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NEIGHBORLY 4-POLYTOPES AND NEIGHBORLY 
COMBINATORIAL 3-MANIFOLDS WITH TEN VERTICES 

A. ALTSHULER 

1. Introduction. A combinatorial n-sphere is a simplicial ^-complex whose 
body (i.e., the union of its members) is homeomorphic to the topological 
w-sphere Sn. A combinatorial n-manifold is a simplicial ^-complex M such that 
M is connected, and for every vertex x in M the complex linker, M), the link 
of x in M, is a combinatorial (n — 1)-sphere. For more details the reader should 
consult Alexander [1] and Grunbaum [16]. All the spheres and manifolds to 
which we refer are combinatorial. 

A priori it is not clear whether or not every ^-sphere is an w-manifolcl. How­
ever, an affirmative answer to this question was given by Alexander [1, 
Theorem 12.2.a]. In the same paper Alexander proved also that the boundary 
complex of every simplicial (n + 1)-polytope is an ^-sphere. It is well known 
(see e.g. [14, Chapter 13]) that every 2-sphere is polytopal, i.e., can be realized 
as the boundary complex of some simplicial (3-dimensional) polytope. Alani 
[18] proved that a similar result holds for every ^-sphere with up to n + 4 
vertices, while for every n ^ 3 there exists an ^-sphere with n + 5 vertices 
that is not polytopal. A first example of a 3-sphere with 8 vertices that is not 
polytopal was discovered by Grùnbaum [15], and a second such example was 
discovered by Barnette [9]. 

A complete enumeration of all the (types of) 3-manifolds with up to nine 
vertices has been carried out in [3], [5] and [6], and a brief report and references 
on these results can be found in [6]. We mention here only that except for one, 
all those manifolds were shown to be spheres. The exception is a 3-manifold 
with 9 vertices which, following [5], we denote by NbX

%. Nbi
9 was shown in [5] 

to be non-orientable, and therefore it is not a sphere. We used (unpublished) 
Corollary 6.3.9 of [17] to calculate the fundamental group of A^i9, and found it 
to be Z, the free group on one variable. 

A particular and important case of a 3-manifold is the neighborly 3-manifold. 
A neighborly 3-manifold (3-sphere, 4-polytope) is a 3-manifold (3-sphere, 
4-polytope) in which every two vertices are joined by an edge. The 3-manifold 
iV51

9 is neighborly. 

In the present work we investigate and enumerate, using a CDC 6400 com­
puter, all the neighborly 3-manifolds with 10 vertices. Thus, this is an extension 
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of the work carried out in [3; 4; 5; 6]. However, there is a significant difference 
in the present work and tha t of the above references, which manifests itself 
in two ways. First of all, the technical aspects of finding all of the cases is much 
more complicated here. This together with the large number of cases and the 
amount of t ime needed to find them, in particular the checking of the isomor­
phic cases, necessitated a need to develop special and sophisticated methods 
for checking the isomorphisms. This has been carried out here although we 
have not entered into a description of these methods. Secondly, and most im­
por tant , in the above works enumeration of the cases played the main role 
whereas here classification of the cases plays the central role, and enumeration 
occupies a small par t (Section 2) of this work. 

In the present work we strive to achieve the following: 
1. To obtain a complete catalogue of all the neighborly 3-spheres and 

3-manifolds with 10 vertices; 
2. to classify those 3-spheres, as far as possible, into polytopal and non-

polytopal spheres, and to classify the non-spherical 3-manifolds according 
to their topological type ; 

3. to get answers to a t least some of the problems posed in [4] and [5] ; 
4. to find 4-polytopes, 3-spheres and 3-manifolds which have a particularly 

interesting s t ructure ; and in particular, 
5. to find an orientable 3-manifold which is not a sphere and is minimal with 

respect to the number of vertices. 
We have succeeded in achieving all of the above goals. 

The complete catalogue of the neighborly 3-manifolds with 10 vertices con­
tains 3677 types. The full description of all of those types is beyond the scope 
of a short paper, and we give here (in Table 1) a detailed description of only 
nine of those cases, chosen for representing particular phenomena. The com­
plete catalogue can be obtained upon request from the author. 

The main result to be established in the present paper is: 

T H E O R E M 1. There are precisely 3677 different combinatorial types of neigh­
borly 3-manifolds with 10 vertices. They split into 3540 spheres, (of which at least 
333 and at most 432 are polytopal) 83 non-orientable 3-manifolds which are 
homeomorphic to each other and 54 orientable non-spherical 3-manifolds which 
are homeomorphic to each other. Each of the 137 non-spherical cases has the free 
group on one variable as its fundamental group. 

In view of [3], [5] and [6], where it is shown tha t every 3-manifold with up to 
nine vertices is either a sphere or a non-orientable 3-manifold, Theorem 1 
implies (compare [5, Theorem 1.2]): 

T H E O R E M 2. The minimal n such that there exists an orientable 3-manifold 
with n vertices that is not a sphere is n = 10. 

In Section 2 we describe the construction of the neighborly 3-manifolds with 
10 vertices (briefly: iV10 's). In Section 3 we classify the 3677 iV10's found in 
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Section 2 into 3573 simply obtainable and 104 non-simply-obtainable N1Q1s. In 
Section 4 we classify the 3573 simply obtainable 7V10's into four classes, two of 
which contain all the polytopal cases. In Section 5 we classify the 104 non-
simply-obtainable TV10's into three classes. While carrying out the work in 
Section 5 we define a certain t ransformation r on 3-manifolds which appears 
to be of importance beyond the scope of the present work (see Remark 5, 
Section 6 and [8]). The classification given in Sections 4 and 5 yields the proof 
of Theorem 1. We conclude in Section 6 with some remarks. 

Our terminology follows [14; 3 ; 4] and in part icular [5] and [6]. 

2. C o n s t r u c t i o n of t h e 7v10 's. Our method for construct ing all the neigh­
borly 3-manifolds with 10 vertices is a simple and natura l modification of the 
method described in detail in [3], and resembles [5]. Therefore we briefly 
describe here only the main idea. For further details the reader should consult 
[3]. 

Let A 1 0 be the general name for a neighborly 3-manifold with 10 vertices, 
and let the vertices of each A 1 0 be labeled 0, 1, 2, . . . , 9. Because of the neigh-
borliness of A10 , the complex 5 = link(0, A 1 0) is a t r iangulat ion of the 2-sphere, 
with 9 vertices. 

In the process of construction of the TV10's we have to let 5 run over all 
the possibilities of a 2-sphere with 9 vertices. Algori thms for finding all the 
2-spheres with k vertices from those with k — 1 vertices are well known in 
the l i terature (see, e.g., [12]), bu t we prefer to use a simple modification of the 
algorithm described in [3] for constructing all 3-manifolds with k vertices, to 
find all the 2-spheres with k vertices (Euler 's formula is needed here to exclude 
2-manifolds which are not spheres). T h u s our algorithm generates directly 
the 2-spheres with k vertices, wi thout passing through those with k — 1 ver­
tices. We programmed this algorithm to yield all the 2-spheres with 9 vertices 
(and also with 10 vert ices; see Remark 6, Section 6) finding t h a t there are 
50 such cases (which agrees with [12] and with [20, p. 86]) which are denoted 
by St, 1 S i S 50. Of those 50 5 7 s precisely 24 are stacked (which agrees with 
[11, Table 2]) ; they are S^, 52s, • • • , 5 5 0 . (For the définition of a stacked 
2-sphere see [5, Definition 2.1] and, for a more general t rea tment , see [2]. A 
stacked 2-sphere is essentially a dissection of a 3-ball as defined in [11]). A few 
of the Si's are shown in Figure 1, and the detailed list of all 50 5 7 s is included in 
the final catalogue. (The author wishes to t hank the referee for pointing out 
t ha t the duals of all 50 5 7 s are shown in [20, Pla te I I I ] . ) 

L e t / z ( C ) denote the number of i-simplices in a simplicial complex C. For 
every 3-manifold M, the well known Euler 's formula 

è ( - 1 ) ' / , ( M ) = 0 
2=0 

holds, and yields easily t ha t each N10 contains precisely 35 3-simplices. Since 
for every A 1 0 the 2-sphere 5 = link(0, A"10) contains 9 vertices, 5 contains 
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^ 43 ' S 4 8 

FIGURE 1 

precisely 14 triangles (2-simplices). Therefore it follows tha t s tar(0 , N10) con­
tains 14 3-simplices, and hence R = ant is tar(0 , TV10) contains 21 3-simplices. 
Notice t ha t s tar(0 , iV10) depends on 5 only and not on TV10; namely, it is 
{0 V A : A G S}. Here 0 V A is the simplex of dimension dim A + 1 whose 
vertices are 0 and those of A. We denote s tar(0, N10) by S'. 

Now, for each of the 50 possibilities for S, we label the vertices of S as 
1, 2, . . . , 9, and we find all possible 3-complexes R with the same nine vertices 
such t h a t R U S' is a neighborly 3-manifold (necessarily with 10 vertices). 
Following [3, Section 3], R is easily seen to satisfy the following conditions: 

(1)MR) = 21. 
(2) Each 2-simplex A £ R belongs to precisely two 3-simplices in R if A (t S 

and to precisely one 3-simplex in R if A £ 5 . 
(3) For each vertex x £ S, if the valence of x in 5 is j , then x belongs to 

precisely 14 — j 3-simplices in 7?. 

(4) SCR. 
(5) For every two vertices x, y G R, there is in R a 3 simplex tha t contains 

both x and y. 
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After obtaining all such complexes R (again, consult [3] for details) a check 
was made to verify that each S' U R was indeed a manifold. For each of the 
manifolds thus obtained we calculated the edge-valence matrix and its determi­
nant. The last two concepts are very helpful in identifying our manifolds, and 
for their definition and significance we refer to [4]. (Although the edge-valence 
matrix was originally defined in [4] for 3-spheres, the same definition holds for 
every 3-manifold.) All the N10's thus obtained were classified into isomorphism 
classes, and a representative for each class was chosen. Altogether we found 
3677 different N1Q,s. 

3. First classification. The next step after finding the 3677 Nl0's was to 
classify them into directly obtainable and non directly obtainable manifolds. 
Those concepts are of main importance in the present work and therefore, 
though already defined in [5] and [6], we briefly repeat here their definition. 

Let M be a 3-manifold, and let x be a vertex of M. The 'hole' created in M 
by removing star(x, M) can sometimes be refilled by some 3-element C (i.e., a 
simplicial 3-complex whose body is homeomorphic to a topological 3-cell) such 
that bdC = link(x, M), all the vertices of C are in bdC, and M' = 
antistar (x, M) VJ C is a 3-manifold. In this case we say ([5, Section 2]) that 
M is directly obtainable at the vertex x from Mf, and that C is the refill. For 
given M and x it is in general not easy to find an appropriate refill C, or to 
prove its non-existence. However, if the 2-sphere link(x, M) is stacked (see 
[5, Definition 2.1]) then there exists a natural candidate for such a refill, 
namely, the unique simplicial 3-complex C with bdC = link(x, M), all of whose 
vertices and edges are in its boundary (this is essentially the dissection of the 
S-ball with boundary link(x, M), as defined in [11]). If this particular 3-element 
C is indeed a refill, i.e., M' = antistar (x, M) U C i s a 3-manifold, we call it 
a simple refill, and say that M is simply obtainable at x from M', or, if M' is 
immaterial, that M is simply obtainable at x. We say that M is simply obtainable 
if it is simply obtainable in at least one of its vertices (which, of course, must 
then have a stacked link). 

LEMMA 3. Let M be a 3-manifold which is directly obtainable at a vertex x £ M 
from M'. If M is neighborly, then M' is also neighborly, link(x, M) is a stacked 
2-sphere and M is simply obtainable at xfrom M'. 

Proof. Assume that M is neighborly and that C is the refill with which M is 
directly obtainable at x from M'. Since all the edges of M which are not in 
antistar (x, M) contain the vertex x and M is neighborly, we have that for every 
two vertices y, z in M' the edge yz is in antistar (x, M) and therefore in M'. 
Thus Mf is neighborly and C does not contain any inner edge, i.e., all the edges 
of C are in bdC = link(x, M). C is therefore a simple refill. It follows that 
link(x, M) is a stacked 2-sphere (see [5, page 117; 2, Section 1; 4, Section 2]) 
and M is simply obtainable at x from Mr. 

An immediate corollary of Lemma 3 is that if some Af10 is directly obtainable 
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a t a vertex x G N10 from a manifold M', then link(x, N10) is one of the 24 
stacked 2-spheres S* (27 ^ i è 50), and AT is one of the 51 neighborly 
3-manifolds with 9 vertices which were found in [5] and have been denoted 
t h e r e b y iV,9 (1 S i ^ 51). 

For each of the 3677 iV10's and for each vertex x G iV10 such tha t link(x, TV10) 
= Si, for some 27 ^ i ^ 70, wre checked whether or not iV10 is simply obtain­
able a t x, and we calculated the N? (1 S i ^ 51) from which iV10 is simply 
obtainable a t x. Altogether we found tha t the 3677 7V10's split into 3573 cases 
which are simply obtainable, and 104 cases which are not simply obtainable 
and therefore, because of Lemma 3, also not directly obtainable. 

4. Classif icat ion of t h e 3573 s i m p l y ob ta inab le iV10 's. In order to classify 
the 3573 simply obtainable 7V10's into spheres and non-spheres, we use the 
following lemma, the proof of which is not difficult (it follows easily from the 
Auxiliary Theorem in the next section) and we omit it. (Compare [4, Theorem 
2.5 and Remark 2.6]). Usually, the notation \C\ is used to denote the body, i.e., 
the union of the simplices, of a simplicial complex C. However, in the present 
and in particular in the next section, we find it often more convenient to use 
C for denoting both the complex C and its body, and it will not be difficult for 
the reader to decide in each case which of the two possibilities is meant . 

LEMMA 4. If a 3-manifold M is directly obtainable from a 3-manifold M', 
then \M\ and \Mr\ are homeomorphic to each other. 

The 51 neighborly 3-manifolds N{* (1 ^ i ^ 51) were shown in [5] to split 
into 50 Ni9's with 1 ^ i ^ 50 which are spheres and a unique 7V5i

9 which is a 
non-orientable manifold. Of our 3573 simply obtainable N10's precisely 34 
cases are simply obtainable from iV5i

9. Thus , by Lemma 4, those 34 cases are 
all homeomorphic to 7V5i

9, therefore they all are homeomorphic to each other 
and are not orientable. By the same reasoning, each of the remaining 3539 
iV10's is simply obtainable from some sphere iV^9 (1 ^ i ^ 50) and is therefore 
a sphere. 

Next we t ry to classify these 3539 spheres into polytopal and non-polytopal 
spheres. By [6, Theorem 4], if a 3-sphere M (other than the boundary complex 
of the 4-simplex) has a vertex x such t ha t M is not directly obtainable a t x 
or is directly obtainable a t x from a non-polytopal sphere, then M is not poly­
topal. This excludes the possibility t ha t any of the 104 non-directly obtainable 
iV10's be a polytopal sphere, and helps to classify the 3539 directly obtainable 
spheres, as follows: 

Among the 50 spheres Nf
d (1 ^ i ^ 50), there are precisely 23 polytopal 

spheres. They are the Nt
rs with 1 ^ i ^ 23 (see [4]). Therefore, each of our 

3539 spheres which is simply obtainable a t a t least one of its vertices from 
some Ni9 with 24 ^ i ^ 50, cannot be polytopal. Also, if a sphere TV10 has a 
vertex x a t which it is not directly obtainable, then tha t sphere is not polytopal. 
This last phenomenon occurs, because of Lemma 3, always when the 2-sphere 
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link(x, TV10) is not stacked, i.e., l ink(x, TV10) = S{ for some 1 ^ i g 26. How­
ever, it can also happen t h a t link(x, TV10) is stacked, and nevertheless TV10 is 
not simply obtainable a t x. This happens when the 3-element C, which is the 
natural and the only candidate for a refill (in the terminology of [11], C is the 
dissection of the 3-ball with boundary link(x, TV10)), shares some 3-simplex with 
ant is tar (x , TV10) and therefore C U ant is tar (x , TV10) is not a 3-manifold. I t is 
interesting to note t ha t this last possibility did not happen with any of the 
3539 spheres under discussion (see Remark 7, Section 6). 

Now, the above phenomena were found in precisely 3107 of our 3539 simply 
obtainable spheres, and therefore they are not polytopal. 

We do not know yet whether or not the remaining 432 simply obtainable 
spheres are polytopal. Let TV be any of those spheres and let x be a vertex of TV. 
Then link(x, TV) is a stacked 2-sphere (i.e., it is St for some 27 ^ i ^ 50) and 
TV is simply obtainable a t x from some polytopal neighborly 3-sphere TV' with 
9 vertices, which is TV/ for some 1 S j ^ 23. Assume for the moment t ha t TV 
is polytopal, and let P be a 4-polytope which realizes TV and has the same label­
ing of the vertices. Then the 4-polytope P' = conv(P \{x}) necessarily realizes 
TV'. However, s tar t ing with some 4-polytope P' which realizes TV' there is, in 
general, no guarantee for the existence of a point x such tha t the poly tope 
P = c o n v ( P ' \J \x}) realizes TV. T h e existence of such a point x may depend 
on the part icular poly tope P' chosen to realize TV'. 

An a rgument very similar to the a rgument given in [4, page 282] shows, 
however, t ha t if l ink(x, TV") is S AI (see Figure 1), then such a point x exists 
for every polytope P' chosen to realize TV' (see also Remark 8 in Section 6) . 
Therefore each of the 432 TV10's under consideration which has S M as a link of 
a t least one of its vertices must be polytopal. There are precisely 333 such 
cases. The remaining 99 TV10's remain undecided as to whether or not they are 
polytopal, and wre refer to them as doubted poly topes. Since every neighborly 
4-polytope is simplicial ([14, Theorem 4.2.1]) we obtain: 

T H E O R E M 5. The number of neighborly ^-polytopes with 10 vertices is at least 
333 and at most 432. 

T o summarize the present section, the 3573 simply obtainable TV10's fall into 
four classes: 

Class I: 333 polytopes (denoted TV*10 with 1 ^ i S 333 in the final 
catalogue). 

Class I I : 99 doubted polytopes (denoted TV*10 with 334 g i g 432). 
Class I I I : 3107 non-polytopal simply obtainable spheres (denoted TV*10 with 

433 ^ i S 3539). 
Class IV: 34 non-orientable simply obtainable 3-manifolds wThich are 

homeomorphic to TV5i
9 (denoted TV*10 with 3540 ^ i ^ 3573). 

5. Class i f icat ion of t h e n o n s i m p l y o b t a i n a b l e TV10's. There remain 
104 non simply obtainable TV10's to be classified. First , we checked them for 
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orientabili ty and we found tha t 55 cases are orientable and the remaining 49 
cases are non-orientable. Next, we calculated the fundamental group of each 
of the 104 cases. This was done by means of Corollary 6.3.9 of [17]. One of 
those cases, denoted by iV357410 (see Table 1), was shown to have the trivial 
group as its fundamental group. Each of the remaining 103 cases was shown 
to have Z, the free group on one variable, as its fundamental group. A priori, 
7V357410 is either a sphere or, if not a sphere, it is a counterexample to the famous 
Poincaré Conjecture. This case, however, was discussed in detail in [7], and 
was shown there to be a sphere. Thus , the 104 non simply obtainable 7V10's fall 
into 3 classes: 

Class V: A unique non simply obtainable sphere -/V357410. 
Class VI : 54 orientable non simply obtainable 7V10's having Z as their funda­

mental group (they are denoted Nt
10 with 3575 S i ^ 3628). 

Class V I I : 49 non-orientable non simply obtainable iV10's having Z as their 
fundamental group (denoted Nt

10 with 3629 g i g 3677). 
The question now arises, whether or not the 54 cases of Class VI are homeo-

morphic to each other, and whether or not the 49 cases of Class VII are 
homeomorphic to each other and perhaps also to the cases of Class IV. 

In order to answer those questions we will define a certain transformation 
r on 3-manifolds, such tha t if M is a 3-manifold on which r is applicable, then 
T(M) is again a 3-manifold and is homeomorphic to M. We then proceed to 
define a graph G on the 3677 iV10's such tha t the vertices of G are the 3677 
7V10's, and two vertices Ni, N2 in G are joined by an edge if and only if N2 = 
r(iVi). The s tudy of the connected components of G will yield an affirmative 
answer to all the above questions. 

The following well known theorem, in piecewise linear topology, will be 
repeatedly used in the present section (our at tent ion to it was drawn by 
Professor Marshall Cohen) : 

A U X I L I A R Y T H E O R E M . / / D and E are polyhedra, A and B are piecewise linear 

n-balls, A C\ D = dA, B C\ E = dB and h : D —> E is a piecewise linear 
homeomorphism with h(dA) = dB, then there is a piecewise linear homeomor-
phism H\D\J A-*E\J B such that H\D = h. 

Definition 6. Let M he a, 3-manifold which contains as a subcomplex the 
simplicial 3-complex K composed of the five 3-simplices 

xyab, xybc, xyca, xdef, ydef 

and their faces. We assume the five vertices x, y, a, b, c to be distinct, and 
similarly for the five vertices x, y, d, e, f, but we allow the triangles abc and 
def to share a t most two common vertices. If the triangle abc is not in M, 
we say t ha t the transformation r is applicable on M at K, and we define 

rK(M) = N = (M\K) U L , 
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x x 

FIGURE 2 

where L is the simplicial 3-complex composed of the five 3-simplices 

xyde, xyef, xyfd, xabc, y abc 

and their faces (see Figure 2) . 

T H E O R E M 7. In the notation of Definition 6, N = TK(M) is a 3-manifold 
homeomorphic to M. 

Proof. We distinguish three cases: 
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Case 1: The triangles abc and def share two common vertices: a — d, 
b = e,c ?*f. 

Case 2: The triangles abc and def share one common vertex: a = d, b ^ e, 

c*f. 
Case 3: The triangles abc and def share no common vertex. 
Note t ha t in Case 1 both \K\ and \L\ are 3-balls, and they can be constructed 

geometrically in Rz as shown in Figure 3: each of them has the appearance of 
a bipyramide (octahedron) over the basis axby, bu t the four vertices a, x, b, y 
are not in the same plane. In K the vertex x is pushed away from the plane 
affja, b, y} towards the vertex c, while in L the vertex x is pushed away from 
the plane affja, b, y) in the direction of the v e r t e x / . Note also t ha t in Case 1 
the triangle abc is not in M even without the explicit assumption in Definition 
6, since the link Ymk(ab, M) of the edge ab in M consists of the circuit xy, yf,fx 
which does not contain the vertex c. (I t is easy to see t ha t the link of an edge 
in a 3-manifold is a 1-sphere, i.e., a circuit.) 

In order to show tha t N is a 3-manifold, we t rea t only Case 1. The t rea tment 
of the other two cases is similar and is left to the reader. 

We have to show tha t for every vertex v in N, Ymk(v, N) is a 2-sphere. This is 
clear for every vertex v in N other than a, b, c, f, x and y. since then obviously 
link(z;, N) = link(w, M). As for the remaining possibilities it is sufficient, be­
cause of the symmetry (see Figure 3), to deal with the two cases v = a and 
v = c. In both cases, it is easily seen (Figure 4) tha t link(^, K) and link(z/, L) 
are discs with a common boundary. Since link(^, TV) is obtained from link(z;, M) 
by removing link (y, K) and replacing it with link(y, L), link(z;, N) will be a 
2-sphere if we show tha t no simplex in L whose relative interior lies in relint 
link(z;,L) has its relative interior also in link(z;, M\K). 

In case v = a, the simplices in L whose relative interiors are in relint-link(a, 
L) are the triangles xby, xfy, xbc, ybc and the edges xy, xb, yb} be. The interior 
of the triangle xby is in link (a, K) and therefore not in link (a, M\K) ; the triangle 
xfy is not in M—and therefore its relative interior is not in link (a, M\K)— 
since the link link(:ry, M) of the edge xy in M consists of the circuit ab, be, ca 
which does not c o n t a i n / ; relint xbc is not in link (a, M\K) since otherwise the 
edge xb would belong to three different triangles, namely xbc, xby and xbf, 
which is impossible; similarly also relint ybc is not in link (a, M\K). Each of 
the edges xy, xb, yb is in link (a, K) and therefore its relative interior is not in 
link (a, M\K) ; finally the edge be is not in link (a, M) since otherwise M would 
contain the triangle abc, which is impossible by Definition 6, or also by a pre-
ceeding remark. 

In the case v = c, the simplices in L whose relative interiors lay in relint 
link (a, L) are the triangles xab, yah and the edge ab. If the relative interior of 
any of these would be in link(c, M\K), it would imply the existence of the 
triangle abc in M, which is impossible. 

T h u s N is a 3-manifold. In order to show tha t \N\ is homeomorphic to \M\ 
we use the Auxiliary Theorem as follows: 
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In Case 1, take D = E = |M|\int \K\ = |iV |\int |L|, .4 = |i£|, 5 = \L\ and 
A = 1 in the Auxiliary Theorem, and the piecewise linear homeomorphism 
H: \M\-> \N\ follows. 

In Cases 2, 3, define Kx to be the subcomplex of K composed of the 3-
simplices xyab, xybc, xyac and their faces, define K2 to be the subcomplex of 
K composed of the 3-simplices xdef, ydef and their faces, define Lx to be the 
subcomplex of L composed of xabc, yabc and their faces, and define L2 to be the 
subcomplex of L composed of xyde, xydf, xyef and their faces. Now use the 
Auxiliary Theorem in two stages: first take D = E = |M|\int \K\ = |iV|\int 
\L\, A = iKxl, B = \LX\ and h = 1 to obtain that M' = (|M|\int | ^ | ) U \KX\ 
is homeomorphic to iVr = (|iV|\int \L\) \J |Li[, and next take D = M', 
E = N', A = \K2\, B = |L2| and A = 1 to obtain that |Afj is homeomorphic 
to \N\. This completes the proof of Theorem 7. 

/ / 

K L 

FIGURE 3 

Note that, in the notation of Definition 6, the triangle def is not in N. 
Therefore the transformation r is applicable on N = rK(M) at its subcomplex 
L, and it is easily seen that TL(N) = TL(TK{M)) = M. In this sense we say 
that the transformation r is reversible. 

Note also that skebilf = skehiV, and therefore TV is a neighborly 3-manifold 
if and only if M is a neighborly 3-manifold. 

A standard device for looking for a subcomplex K in a 3-manifold i f such 
that r is applicable on M at X as is follows: Choose a triangle def 6 iVf. de/ 
belongs to two 3-simplices of M, xdef, ydef, say. If the vertices %, y are not 
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/ / 

c c 
link (a, if) link(a, L) 

link(c, if) link(c, L) 
FIGURE 4 

joined by an edge in M (which is not the case if M is neighborly) or they are 
joined by an edge of valence ^ 3, then we conclude that the triangle def does 
not yield any such subcomplex K. If, however, val xy = 3, we proceed as 
follows: Let the three 3-simplices containing xy be xyab, xybc, xyac. If the 
triangle abc is not in M, we have the desired subcomplex K (whose 3-simplices 
are xdef, ydef, xyab, xybc and xyac) ; otherwise, we conclude that the starting 
triangle def does not yield any such subcomplex K. 

The transformation r is not applicable at all on the 3-manifold 7V5i
9 of [5] 

since, in the above notation, for every starting triangle def G ^Vsi9 either the 
edge xy is not of valence 3, or the resulting triangle abc is in 7V51

9. 
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Now define on our 3677 iV10's a graph G as follows: The vertices of G are 
the 3677 7V10's, and two dist inct vertices M, N in G are joined by an edge if 
and only if TK(M) = N for some suitable subcomplex K of M. Since the choice 
of the part icular subcomplex K of M is immaterial , we write simply r(M) = 
N. Note t ha t by a preceeding remark r is reversible, and therefore G is an 
undirected linear graph. 

Since not all the 3677 7V10's are homeomorphic to each other, Theorem 7 
implies t ha t the graph G is not connected. Bu t the same Theorem 7 also im­
plies t h a t all the iV10's which belong to the same connected component of G 
are homeomorphic to each other. 

T h u s we computed the graph G, and we found t h a t G splits into precisely 
four connected components . One component contains all the 83 iV10's of Classes 
IV and VI I . A second component contains all the 54 iV10's of Class VI . A 
third component contains 3539 of the 3540 iV10,s of Classes I, I I , I I I and V, 
the exception is iV42510 (see Table 1) which belongs to Class II and forms the 
fourth component of the graph G. 

T h u s the proof of Theorem 1 is complete. 

Note t h a t A/r
357410, which is the unique 3-manifold of Class V, belongs to the 

same component of the graph G which contains also the iV10's of Class I. This 
proves once again t h a t iV357410 is indeed a 3-sphere. 

6. R e m a r k s . 1) Table 2 summarizes the number of occurrences of the 
2-spheres St (1 ^ i S 50) as links of vertices in our 3677 iV10's. Note t h a t S22, 
which is a bipyramid over a 7-gon (see Figure 1), is not a link of any vertex in 
any of the 3677 iV10's. This s t rengthens Conjecture 4.1 of [5]. Table 3 sum­
marizes the number of iV10's of Classes I, II (polytopes and doubted poly topes) 
directly obtainable from the polytopes Nt* (1 ^ i ^ 23) of [4]. Note t h a t the 
cyclic poly tope iVx

9 produces relatively few iV10's of Classes I, I I . 

2) In the final catalogue, the manifolds within each of the seven classes are 
ordered according to increasing de terminants of the edge-valence matrices. 
Altogether the 3677 iV10's have 3669 dist inct de terminants . There are six iV10's, 
four of which are polytopes, which share the de te rminan t 0, and three pairs of 
iV10's such t h a t the members of each pair share the same de terminant . Among 
those pairs is also the pair 7V32i710, iV32i810 (see Table 1) which share not only 
the same de te rminant bu t even the same edge-valence matr ix. T h u s Conjecture 
I of [4] and Conjecture 4.2 of [5] are false. Conjecture 2 of [4] is s t rengthened 
by the fact t h a t the cyclic 4-polytope C(10, 4) with 10 vertices is 7V4

10, which 
has the de te rminant 0. 

3) T h e 3677 iV10's have 3669 dist inct sets of links of the vertices (and thus 
the set of links of the vertices, as well as the de terminant , is a convenient 
device for discriminating between 3-manifolds), and the 432 7V10's of Classes I, 
II have 431 different sets of links (the two equal sets of links belong to two 
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TABLE 1 

Description of some neighborly 3-manifolds with 10 vertices. 

edge-valence 
N™ 3-Simplices Si iVt-

9 matrix 

4 1230 1560 3450 4789 1-41 *833444448 
1235 1670 3459 4890 2-41 8*84344443 
1240 1780 3567 5678 3-41 38*4834444 
1249 1890 3578 5689 4-41 344*444388 

det = 0 1256 2340 3589 6789 5-41 4384*83444 
1267 2349 4560 6-41 44348*8344 
1278 2356 4569 7-41 444438*834 
1289 2367 4670 8-41 4443438*84 
1350 2378 4679 9-41 44484438*3 

Class I 1490 2389 4780 0-41 834844443* 

425 1230 1670 2458 4670 1-43 19 *464343468 
1239 1679 2578 4790 2-43 19 4*83464643 
1260 1790 2678 4890 3-43 19 68*4643434 
1269 1890 2689 5789 4-43 19 434*834646 
1345 2345 3560 6789 5-43 19 3468*46434 

det = 7057326528 1348 2348 3567 6-43 19 46434*8346 
1350 2357 4560 7-43 19 343468*464 
1389 2360 4567 8-43 19 4646434*83 
1450 2367 4579 9-43 19 64343468*4 

Class II 1480 2389 4589 0-43 19 834646434* 

3574 1230 1570 2589 4560 1-11 0 *654345636 
1234 1680 2679 4589 2-11 0 6*36563454 
1248 1689 3478 4590 3-11 0 53*6436465 
1260 1780 3489 5670 4-11 0 466*533645 
1269 2340 3490 6780 5-11 0 3545*46366 

det = 11670765568 1289 2456 3579 6-11 0 46334*6556 
1347 2458 3590 7-11 0 536366*544 
1350 2460 3678 8-11 0 6446355*63 
1357 2567 3679 9-11 0 35646546*3 

Class V 1478 2579 3689 0-11 0 645566433* 

3611 1230 1680 2458 4567 1-48 0 •435555348 
1235 1689 2589 4589 2-48 0 4*85534553 
1240 1790 2679 5670 3-48 0 38*5543554 
1245 1890 2789 6780 4-48 0 555*843435 
1350 2340 3450 7890 5-48 0 5558*34345 

det = 11017073088 1457 2348 3459 6-48 0 53443*8555 
1460 2359 3489 7-48 0 543348*555 
1467 2367 3678 8-48 0 3554355*84 
1570 2369 3689 9-48 0 45534558*3 

Class VI 1679 2378 4560 0-48 0 834555543* 

3629 1230 1690 2458 4567 1-43 0 *434646348 
1235 1780 2489 4589 2-43 0 4*86443643 
1240 1789 2678 4670 3-43 0 38*4634464 
1245 1890 2689 6780 4-43 0 464*834346 
1350 2340 3450 6890 5-43 0 6468*43434 

det = 0 1457 2349 3459 6-43 0 44334*8466 
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TABLE 1—(Continued) 

edge-valence 

Ni10 3-Simplices Si iV;9 matrix 

1470 2358 3589 7-43 0 634438*644 

1560 2367 3679 8-43 0 3643446*84 
1567 2369 3789 9-43 0 44643648*3 

Class VII 1679 2378 4560 0-43 0 834646443* 

3631 1230 1690 2459 4567 1-43 0 *434646348 
1235 1780 2489 4589 2-43 0 4*86434463 
1240 1789 2679 4670 3-43 0 38*4643644 
1245 1890 2789 6780 4-43 0 464*834436 

1350 2340 3450 6890 5-43 0 6468*43344 

det = 4729088448 1457 2348 3458 6-43 0 43434*8466 
1470 2359 3589 7-43 0 643438*644 
1560 2367 3678 8-43 0 3464346*84 
1567 2369 3689 9-43 0 46434648*3 

Class VII 1679 2378 4560 0-43 0 834646443* 

3217 1260 1570 2457 4567 1-2 0 *335663556 
1269 1580 2470 4678 2-5 0 3*64454376 
1290 1670 2579 4689 3-5 0 36*6544734 
1345 1890 2689 5790 4-14 0 546*556533 

det = 9310329280 1348 2340 2790 5890 5-20 0 6455*36454 
1358 2345 3470 6-20 0 65453*6544 
1456 2359 3478 7-37 48 344666*337 
1469 2360 3589 8-39 34 5375453*73 
1489 2368 3670 9-39 39 57335437*5 

Class III 1567 2389 3678 0-47 37 664344735* 

3218 1250 1570 2467 4567 1-2 0 •335663556 
1259 1670 2470 4578 2-6 0 3*64454376 
1290 1680 2679 4589 3-6 0 36*6544734 
1346 1890 2689 6790 4-14 0 546*556533 
1348 2340 2790 6890 5-20 0 6455*36454* 

det = 9310329280 1368 2346 3470 6-20 0 65453*6544 
1456 2350 3478 7-37 37 344666*337 
1459 2359 3570 8-39 34 5375453*73 
1489 2368 3578 9-39 39 57335437*5 

Class III 1567 2389 3589 0-47 48 664344735* 

416 1250 1479 2469 3789 1-29 22 •335633775 
1259 1568 2490 4569 2-29 22 3*53763357 
1290 1580 2567 4670 3-29 22 35*3337657 
1380 1789 2569 4678 4-29 22 533*376375 
1389 2357 2580 5678 5-37 11 6733*64643 

det = 6674012800 1390 2358 3470 6-37 11 36376*6434 
1456 2360 3479 7-37 11 337646*643 
1459 2367 3490 8-37 11 7363646*34 
1468 2380 3578 9-46 20 75574343*4 

Class II 1478 2460 3670 0-46 20 577534344* 

The column Ni10 states the i for which iV;10 is described, det. is the determinant of the edge 
valence matrix. The column Si states the i for which Si is the link of the given vertex. The 
column Ni9 states that the case is simply obtainable at the given vertex from iV;9 with the 
stated i, where i = 0 means that the case is not directly obtainable at the given vertex. Ni9 

(1 S i ik 51) is that of [4] and [5]. * represents the number 14. 
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TABLE 2 

i All Classes Classes I, II Class I 

1 253 0 0 
2 351 0 0 
3 79 0 0 
4 425 0 0 
5 480 0 0 
6 799 0 0 
7 130 0 0 
8 245 0 0 
9 894 0 0 
10 244 0 0 
11 412 0 0 
12 266 0 0 
13 349 0 0 
14 567 0 0 
15 694 0 0 
16 203 0 0 
17 814 0 0 
18 1060 0 0 
19 336 0 0 
20 399 0 0 
21 239 0 0 
22 0 0 0 
23 65 0 0 
24 77 0 0 
25 84 0 0 
26 27 0 0 
27 340 54 21 
28 323 59 42 
29 565 68 25 
30 850 213 144 
31 1794 449 345 
32 772 138 106 
33 1545 275 196 
34 1382 151 99 
35 762 79 62 
36 617 43 38 
37 1171 138 105 
38 1501 202 150 
39 1263 140 84 
40 1277 100 55 
41 920 557 557 
42 2511 572 457 
43 1216 190 169 
44 1006 125 94 
45 2165 268 198 
46 862 95 65 
47 1422 179 158 
48 1041 75 53 
49 1380 108 72 
50 593 42 35 

The number of occurrences of each 2-sphere 
Si (1 S i ^ 50) as HnkO, iV10). 

https://doi.org/10.4153/CJM-1977-043-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-043-5


416 A. ALTSHULER 

TABLE 3 

i Classes I, II Class I 

1 23 22 
2 92 81 
3 111 100 
4 178 149 
5 164 143 
6 135 112 
7 32 7 
8 71 64 
9 72 60 
10 89 67 
11 129 81 
12 93 85 
13 127 105 
14 67 48 
15 98 75 
16 120 82 
17 31 7 
18 130 87 
19 26 7 
20 28 4 
21 113 96 
22 90 21 
23 114 78 

The number of iV10's of Classes I, 
II (polytopes and doubted poly-
topes) directly obtainable from the 
poly tope NS (1 ^ i ^ 23). 

polytopes, iV65
10 and iVi34

10). No two 7V10's have both the same de te rminan t 
and the same set of links of the vertices. 

Precisely 500 7V10's use only 5 7 s with 27 S i ^ 50 (i..e, stacked 2-spheres) 
as links of their vertices. Among those are of course all the 432 spheres of 
Classes I, I I , bu t also 56 spheres of Class I I I and 12 7V10's (among which are 
A^en10, iV362910, and Nz&n

10 of Table 1) of Classes VI , VI I . T h u s those 500 
7V10's split into 488 spheres and 12 non-spheres. I t is interesting to note t h a t 
each of the 488 spheres is simply obtainable a t each of its vertices, while the 12 
non-spheres are not simply obtainable a t all. T h u s problem 5 of [4] is answered 
in the negative (see also [5, page 135]). 

There are precisely six iV10,s ( they all appear in Table 1), one of which is 
the cyclic 4-polytope C(10, 4) (iV4

10 in our catalogue) , which share with 
C(10, 4) the proper ty t ha t all of their vertices have the same link. One of these 
six iV10?s is the sphere iV^s10 which has already shown a peculiar behaviour with 
respect to the t ransformation r of Section 5. Now, N^b10 is a doubted polytope. 
If it is a polytope, then it provides an affirmative answer to Problem 4 of [4]. 
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The set of links of the vertices of a 3-manifold M reflects some local proper­
ties of M. In general, there is no reason to expect t ha t those local properties 
will characterize Mf or even the homotopy type of \M\. However, if M is 
neighborly, then for every vertex x in M the link of x in M involves all the 
vertices of M. Thus in this case there is perhaps some reason to expect t ha t 
the set of links of the vertices will characterize the 3-manifold. Indeed, 
Shemmer proved in [19] t ha t if K is a neighborly polytopal 3-sphere such t h a t 
for every vertex x G K, link(x, K) is isomorphic to link(3/, C), where C is the 
boundary complex of a cyclic 4-polytope and y is a vertex in C, then K is iso­
morphic to C (link(3/, C) is the analogue of 54i of Figure 1). Therefore, it is 
interesting to note tha t among the above six iV10's are also iV362910 and iV363i10, 
both of Class VII , and they both share with 7V42510 the property t ha t the link 
of each of their vertices is .S43. 

4) The programming in the present work was done by Mr. Bar-Yuda, who 
was not involved in [5], and therefore the present programming was to some 
extent different from the programming used in [5]. Moreover, because of the 
comparat ively small size of the work in [5] we could use there a straightforward 
method for checking isomorphisms between manifolds in order to avoid dupli­
cates, while here, because of the much larger number of cases, we had to 
develop and use much more sophisticated techniques for checking isomor­
phisms. Therefore, both for checking our program and checking the results of 
[5], we have let the present program produce once again all the neighborly 
3-manifolds with 9 vertices, and we obtained precisely the same results. In 
this connection it is impor tant to note tha t the number of hours it took for 
the present program to yield the 3677 iV10's was greater than the number of 
seconds it took for the same program to yield the 51 neighborly 3-manifolds 
with 9 vertices. Due to this t ime consuming factor, it appears t ha t our method 
cannot be further used to find all the neighborly 3-manifolds with n vertices 
for n > 10, or even to find all the non-neighborly 3-manifolds with 10 vertices 
(see [3, Section 4, Remark 1] and the next remark) . 

5) The transformation r of Section 5 can also be used for constructing 
3-manifolds. If i f is a 3-manifold, one can apply r on M in all the possible 
ways, i.e., a t all the permissible subcomplexes K of M, thus obtaining a 
"second generat ion" of 3-manifolds T{M) each of them being of the same 
topological type as M and sharing with M the same 1-skeleton. Next r can\be 
applied on each manifold of the second generation and thus a third generation 
is obtained, etc. Of course, each new manifold obtained this way should be 
compared to all the previous ones for isomorphism, in order to avoid duplicates. 
The process is finite, and yields the entire connected component which contains 
M\ in the suitable r-graph defined on all the 3-manifolds in analogy to the 
graph G of Section 5. 

I t follows from Section 5 tha t the transformation r, applied in this manner 
on iVi10, yields all the neighborly 3-spheres with 10 vertices except for 7V42510, 
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while applying r in this manner on Ar
42510 yields no new manifolds a t all. We 

applied this method and applied r to a case of Class IV and also to a case of 
Class VI, and obtained the expected results. Thus , in a sense, we had an 
independent check of our catalogue. We applied r in this manner on AV of [5], 
and we obtained all the 50 neighborly 3-spheres with 9 vertices. Moreover, we 
applied r on the boundary complex of C(4, 11), the cyclic 4-polytope with 11 
vertices, which is of course a neighborly 3-sphere with 11 vertices. In order to 
save the t ime needed for checking isomorphisms in order to save duplicates, 
we calculated the de te rminant of the edge-valence matr ix of each 3-sphere 
obtained, and considered two spheres to be " isomorphic" if they share the 
same determinant . During the process, we kept t rack of the rat io between the 
3-spheres on which r had already been applied and the total amoun t of 3-
spheres constructed. This rat io was approximately 1 : 7 from the beginning, 
and did not change significantly as we reached an amoun t of 25,000 3-spheres, 
where we stopped the process. T h u s we have good reason to beleive t h a t the 
number of neighborly 3-spheres—not speaking of neighborly 3-manifolds— 
with 11 vertices is of a t least six digits. This shows once again t ha t one has to 
give up any hope of finding all the neighborly 3-manifolds with n vertices, 
where n is greater than 10, in the present generation of computers . This remark 
is further developed in [8]. 

6) While finding the 50 2-spheres with 9 vertices (the 50 5Ys), we let the 
program run over the 2-spheres with 10 vertices as well. I t yielded al together 
233 distinct 2-spheres with 10 vertices (which agrees with [12] and with [20, 
p. 86]), and also yielded t ha t precisely 93 of these 233 2-spheres are stacked 
( thus the number missing in Table 1 of [11] is 93). 

7) I t seems worthwhile to note t h a t each TV10 of Class IV, i.e., each JV10 

simply obtainable from 7V5i
9, is simply obtainable in a t most two of its vertices. 

I t is also interesting to note t h a t the phenomenon, described in Section 4, of 
a neighborly 3-manifold M with a vertex x such t h a t l ink(x, M) is s tacked and 
nevertheless M is not simply obtainable a t x, did not occur in any of our 3540 
spheres. However, it did occur in every TV10 which is not a sphere, with the 
exception of the very last case N^71

10, which has no vertex with a s tacked link. 

8) Let N be a neighborly 3-manifold with v vertices. I t is easily seen t h a t 
every edge in N belongs to a t most v — 2 3-simplices in N. Following [19], 
we call an edge which belongs to precisely v — 2 3-simplices (i.e., an edge of 
valence v — 2) a universal edge in N. The importance of this concept s tems 
from the fact, used independently both in [4] and in [19], t h a t if K is a neigh­
borly 4-polytope with v vertices and C is a subcomplex of bd K composed of 
all bu t one of the facets of K which contain a certain universal edge of K and 
their faces, then there exists a point x which is beyond the facets of K which 
belong to C and beneath the other facets of K, and therefore conv (K VJ {x}) 
is a neighborly 4-polytope with v + 1 vertices. 
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Since all the known neighborly 4-polytopes have universal edges, a natural 
question is whether or not every neighborly 4-polytope has a universal edge. 
Among our 7V10's of Classes I and II there is precisely one case without a 
universal edge. I t is NUQ10, which is in Class II (see Table 1). Thus it is of 
part icular interest to find out whether or not iV4i6

10 is a polytope. 
Another concept which is related to the concept of universal edge is the 

universal vertex, also defined and studied in [19]. Let S be a stacked 2-sphere 
with v vertices. A vertex p in S is a universal vertex in 5 if it is of valence v — 1 
in S, i.e., it is joined by edges to all the other vertices of S. The relation between 
the last two concepts is given by the fact tha t if K is a neighborly polytopal 
3-sphere and pa is a universal edge in K, then p is a universal vertex in the 
stacked 2-sphere link(g, K), and vice versa. Shemmer also proves tha t every 
stacked 2-sphere which contains a universal vertex is isomorphic to the link 
of some vertex in some neighborly polytopal 3-sphere (compare [4, Problem 
1]), and uses this result to obtain a lower bound for the number of neighborly 
4-polytopes with v ^ 5 vertices. 

9) In [8] it will be shown tha t each of the manifolds of Class VI is essentially 
a tr iangulation of S2 X 5 1 . 

10) We also calculated the automorphism groups of the 3677 7V10's (pro­
grammed by M. Aharoni under the supervision of M. A. Pedes) , and the 
results are as follows. In 3400 cases (among which are Nz2n

10 and iV32i8
10 of 

Table 1) the group consists of the identi ty only. In 255 cases it consists of two 
elements. In 14 cases it consists of four elements: in seven cases (among which 
is iV4i6

10 of Table 1) it is a cyclic group and in the other seven cases it is 
Klein's group. In one case it is a 5-element (cyclic) group. In one case it is 
an 8-element (dihedral) group. In two cases (N357410 and Nun10 of Table 1) 
it is a 10-element (cyclic) group. In the remaining four cases (AY0, AYs10, 
A7'362910 and A ^ i 1 0 of Table 1) it is a group with 20 elements. The groups of 
AV°, Ar

362910 and iV363i1{) are dihedral. The group of N42510 (which, in view of 
Remarks 3 and 5 in this section, is a most interesting case) is generated by the 
permuta t ions x = (13579) (24680), y = (1296) (3870) (45) with the relations 
x5 = y4 = e ( = ident i ty) , yx = xzy. 

11) We conclude with an open question: Can every piece wise linear topologi­
cal 3-manifold be so tr iangulated to yield a neighborly combinatorial 3-mani-
fold? 
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