 
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4) Solve t h e s e l f - c o n s i s t e n c y e q u a t i o n 

a - a . 
r e s p imp; 

( 5 ) 

which,in fact, consists of two equations, one referring to 
the agreement of amplitudes and one to the agreement of phases, 

The first step has already been studied by Contopoulos 
(1975, ordinary spirals), and Contopoulos and Mertzanides 
(1977, bars). 

We have now a computer program that gives the basic 
periodic orbits, for every assumed axisymmetric and spiral 
model, near (and far from) each resonance, and the sets of 
ncn-periodic orbits following them. 

Near the resonances the energy and angular momentum are 
not approximate integrals. On the other hand the Jacobi 
integral is always an exact integral of motion. Furthermore 
a new (resonant) integral was derived, which has a different 
form for each of the above\ sets of orbits. 

The appropriate form of t 
found as follows. The initial 
expressed as a function of the 
namely the energy and the angu 
e.g., with the Schwarzschild d 

This function is now expr 
of motion valid in each case a 
The definition of the "corresp 
given in a forthcoming paper. 
angles is that they vary linea 
long time they phase-mix,and w 
function as the average of the 
over the angles 8 , 8 : 

1 2 

he distribution function is 
distribution function, f , is 
unperturbed integrals of motion, 

lar momentum. Such is the case, 
istribut ion. 

essed in terms of the integrals 
nd the "corresponding angles", 
onding angles" 8, , 8 , , is 
The basic property of these 

rly in time. Therefore after a 
e can take the final distribution 
initial distribution function 

"fin <f > (6) 

The form of ^f±n is different inside, close, or outside 
each resonance. 

In Fig. 2a,b,c we give < f > near the ILR in a particular 
spiral field of the form (1). The form of < f > depends on 
the value of hamiltonian, H, or of the corresponding radius, 
r, of the unperturbed circular orbits. If the unperturbed 
circular orbit is inside, or a little outside the ILR, there 
is only one population of orbits around the periodic orbits 
x.. (Fig. 2a). A little further outside the ILR a second 
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Fig. I. The unpen.tun.bed and the pentunbed dlitnlbutlon 
fiunctloni, f and <f > {both divided by the un-
pentunbed deniltij a0 ) along the ax_li x. The. 
aonneiponding dln.cu.lai unoentunbcd onblti am. 
a) r = 3.4 Inilde the ILR, fa) r=t.l outilde 
the ILR, c) r=4.4, ^unthen outilde the ILR. 
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population of orbits appears around the periodic orbit y-2 
(Fig. 2b); in this case we speak of two populations of trapped 
orbits, while there is a third population of orbits, that are 
not trapped around either xj or X2 • For still larger r 
the second population becomes the dominant one (Fig. 2c). In 
such cases we can ignore the population around x, , and 
consider the third population as a continuation of the second 
population. 

The various forms of ffjn= < f > are given by a computer 
program, and are then used to calculate the response density 
"resp • 

III. THE RESPONSE DENSITY 

The integration of < f > over all velocities, to give 
the response density 

o = /<f> dv, (7) 

resp J 
must be done by taking into account the form of < f > appropriate 
for each population. 

If the imposed spiral potential is of the form 

V, = A cos (26 - *) (8) 
1 » 

where A = A(r) is the amplitude, <J> = *(r) a phase angle, and 
6 the azimuth in a frame rotating with angular velocity Q , 

we write the response density in the form 

o =a - X cos(29-*-Z ) + Q„, (9) resp o resp resp 4' 

where Qu is a quadrupole term. 

This is to be compared with the imposed density, which 
is written in a similar form 

a =a - X. cos(26-*-Z. ) + Q,' , (10) 
resp o imp v imp 4 ' 

where, usually, Z. is quite small. 
' J imp ^ 

Very near the ILR the forms of Xr and Z involve 
the calculation of complicated integrals that can be found 
only by means of a computer. However further away , inside 
or outside the ILR, where only one population of orbits is 
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d o m i n a n t , t h e i n t e g r a t i o n c a n b e p e r f o r m e d e x p l i c i t e l y a n d 
g i v e s 

a+si 

r e s p o o r ( J ? - n ) m a mm 
U- s o J 

-u'x sin(26-u) 

cost26-u)- (11) 

Here accents indicate derivatives with respect to r , x is 
m , 

the periodic orbit x-, inside the resonance, or x outside 
the resonance, and 

+ 1 , ( 1 2 ) 

where q is found if we analyze the potential (8) into 
components; namely the most important component near the ILR 
is proportional to cos(@ - 2 Q + $ + q ) (Contopoulos 1975, 
Appendix B ) . 

The form (11) of the a is derived in a simple way 
resp r 

Tig. 3. The. unpeituKbzd c-iiaulan puKlodlc oiblti ana tiani-
{joime.d Into two almoit tlllptlcal ptnlodlc. oh.blt& 
a^tQ-K the iplmxl {,ie.ld l& -intiodace.d. 

in the Appendix by considering only the behaviour of the 
periodic orbits (Fig, 3 ) . 

The response density (11) is composed of various 
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a (n + as) 
cos(28-u) is due to the fact 

components, namely: 

a) The term nTri~rr~\*m 
that a star stays longer near apocentron than near pericentron 
inside the particle resonance (the opposite is true outside 
the PR). 

a ' 
b) The term x cos(26-u) is due to the fact that 

the unperturbed matte°r of the initial circular ring is moving 
outwards, where the local density is smaller, or inwards, 
where the local density is larger. 

:) The 'cos(26-u) is due to the crowding of term -a 
periodic orbits, which is largest near the resonance. 

d) The term 
:ion of the ma 

the spiral field (Fig. 

-a u'x sin(29-u) is due to the differential 
rotation of the major axes of successive periodic orbits in 

3 ) . 

If the imposed spiral field is tight (trailing) then the 
most important term is the last one. 
and q ' — 0, thus 

In fact then a d - n/2 

k, (13) 

where kr is absolutely large. If we disregard then the 
first three terms of the response (11) we find that the 
spiral density maxima are 45 ahead of the major axes of the 
perturbed orbits in the trailing case. Thus outside the ILR 
(and inside the PR) the response density is in phase with the 
potential minima, which approximately coincide with the 
imposed density maxima. Inside the ILR, on the other hand, 
the response is completely out of phase, i.e. the response 
density maxima are near the imposed density minima. This 
means that there cannot be self-consistency unless the 
amplitude of the spiral wave goes to zero inside the ILR. 
These results are consistent with the results of the 
linearized theory of density waves in the asymptotic case 
(large k ; Lin, Yuan and Shu 1969). 

The situation is different for open spirals or bars. 
In the case of a bar, if the imposed potential has an almost 
constant amplitude, the orbits between the ILR and the 
neighbourhood of the PR are mainly elongated along the bar, 
while they are elongated perpendicularly to the bar inside 
the ILR. However the density maxima are along the bar both 
inside and outside the ILR. One only sees that the response 
is very large near the ILR. 
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A detailed discussion of the various cases will be given 
in a future paper. 

The main conclusions of the present study are the 
following: 

a 

A6 

C 

90 

1 4 
I 

r 5 
i 

fig. 4. The amplitude and the. azimuth o I the ne&pon&e 
deniity in the aaie o& an imposed {ield o{ almoit 
constant amplitude, h,and wave numbei ks-1.3 neaK 
the 7LR (r«*3.7 kpc, in thii model). 
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1) The amplitude of the density response is very large 
near the ILR (Fig. 4a). 

2) The azimuth difference A6 between the response 
density maxima and the imposed density maxima tends to zero 
outside resonance (Fig. 4b). Near resonance A6 becomes 
large negative and remains so inside the resonance. For tight 
spirals A8-> -90 well inside resonance. Only in the case 
of bars A8 is always zero (or -90 ). 

3) One may have a self-consistent solution with zero 
amplitude inside resonance. This is applicable both to the 
case of a tight spiral and to the case of an open spiral or 
a bar . 

4) In the case of a bar there may be another solution 
if we assume the amplitude to increase considerably inwards. 
Such a solution would have a singularity at the center, 
unless there is a second ILR (Fig. lb). 

5) A global spiral solution should not have any singu
larities, either near the center or very far from the center. 
It is expected that these boundary conditions would be 
satisfied only for some values of the angular velocity of the 
spiral pattern ft . These are the analogues of the eigen
values of the linearized problem. 

6) In the response (11) we have omitted the quandrupole 
term Q of eq. (9). This term is particularly important 
in the region very near resonance, where the periodic orbits 
x and x deviate considerably from circles. 

Such an important quadrupole term was found by Crane 
(1975) in the isophotes of the SBO galaxy NGC 2950. The 
fact that the quadrupole term is maximum in the region where 
the ellipticity of the orbits is maximum indicates that it 
is, in fact, connected with the ILR and constitutes an inde
pendent check of the non-linear theory of density waves. 

APPENDIX 

We consider that the orbits between the circles r and 
c 

r + Arc in the axisymmetric field are transformed to the 
orbits between two neighbouring resonant periodic orbits 
(Fig. 3) 

r =r +x cos (2 9-u) , c m ' (Al) 
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and 

r t A r = r + Ar | l + x ' c o s ( 2 fl-u )+ufc s i n ( 2 B - u ) j . ( A 2 ) 
c c L m m " J » 

in the spiral field. 

Away from resonances the angular momentum is approxi
mately conserved, hence 

2 2 
r (9 '+ft ) =r ft 

s c c ' 

(A3) 

where 9'is the angular velocity in the rotating frame. The 
flux of matter through an axis § =const. in the elliptical 
ring is the same as in the unperturbed (circular) ring, 
because the period is the same in first order approximation. 
Thus 

where 6, ' =r ft , c c ' 

1 + 

are'Ar =ar r § ' A r , (At) 
*- c c c 

and we derive, in first approximation, 

(n +n ) 
?— x cos ( 26 -u) -x ' cos( 29-u)-

r (ft _n ) m v m c s 

-uk sin (2 m ) - u ) 7 , (A5) 

If we compare the density o with the unperturbed 
density a at distance r (and not with the density a at 

o c 
distance r ) we must use also the relation 

c 

a = o +a x cos(26-u), 
o c c m 

(A6) 

and derive finally 

( r (ft + a ) o ' 
J1 -• ° o 1 1 r (ft -ft ) "m a 
L k c c s o 

c o s ( 2 9 - u ) - u'x s i n ( 2 8 - u ) > 

, 
m m 

(A7) 

If we replace now r and ft in the first order terms 
c c 

by r and ft we find eq. (II). 
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