A NOTE ON DOUBLE TRANSFORMATIONS OF CERTAIN HYPERGEOMETRIC FUNCTIONS

by R. P. SINGH

(Received 2nd April 1964; revised MS. received 20th July 1964)

1. Introduction

Rainville (6) has discussed the following Euler transformation of the hypergeometric function ${ }_{p} F_{q}$:

$$
\begin{align*}
& \int_{0}^{1} x^{z-1}(1-x)^{\beta-1}{ }_{p} F_{q}\left[\begin{array}{l}
\left.a_{1}, a_{2}, \ldots, a_{p} ; c x^{k}(1-x)^{s}\right] d x \\
b_{1}, b_{2}, \ldots, b_{q}
\end{array}\right. \\
& =B(\alpha, \beta)_{p+k+s} F_{q+k+s}\left[\begin{array}{l}
\left.a_{1}, a_{2}, \ldots, a_{p}, \Delta(k, \alpha), \Delta(s, \beta) ; c \delta\right] \\
b_{1}, b_{2}, \ldots, b_{q}, \Delta(k+s, \alpha+\beta)
\end{array}\right] \tag{1.1}
\end{align*}
$$

where $\delta=\frac{k^{k} s}{(k+s)^{k+s}}, \boldsymbol{R}(\alpha)>0, R(\beta)>0, k$ and s are positive integers and $\Delta(k, \alpha)$ stands for the set of k parameters $\frac{\alpha}{k}, \frac{\alpha+1}{k}, \ldots, \frac{\alpha+k-1}{k}$. In a recent paper Abdul-Halim and Al-Salam (1) have given a double transformation of the hypergeometric function ${ }_{p} F_{q}$ as follows:

$$
\begin{align*}
& {[B(\alpha, \beta) B(v+1, \alpha+\beta+\mu)]^{-1} \int_{0}^{1} \int_{0}^{1}(u v)^{v}(1-u v)^{\mu}(1-u)^{\alpha-1} v^{\alpha}(1-v)^{\beta-1}} \\
& \quad{ }_{p} F_{q}\left[\begin{array}{l}
a_{1}, a_{2}, \ldots, a_{p} ; t v^{s}(1-u)^{s}(1-v)^{k} \\
b_{1}, b_{2}, \ldots, b_{q}
\end{array}\right] d u d v \\
& ={ }_{p+2 k+2 s} F_{q+2 k+2 s}\left[\begin{array}{l}
a_{1}, a_{2}, \ldots, a_{p}, \Delta(s, \alpha), \Delta(k, \beta), \Delta(s+k, \alpha+\beta+\mu) \\
b_{1}, b_{2}, \ldots, b_{q}, \Delta(s+k, \alpha+\beta), \Delta(s+k, \alpha+\beta+\mu+v+1)^{\prime} ; t
\end{array}\right] \tag{1.2}
\end{align*}
$$

where $\boldsymbol{R}(v)>-1, \boldsymbol{R}(\alpha)>0, \boldsymbol{R}(\beta)>0$ and $\boldsymbol{R}(\alpha+\beta+\mu)>0$.
Both the above transformations are effective tools for augmenting parameters in the ${ }_{p} F_{q}$ function. We present here another double transformation of hypergeometric functions which will augment parameters in the ${ }_{p} F_{q}$ function.

2. Some general formulae

We have the integral (3)

$$
\int_{0}^{\infty} \int_{0}^{\infty} \phi(x+y) x^{\alpha-1} y^{\beta-1} d x d y=B(\alpha, \beta) \int_{0}^{\infty} \phi(z) z^{\alpha+\beta-1} d z
$$

where $R(\alpha)>0, R(\beta)>0$.

Using the method of term by term integration, we can show that, if $\boldsymbol{R}(\alpha)>0, \boldsymbol{R}(\beta)>0$, and if k and s are non-negative integers, then inside the region of convergence of the resulting series

$$
\begin{align*}
& \int_{0}^{\infty} \int_{0}^{\infty} \phi(x+y) x^{\alpha-1} y^{\beta-1}{ }_{p} F_{q}\left[\begin{array}{l}
\left.a_{1}, a_{2}, \ldots, a_{p} ; t x^{s} y^{k}\right] d x d y \\
b_{1}, b_{2}, \ldots, b_{q}
\end{array}\right] \\
& \quad=B(\alpha, \beta) \int_{0}^{\infty} \phi(z) z^{\alpha+\beta-1} \\
& \quad \cdot p^{+s+k} F_{q+s+k}\left[\begin{array}{l}
\left.a_{1}, a_{2}, \ldots, a_{p}, \Delta(s, \alpha), \Delta(k, \beta) ; t \delta z^{s+k}\right] d z \\
b_{1}, b_{2}, \ldots, b_{q}, \Delta(s+k, \alpha+\beta)
\end{array}\right. \tag{2.1}
\end{align*}
$$

where $\delta=\frac{k^{k s}}{(k+s)^{k+s}}$. In particular, if we let $\phi(z)=e^{-z} z^{\mu}$, we can evaluate the above integral

$$
\begin{align*}
& \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x+y)}(x+y)^{\mu} x^{\alpha-1} y^{\beta-1}{ }_{p} F_{q}\left[\begin{array}{l}
a_{1}, a_{2}, \ldots, a_{p} ; t x^{s} y^{k} \\
b_{1}, b_{2}, \ldots, b_{q}
\end{array}\right] d x d y \\
& \quad=B(\alpha, \beta) \Gamma(\alpha+\beta+\mu) \\
& \quad \cdot p+2 k+2 s F_{q+k+s}\left[\begin{array}{l}
\left.a_{1}, \ldots, a_{p}, \Delta(s, \alpha), \Delta(k, \beta), \Delta(s+k, \alpha+\beta+\mu) ; t s^{s} k^{k}\right] \\
b_{1}, \ldots, b_{q}, \Delta(s+k, \alpha+\beta)
\end{array}\right. \tag{2.2}
\end{align*}
$$

where $\boldsymbol{R}(\alpha+\beta+\mu)>0$.
For brevity we shall use the operator notation

$$
\begin{equation*}
\Omega_{(\alpha, \beta, \mu)}\{ \}=[B(\alpha, \beta) \Gamma(\alpha+\beta+\mu)]^{-1} \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x+y)}(x+y)^{\mu} x^{\alpha-1} y^{\beta-1}\{ \} d x d y \tag{2.3}
\end{equation*}
$$

in which $\boldsymbol{R}(\alpha)>0, \boldsymbol{R}(\beta)>0$ and $\boldsymbol{R}(\alpha+\beta+\mu)>0$.
We mention here some results which are immediate consequences of the relation (2.3).

$$
\begin{align*}
& \Omega_{(\alpha, \beta, \mu)}\{1\}=1, \tag{2.4}\\
& \Omega_{(\alpha, \beta, \mu)}\left\{x^{\lambda} y^{\delta}(x+y)^{\gamma}\right\}=\frac{B(\alpha+\lambda, \beta+\delta) \Gamma(\alpha+\beta+\mu+\lambda+\delta+\gamma)}{B(\alpha, \beta) \Gamma(\alpha+\beta+\mu)}, \tag{2.5}\\
& \Omega_{(a, \beta, \mu)}\left\{e^{x t}\right\}={ }_{2} F_{1}[\alpha, \alpha+\beta+\mu ; \alpha+\beta ; t], \tag{2.6}\\
& \Omega_{(\alpha, \beta, 0)}\left\{(1-x t)^{n}\right\}={ }_{2} F_{0}[-n, \alpha ;-; t], \tag{2.7}\\
& \Omega_{(\alpha, \beta, \mu)}\left\{{ }_{1} F_{1}[a ; b ; t x]\right\}={ }_{3} F_{2}\left[\begin{array}{l}
a, \alpha, \alpha+\beta+\mu ; t] \\
b, \alpha+\beta
\end{array}\right] \tag{2.8}
\end{align*}
$$

3. Some classical polynomials

From (2.8) it is obvious that

$$
\Omega_{(a, 1-a, n)}\left\{{ }_{1} F_{1}[-n ; b ; t x]\right\}={ }_{3} F_{2}\left[\begin{array}{l}
-n, \alpha, 1+n ; t \\
b, 1
\end{array}\right],
$$

where $0<\alpha<1$. Therefore we have

$$
\begin{equation*}
\Omega_{(a, 1-\alpha, n)}\left\{L_{n}^{b-1}(t x)\right\}=\frac{(b)_{n}}{n!} H_{n}(\alpha, b, t), \tag{3.1}
\end{equation*}
$$

where $L_{n}^{\alpha}(x)$ and $H_{n}(\alpha, b, t)$ are Laguerre and Rice's polynomials respectively.
Taking $b=\alpha$ and replacing t by ($1-t$)/2 in (3.1), we have

$$
\begin{equation*}
\Omega_{(\alpha, 1-\alpha, n)}\left\{L_{n}^{\alpha-1}\left(\frac{1-t}{2} \cdot x\right)\right\}=\frac{(\alpha)_{n}}{n!} P_{n}(t) \tag{3.2}
\end{equation*}
$$

where $P_{n}(t)$ are Legendre's polynomials.
Again taking $a=-n, b=1+\alpha, \mu=0$, and replacing α by $(1+\alpha+\beta+n)$ in (2.8), we obtain

$$
\begin{equation*}
\Omega_{(1+a+\beta+n, \delta, 0)}\left\{L_{n}^{\alpha}\left(\frac{1-t}{2} \cdot x\right)\right\}=P_{n}^{(\alpha, \beta)}(t) \tag{3.3}
\end{equation*}
$$

where $P_{n}^{(\alpha, \beta)}(t)$ are Jacobi's polynomials.
We also obtain from (2.8)

$$
\begin{equation*}
\Omega_{(1+\alpha-\beta, \beta, n+\beta)}\left\{L_{n}^{\alpha-\beta}\left(\frac{1-t}{2} \cdot x\right)\right\}=\frac{(1+\alpha-\beta)_{n}}{(1+\alpha)_{n}} P_{n}^{(\alpha, \beta)}(t) \tag{3.4}
\end{equation*}
$$

For $\alpha=\beta$, (3.3) and (3.4) yield results corresponding to ultraspherical polynomials.

Again from (2.8), we have

$$
\Omega_{(\alpha, 1-\alpha-\mu, v+\mu)}\left\{{ }_{1} F_{1}\left[-v ; \alpha ; \frac{1-t}{2} \cdot x\right]\right\}={ }_{2} F_{1}\left[-v, 1+v ; 1-\mu ; \frac{1-t}{2}\right]
$$

where $R(1-\alpha-\mu)>0$. Since (4 p .143) associated Legendre's functions

$$
P_{v}^{\mu}(x)=\frac{1}{\Gamma(1-\mu)}\left(\frac{1+x}{1-x}\right)^{\mu / 2}{ }_{2} F_{1}\left[-v, 1+v ; 1-\mu ; \frac{1-x}{2}\right],
$$

and Laguerre functions (4, p. 268)

$$
L_{v}^{z}(x)=\frac{1}{\Gamma(1+v)} \phi(-v ; 1+\alpha ; x)
$$

therefore, we have

$$
\begin{equation*}
\Omega_{(\alpha, 1-\alpha-\mu, v+\mu)}\left\{L_{v}^{\alpha-1}\left(\frac{1-t}{2} \cdot x\right)\right\}=\frac{\Gamma(1-\mu)}{\Gamma(1+v)}\left(\frac{1-t}{1+t}\right)^{\mu / 2} P_{v}^{\mu}(t) \tag{3.5}
\end{equation*}
$$

Again since (4 p. 148)

$$
P_{v}^{m}(x)=\frac{(-2)^{-m} \Gamma(v+m+1)}{m!\Gamma(v-m+1)}\left(1-x^{2}\right)^{m / 2}{ }_{2} F_{1}\left[\begin{array}{l}
1+m+v, m-v \\
1+m
\end{array} ; \frac{1-x}{2}\right],
$$

therefore, using (2.6), we obtain

$$
\begin{equation*}
\Omega_{(m-v, 1+v, v)}\left\{e^{x(1-t) / 2}\right\}=\frac{(-2)^{m} \Gamma(v-m+1) m!}{\Gamma(v+m+1)}\left(1-t^{2}\right)^{-m / 2} P_{v}^{m}(t), \tag{3.6}
\end{equation*}
$$

where $0<\boldsymbol{R}(m-v)<1$.

Further, we have Hermite polynomials

$$
H_{n}(x)=(2 x)^{n}{ }_{2} F_{0}\left[-n / 2,-n / 2+\frac{1}{2} ;-;-\frac{1}{x^{2}}\right]
$$

and (4 p. 128 (24))

$$
P_{v}^{\mu}(z)=\frac{2^{\mu} z^{(v+\mu)}\left(z^{2}-1\right)^{-\mu / 2}}{\Gamma(1-\mu)}{ }_{2} F_{1}\left[\begin{array}{l}
\left.-\frac{v}{2}-\frac{\mu}{2}, \frac{1}{2}-\frac{\mu}{2}-\frac{v}{2} ; 1-\frac{1}{z^{2}}\right], ~ \text {, } 1-\mu
\end{array}\right.
$$

where $R z>0$. Taking $\mu=0$ in the latter and replacing $\left(1-1 / z^{2}\right)$ by $-x / t^{2}$, we have

$$
P_{n}\left(\frac{t}{\sqrt{x+t^{2}}}\right)=\left(\frac{t}{\sqrt{x+t^{2}}}\right)^{n}{ }_{2} F_{1}\left[-\frac{n}{2}, \frac{1}{2}-\frac{n}{2} ; 1 ;-\frac{x}{t^{2}}\right]
$$

Now we can easily obtain the relation

$$
\begin{equation*}
\Omega_{(1, \beta, 0)}\left\{\left(x+t^{2}\right)^{n / 2} P_{n}\left(\frac{t}{\sqrt{x+t^{2}}}\right)\right\}=\frac{H_{n}(t)}{2^{n}} \tag{3.7}
\end{equation*}
$$

Bateman polynomials (4 p. 193) are defined by

$$
z^{-\mu} J_{n}^{\mu, v}(z)=\frac{\Gamma\left(1+n+v+\frac{\mu}{2}\right)}{n!\Gamma(\mu+1) \Gamma\left(1+v+\frac{\mu}{2}\right)}{ }_{1} F_{2}\left[-n ; \mu+1,1+v+\frac{\mu}{2} ; z^{2}\right]
$$

More particularly

$$
J_{n}^{0, \alpha}(z)=\frac{(1+\alpha)_{n}}{n!}{ }_{1} F_{2}\left[-n ; 1,1+\alpha ; z^{2}\right] .
$$

Since we have

$$
\Omega_{(1, \alpha, 0)}\left\{{ }_{1} F_{2}[-n ; 1,1+\alpha ; x t]\right\}={ }_{1} F_{1}[-n ; 1+\alpha ; t],
$$

therefore from the above relation, we obtain

$$
\begin{equation*}
\Omega_{(1, a, 0)}\left\{J_{n}^{0, \alpha}(\sqrt{x t})\right\}=L_{n}^{\alpha}(t) \tag{3.8}
\end{equation*}
$$

The generalised Bessel polynomials (6 p .293) are defined as follows:

$$
Y_{n}(a, b, x)={ }_{2} F_{0}[-n, a-1+n ;-;-x / b]
$$

Using (2.7), we easily obtain

$$
\begin{equation*}
\Omega_{(a-1+n, \beta, 0)}\left\{\left(1+\frac{x t}{b}\right)^{n}\right\}=Y_{n}(a, b, t) \tag{3.9}
\end{equation*}
$$

4. Generating functions and expansions

The operator $\Omega_{(\alpha, \beta, \mu)}\{ \}$ is sometimes useful in deriving the generating functions and expansions of one function from the known generating function and expansion of another function. We mention here a few such cases.

In view of the relation (5, p. 267 (22)), the generating function for $J_{n}^{0, a}(\sqrt{x t})$ may be written as

$$
\begin{equation*}
(1-u)^{-1-\alpha_{0}} F_{1}\left[-; 1 ;-\frac{x t u}{1-u}\right]=\sum_{n=0}^{\infty} \cdot J_{n}^{0, a}(\sqrt{x t}) u^{n} . \tag{4.1}
\end{equation*}
$$

Operating on both sides by $\Omega_{(1, \alpha, 0)}\{ \}$ and using (3.8), we obtain the generating function for Laguerre polynomials

$$
\begin{equation*}
(1-u)^{-1-\alpha} e^{-\frac{t u}{1-u}}=\sum_{n=0}^{\infty} L_{n}^{\alpha}(t) u^{n} . \tag{4.2}
\end{equation*}
$$

Again replacing β by $\beta-n$ in the relation (3.3), we have

$$
\Omega_{(1+a+\beta, \delta, 0)}\left\{L_{n}^{\alpha}\left(\frac{1-t}{2} \cdot x\right)\right\}=P_{n}^{(a, \beta-n)}(t)
$$

which may also be written as

$$
\Omega_{(1+a+\beta, \delta, 0)}\left\{\sum_{n=0}^{\infty} L_{n}^{\alpha}\left(\frac{1-t}{2}, x\right) u^{n}\right\}=\sum_{n=0}^{\infty} P_{n}^{(\alpha, \beta-n)}(t) u^{n^{\prime}}
$$

Using (4.2) and finally (2.6), we obtain the generating function for Jacobi polynomials

$$
\begin{equation*}
2^{1+\alpha+\beta}(1-u)^{\beta}(2-u-u t)^{-(1+\alpha+\beta)}=\sum_{n=0}^{\infty} P_{n}^{(\alpha, \beta-n)}(t) u^{n} \tag{4.3}
\end{equation*}
$$

Starting with (3.3), we may also obtain

$$
\begin{equation*}
2^{1+\alpha+\beta}(1+u)^{\alpha}(2+u-u t)^{-(1+\alpha+\beta)}=\sum_{n=0}^{\infty} P_{n}^{(\alpha-n, \beta)}(t) u^{n} . \tag{4.4}
\end{equation*}
$$

Again, (3.9) may be adjusted as follows:

$$
\Omega_{(a-1, \beta, 0)}\left\{\sum_{n=0}^{\infty} \frac{u^{n}}{n!}\left(1+\frac{x t}{b}\right)^{n}\right\}=\sum_{n=0}^{\infty} Y_{n}(a-n, b, t) \frac{u^{n}}{n!} .
$$

Thus, after performing the operation, we obtain the generating function for Bessel polynomials

$$
\begin{equation*}
e^{u}\left(1-\frac{u t}{b}\right)^{1-a}=\sum_{n=0}^{\infty} Y_{n}(a-n, b, t) \frac{u^{n}}{n!} . \tag{4.5}
\end{equation*}
$$

In view of the relation (6, p. 207 (2)), we have

$$
\begin{equation*}
\left(\frac{1-t}{2} \cdot x\right)^{n}=\sum_{k=0}^{n} \frac{(-1)^{k} n!(1+\alpha)_{n}}{(n-k)!(1+\alpha)_{k}} L_{k}^{\alpha}\left(\frac{1-t}{2} \cdot x\right) \tag{4.6}
\end{equation*}
$$

Operating on both sides of (4.6) by $\Omega_{(1+\alpha+\beta, \delta, 0)}\{ \}$, and using (3.3), we obtain the expansion for Jacobi polynomials

$$
\begin{equation*}
\left(\frac{1-t}{2}\right)^{n}=\sum_{k=0}^{n} \frac{(-1)^{k} n!(1+\alpha)_{n}}{(n-k)!(1+\alpha)_{k}} P_{k}^{(\alpha, \beta-k)}(t) \tag{4.7}
\end{equation*}
$$

E.M.S.-Q

5. Some formulae involving Appell's functions

Appell's functions of two variables (4, p. 224) are defined as follows:

$$
\begin{gather*}
F_{1}\left(a ; b, b^{\prime} ; c ; x, y\right)=\sum_{m, n=0}^{\infty} \frac{(a)_{m+n}(b)_{m}\left(b^{\prime}\right)_{n} x^{m} y^{n}}{(c)_{m+n} m!n!}, \tag{5.1}\\
F_{2}\left(a ; b, b^{\prime} ; c, c^{\prime} ; x, y\right)=\sum_{m, n=0}^{\infty} \frac{(a)_{m+n}(b)_{m}\left(b^{\prime}\right)_{n} x^{m} y^{n}}{(c)_{m}\left(c^{\prime}\right)_{n} m!n!}, \tag{5.2}\\
F_{3}\left(a, a^{\prime} ; b, b^{\prime} ; c ; x, y\right)=\sum_{m, n=0}^{\infty} \frac{(a)_{m}\left(a^{\prime}\right)_{n}(b)_{m}\left(b^{\prime}\right)_{n} x^{m} y^{n}}{(c)_{m+n} m!n!}, \tag{5.3}\\
F_{4}\left(a ; b ; c, c^{\prime} ; x, y\right)=\sum_{m, n=0}^{\infty} \frac{(a)_{m+n}(b)_{m+n} x^{m} y^{n}}{(c)_{m}\left(c^{\prime}\right)_{n} m!n!} . \tag{5.4}
\end{gather*}
$$

Now it follows from the identity

$$
e^{(x u+y v)}=\sum_{m, n=0}^{\infty} \frac{(x u)^{m}(y v)^{n}}{m!n!}
$$

and the formula (2.5) that

$$
\begin{equation*}
\Omega_{(\alpha, \beta, \mu)}\left\{e^{x u+y v}\right\}=F_{1}(\alpha+\beta+\mu ; \alpha, \beta ; \alpha+\beta ; u, v) . \tag{5.5}
\end{equation*}
$$

The confluent form of (5.1) is

$$
\begin{equation*}
\phi_{1}(a, b, c, x, y)=\sum_{m, n=0}^{\infty} \frac{(a)_{m+n}(b)_{n} x^{m} y^{n}}{(c)_{m+n} m!n!} \tag{5.6}
\end{equation*}
$$

This form is readily obtained from the identity

$$
\Gamma \alpha I_{(a-1)}(2 \sqrt{u x})(u x)^{\frac{1-\alpha}{2}} e^{v y}=\sum_{m, n=0}^{\infty} \frac{(u x)^{m}(v y)^{n}}{(\alpha)_{m} m!n!}
$$

where $I_{v}(z)$ is the modified Bessel function, and the formula (2.5), giving

$$
\begin{equation*}
\Omega_{(\alpha, \beta, \mu)}\left\{\Gamma \alpha(x u)^{\frac{1-\alpha}{2}} I_{\alpha-1}(2 \sqrt{x u}) e^{y v}\right\}=\phi_{1}(\alpha+\beta+\mu, \beta, \alpha+\beta, u, v) . \tag{5.7}
\end{equation*}
$$

We also obtain Appell's functions from the confluent series (4, p. 225) as follows:

$$
\begin{align*}
& \Omega_{\left(\beta, \beta^{\prime}, 0\right)}\left\{\psi_{2}\left(\alpha, \gamma, \gamma^{\prime}, u x, v y\right)\right\}=F_{2}\left[\alpha ; \beta, \beta^{\prime} ; \gamma, \gamma^{\prime} ; u, v\right], \tag{5.8}\\
& \Omega_{\left(\alpha, \alpha^{\prime}, 0\right)}\left\{\phi_{2}\left(\beta, \beta^{\prime}, \gamma, u x, v y\right)\right\}=F_{3}\left[\alpha, \alpha^{\prime} ; \beta, \beta^{\prime} ; \gamma ; u, v\right] . \tag{5.9}
\end{align*}
$$

Further we have (4, p. 264) that

$$
e^{x / 2} x^{-\frac{1}{2}-\mu} M_{k, \mu}(x)=\phi(a ; c ; x) ; k=c / 2-a, \mu=c / 2-\frac{1}{2},
$$

where $M_{k, \mu}(x)$ is Whittaker's M-function. Now consider the identity

$$
\begin{aligned}
& e^{(u x+v y) / 2}(u x)^{-c / 2}(v y)^{-(1+a+b-c) / 2} M_{c / 2-a, c / 2-\frac{1}{2}}(u x) \\
& . M_{(1+b-c-a) / 2,(a+b-c) / 2}(v y)=\phi(a ; c ; x u) \phi(a ; 1+a+b-c ; y v) .
\end{aligned}
$$

Operating on both sides by $\Omega_{(b, b, 0)}\{ \}$ and observing that (6, p. 269) $F_{4}[a ; b ; c,(1+a+b-c) ; x(1-y), y(1-x)]$

$$
={ }_{2} F_{1}\left[\begin{array}{l}
a, b \\
c
\end{array} ; x\right]_{2} F_{1}\left[\begin{array}{l}
a, b \\
1+a+b-c
\end{array} ; y\right],
$$

we immediately obtain

$$
\begin{align*}
& \Omega_{(b, b, 0)}\left\{e^{(u x+v y) / 2}(u x)^{-c / 2}(v y)^{-(1+a+b-c) / 2}\right. \\
& \left.\quad . M_{c / 2-a, c / 2-\frac{1}{2}}(u x) M_{(1+b+c-a) / 2,(a+b-c) / 2}(v y)\right\} \\
& =F_{4}[a ; b ; c,(1+a+b-c) ; u(1-v), v(1-u)] . \tag{5.10}
\end{align*}
$$

6. An identity

The operator $\Omega_{(\alpha, \beta, \mu)}\{ \}$ may also be used for establishing certain identities. We illustrate the method by considering the expansion for Laguerre polynomials. We have the relation (2, p. 142) that

$$
L_{n}^{\lambda}(x+y)=\sum_{\gamma=0}^{n} \frac{(-1)^{\gamma} y^{\gamma}}{\gamma!} L_{n-\gamma}^{\lambda+\gamma}(x),
$$

which may also be written as

$$
\frac{(1+\lambda)_{n}}{n!} \sum_{\gamma=0}^{n} \frac{(-n)_{\gamma}(x+\gamma)^{\gamma}}{\gamma!(1+\lambda)_{\gamma}}=\sum_{\gamma=0}^{n} \sum_{k=0}^{n-\gamma} \frac{(-1)^{\gamma}(1+\lambda+\gamma)_{n-\gamma}(-n+\gamma)_{k} x^{k} y^{\gamma}}{\gamma!k!(n-\gamma)!(1+\lambda+\gamma)_{k}} .
$$

Operating on both sides by $\Omega_{(\alpha, \beta, \mu)}\{ \}$, we obtain

$$
\begin{align*}
& \frac{(1+\lambda-\alpha-\beta-\mu)_{n}}{n!}=\sum_{\gamma=0}^{n} \frac{(-1)^{\gamma}(1+\lambda+\gamma)_{n-\gamma}(\beta)_{\gamma}(\alpha+\beta+\mu)_{\gamma}}{\gamma!(n-\gamma)!(\alpha+\beta)_{\gamma}} \\
& \cdot{ }_{3} F_{2}\left[\begin{array}{l}
-n+\gamma, \alpha, \alpha+\beta+\mu+\gamma ; 1 \\
1+\lambda+\gamma, \alpha+\beta+\gamma
\end{array}\right] . \tag{6.1}
\end{align*}
$$

Taking $\lambda=\alpha+\mu-n$, the right hand side becomes of the Saalschütz form and finally reduces to $(-1)^{n} \frac{(\beta)_{n}}{n!}$.

I wish to record my sincere thanks to Dr K. N. Srivastava for his kind help and guidance during the preparation of this note.

REFERENCES

(1) Abdul-Halim and Al-Salam, Double transformation of certain hypergeometric functions, Duke Math. J. 30 (1963), 51-62.
(2) H. Buchholz, Die konfluente hypergeometrische Funktion (Berlin-Göttingen Heidelberg, 1953), p. 142.
(3) J. Edwards, A Treatise on Integral Calculus (London, 1922), p. 177.
(4) A. Erdélyi, Higher Transcendental Functions, Vol. I (McGraw-Hill, 1953).
(5) A. Erdély, Higher Transcendental Functions, Vol. III (McGraw-Hill, 1953).
(6) E. D. Rainville, Special Functions (Macmillan Co., New York, 1960).

Motilal Vigyan Mahavidyalaya
 Bhopal (M.P.), India

