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Abstract

Introduction: Clinical trials provide the “gold standard” evidence for advancing the practice of
medicine, even as they evolve to integrate real-world data sources. Modern clinical trials are
increasingly incorporating real-world data sources – data not intended for research and often
collected in free-living contexts. We refer to trials that incorporate real-world data sources as
real-world trials. Such trials may have the potential to enhance the generalizability of findings,
facilitate pragmatic study designs, and evaluate real-world effectiveness. However, key
differences in the design, conduct, and implementation of real-world vs traditional trials have
ramifications in data management that can threaten their desired rigor. Methods: Three
examples of real-world trials that leverage different types of data sources – wearables, medical
devices, and electronic health records are described. Key insights applicable to all three trials in
their relationship to Data and Safety Monitoring Boards (DSMBs) are derived. Results: Insight
and recommendations are given on four topic areas: A. Charge of the DSMB; B. Composition of
the DSMB; C. Pre-launch Activities; and D. Post-launch Activities. We recommend stronger
and additional focus on data integrity. Conclusions: Clinical trials can benefit from
incorporating real-world data sources, potentially increasing the generalizability of findings
and overall trial scale and efficiency. The data, however, present a level of informatic complexity
that relies heavily on a robust data science infrastructure. The nature of monitoring the data and
safety must evolve to adapt to new trial scenarios to protect the rigor of clinical trials.

Introduction

Clinical trials are continually regarded as the “gold standard” of evidence for the efficacy and
safety of new treatments and interventions. In the past 10 years, trials have increasingly
incorporated real-world data sources – data not generated originally for research purposes, but
rather, generated in the “wild,” through activities such as filling a pharmaceutical prescription,
documenting a clinical encounter, or tracking a patient’s physical activity through a wrist-worn
accelerometer. Such real-world data often play a key role in modern trials [1]. We refer to such
trials that incorporate real-world data as “real-world trials.” This is not in contrast to trials that
are called pragmatic, digital, or decentralized. Indeed, we consider such trials under the umbrella
of real-world trials when key data sources are generated in the wild.

While there are potential benefits to utilizing real-world data sources, simple inclusion of
real-world data does not guarantee advantages over a trial that does not include real-world data
sources. An intentional and strong study design that leverages real-world data sources can well
position a trial to realize the potential benefits, which may be vast. For example, the use of real-
world data (or devices collecting and generating the data) may increase ability to generalize
findings if eligibility criteria or the type of treatment delivery are broadened beyond the typically
strict specifications of traditional trials [2]. Consider the use of an app that allows participants to
participate in a trial and that delivers an app-based educational intervention. The appmay reach
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individuals beyond brick-and-mortar sites by collecting data on
and assessing eligibility through the app, and an educational
intervention delivered through the app could have more uptake
than an intervention that requires participants to take off from
work or travel to receive the intervention in a clinic or classroom.
Physical activity data generated by a wrist-worn accelerometer or
heart rate data obtained through an optical heart sensor may better
reflect a participant’s movement or heart rate as they go about their
lives than discrete assessments of heart rate obtained in a clinic. On
the other hand, the data may be noisier than data collected in the
more controlled setting of a typical trial. While a smartphone app
can enable participants to enroll in a study without having to come
into the clinic, software glitches may present issues with enroll-
ment or lead to selection biases related to technology access. There
are challenges, however. Consider a particular pragmatic trial that
relies on data from a healthcare system’s electronic health records
to ascertain adverse events. In this case, access to data may be
delayed relative to a traditional trial, where adverse events are
collected at protocol-specific study visits [3,10]. Thus, while real-
world data sources offer flexibility and benefits such as greater
efficiency and larger scale, they also bring their own challenges that
present in the design, implementation, and analysis phases of the
trial. More specifically, real-world trials have implications on data
management – such as data flow and data integrity – that may
threaten the overall integrity of the trial and consequently the
safety of the participants. This evolution in the clinical trial
landscape to the real-world setting necessitates rethinking conduct
of data and safety monitoring [1,3,11].

There is a wealth of literature on data and safety monitoring for
clinical trials including detailed guidance from the Food and Drug
Administration on how and when to incorporate an independent
body of experts – known as a Data & Safety Monitoring Board
(DSMB) or DataMonitoring Committee or, for observational studies,
an Observational Study Monitoring Board – into trials [4–6]. For
example, it is well-established that a DSMB should oversee high-risk
or high-impact trials [5,7]. Concrete guidance is needed, however, for
DSMBs charged with monitoring real-world trials. In this paper, we
expandupon an excellent body of priorwork to detail novel guidelines
for theDSMB, including a newly envisioned charge, composition, and
emphasis. We illustrate principles using three studies as motivating
examples.

Three Illustrative Examples of Trials Utilizing Real-world
Sources of Data

We illustrate ideas through three examples of real-world trials that
leverage different types of data sources – wearables, medical
devices, and electronic health records. In each trial, the need for
monitoring through a DSMB was determined. Our experience has
demonstrated how the role of the DSMB could be re-envisioned.
These ideas are discussed in detail below.

The first is the Apple Heart Study designed and conducted in
2018–2019 to evaluate a wearable device app’s ability to detect
irregular heart rhythms [8,9]. The second is an ongoing study for
the management of type I diabetes in children utilizing a
continuous glucose monitor [10], and the third is a study to
assess the efficacy of a statin medication therapy among elderly
adults leveraging electronic health record data. While each trial
possesses unique pragmatic qualities, they share compelling
arguments for modifications to the charge, function, and
composition of the modern DSMB.

Example 1 – Wearables: The Apple Heart Study: Using a
Digital App to Recruit, Enroll, Intervene, and Capture Data

The Apple Heart Study was a prospective, single-arm,
pragmatic, decentralized, digital trial that enrolled 419,297
participants over eight months (ClinicalTrials.gov number,
NCT03335800). Participants were enrolled and virtually
consented through a smartphone app. The study had few
exclusion criteria, and participants self-reported whether they
met the criteria. The exposure – an app to detect irregular heart
rhythms – was considered to pose minimal risk to participants.
The primary goal of the study was to estimate the proportion of
participants with atrial fibrillation confirmed by subsequent
ambulatory electrocardiogram patch (ePatch) monitoring
among participants in whom the app detected an irregular
pulse. Participants were intermittently monitored for irregular
heart rhythms while wearing their watches. In most participants
(>99%), the app never detected an irregular rhythm during the
observation period. Participants notified of an irregular rhythm
were sent an ePatch to wear for up to seven days and then return
by mail. Aspects that made the trial both pragmatic and
challenging are that: the digital study app was used for
enrollment, as an intervention, and as one of several means
to collect data. In a typical trial setting, these activities would
often be facilitated by study coordination staff, interacting
directly with the participant. Whether the trial required a DSMB
was debated within the study team, as participation in the study
was deemed to pose minimal risk to participants. The original
charge to the DSMB – comprised of one statistician and two
experts in cardiovascular disease – was to monitor enrollment,
safety events such as rash from the ePatch or anxiety about the
intervention, scientific validity, and data integrity [11].

Example 2 – Medical Devices: The 4T Study: Using a
Continuous Glucose Monitor for Both Pediatric Patient and
Physician to Manage Disease and Provide Data on Relevant
Outcomes

The Teamwork, Targets, Technology, and Tight Control (4T)
Study of pediatric patients with type I diabetes evaluates early
adoption of continuous glucose monitors after diagnosis in
managing the trajectory of glucose levels (ClinicalTrials.gov
number, NCT04336969) [10,12,13]. This ongoing single-arm
study with historical controls – which currently has approx-
imately 230 participants enrolled – is pragmatic in that
participants are observed as they receive care in the real-world
setting. For example, data on hemoglobin A1c are collected at
their in-clinic visits for standard follow-up care. Importantly,
participants rely on continuous glucose monitor data to inform
day-to-day behavioral decisions on how and when to eat,
exercise, and seek additional care. The experimental inter-
vention deviates from standard-of-care in that clinicians
participating in the 4T study are prompted weekly, based on
algorithmic analysis of continuous glucose monitor data, to
review patients’ data to inform whether additional care should
be provided [14]. Additional care may be in the form of text-
based messaging and may prompt a live-connect with the
patient or a request that the patient come into clinic. The role of
the DSMB – comprised of one statistician and two experts in
diabetes management – is to ensure patient safety, assess
protocol compliance, and monitor efficacy.
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Example 3 – Electronic Health Record Integration: The Statin
Therapy and Global Outcomes in Older Persons Pragmatic
Clinical Trial (STAGE PCT Study): Leveraging Real-world Data
from 12 Healthcare Delivery Systems to Evaluate the Benefit
of Statin Use on Atherosclerotic Cardiovascular Disease

The STAGE PCT study was designed as a large-scale, multi-site,
pragmatic, double-blinded placebo-controlled randomized clinical
trial of statin therapy on cardiovascular and other outcomes for
over 20,000 individuals 75 years or older without known
atherosclerotic cardiovascular disease on cardiovascular and other
relevant outcomes. The study proposed to screen the electronic
health records from a dozen healthcare systems for eligible
patients, randomize individuals to a treatment arm (the statin of
interest or placebo), and collect key data on cardiovascular
outcomes obtained through quarterly extracts of relevant
electronic health records using standardized definitions. A
DSMB was proposed to respond to interim analyses with a
proposed composition of two senior clinical trialists, a statistician
with expertise in clinical trials and pragmatic research, and a
participant advocate. Review of safety-related data was a key
DSMB responsibility. This study was not funded, and thus, the
study was not executed.

Guidelines on Data & Safety Monitoring for the Pragmatic
Trial

We focus discussion on four topic areas for real-world trials:
A. Charge of the DSMB; B. Composition of the DSMB;
C. Pre-launch Activities; and D. Post-launch Activities.

Charge

To achieve its goals, the DSMB is typically charged with:
(i) assuring that the study protocol and study team minimize
risk to participants; (ii)monitoring recruitment to ensure adequate
enrollment (rate and adherence to eligibility criteria);
(iii) monitoring safe and effective conduct of the treatment or
intervention delivered; (iv) assuring the integrity of the data,
including timeliness and quality; and (v) evaluating whether the
trial should conclude early due to significant benefit or risk or
inability to achieve study goals [3]. We assert that, for real-world
trials, attention and focus need reprioritization to achieve the goals
described above. More specifically, real-world trials require a
stronger and additional emphasis on evaluating integrity of the
data (priority item iv), as the integration of real-world data – that
may be key for understanding delivery and uptake of the
intervention (particularly if the intervention is real-world data-
driven), the treatment effect, and safety – can jeopardize ability to
accomplish tasks described in items i-iii and v [15].

Monitoring data integrity, even in studies that pose low risk,
takes on new importance in the context of real-world trials because
the data pipeline is more complex than in more typical trial
settings. Real-world data are much more complicated, variable,
and subject to biases. For example, the Apple Heart Study had data
flows from numerous sources: the Apple Watch that generated
heart rate rhythms continuously, the “gold standard” heart rate
monitor or ePatch that generated heart rate rhythms continuously
over a fixed period of time with accompanying summarized
reports, intermittent patient-reported surveys generated by the
app, and clinical data from telehealth visits. The integration of
enormous amounts of data was further complicated by the devices.
For example, duplicated records (e.g., due to downloading a new

version of the app) led to challenges in knowing how many
individuals were enrolled in the study and in longitudinally linking
pieces of data back to the right participants [16]. These issues with
data integrity affect key pieces of trial conduct, such as monitoring
enrollment and follow-up, which fall under the purview of the
DSMB [11].

In another example from the Apple Heart Study, battery life
from the devices increased noise in the data [11]. The timestamp
variable from both the ePatch and the AppleWatch was critical for
addressing concordance of signal from the two devices. As battery
life declines, there can be measurement error in the recorded
timestamp from the ePatch, which can affect the team’s ability to
address this main aim. As such, it is crucial for the DSMB to
understand the study team’s comprehension of measurement error
and other data nuances and their plans to address the challenge to
prevent errors. Issues with real-world data flow can also
compromise generalizability. For example, access to Wi-Fi may
be a key mechanism for data collection. Initial pilot data from the
4T Study demonstrated that the passive data upload from the
continuous glucose monitors was not as complete for those
participants with limited Wi-Fi access, compromising general-
izability of findings, where participants of a higher socioeconomic
status (and thereby with easier access to Wi-Fi) may be
contributing more data than those of a lower socioeconomic
status. Consequently, the study team provided iPods to partic-
ipants to improve data collection through local storage until
returning online.

Like the Apple Heart Study and the 4T Study, many real-world
trials include data-driven algorithms that play a major role in the
intervention, underscoring the importance of the integrity of the
underlying data. Further, the capacity and operational model of the
care team and their use of algorithms to dictate care is an important
issue to assess in an ongoing real-world trial [14,17]. The DSMB
should be aware of how the data-driven algorithm is developed and
deployed (i.e., how the algorithm may direct care provider
attention to, and away from, patients). For example, if an app is
part of the intervention, does the participant’s phone plan limit
their ability to receive and upload data and therefore engage? More
generally, the DSMB should have clarity on possible biases or
inequities in the deployment and uptake to ensure a fair and
equitable process as indicated by recent work on an algorithm used
to predict illness in diverse populations [18].

For multicenter studies integrating electronic health records
from their respective healthcare systems, such as in the STAGE
PCT Study, screening and enrolling from each of the proposed
learning health systems requires considerable tailoring to ensure
the same target study population across health systems. Because of
institution-specific practices regarding storage andmaintenance of
healthcare-related data, the algorithm for outreach, screening, and
enrolling must consider how each system uniquely captures
individuals in the target population. The study teammay anticipate
sociodemographic differences across healthcare systems, but the
team should ensure that any observed variation in screening and
enrollment can reasonably be attributed to such differences in that
system’s catchment area and not driven by the algorithm for
screening, enrolling, and collecting data. For example, suppose a
multicenter trial leveraging multiple healthcare systems had a
target population of participants at risk of a cardiovascular event in
the following year. Each healthcare system will need to tailor and
refine a general query designed to capture this target population;
the query will not be a simple “plug-in” for the local system and
needs to be vetted. Similarly, ascertainment of key outcomes in
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such studies requires tailored approaches for local institutional
vetting to yield uniformity in outcome ascertainment.

While Ellenberg and others put weight on risk of safety posed to
participants in determining need for a DSMB [19], we additionally
argue that when the integrity of the data threatens the integrity of
the overall study, trial monitoring by an entity such as a DSMB
must be in place, even in cases where the study poses minimal
direct risk to participants. An alternative to an external DSMBmay
be an internal team that oversees the data monitoring plan and
evaluates regular reports of integrity that describe data-driven
aspects of the enrollment, the intervention delivery and uptake,
data collection, and study data.

Composition

DSMBs are typically comprised of individuals with diverse
expertise: one or more clinicians with specialization in the
condition or intervention under study and a biostatistician.
Occasionally ethicists, epidemiologists, patient advocates, and
others may be included [6,18]. Members with prior DSMB
experience are desirable, and there has been work on how to train
to serve on a DSMB [20]. As the roles and responsibilities of a
DSMB evolve, so should the composition.

We are not the first to encourage rethinking the composition of
DSMBs that oversee real-world trials [3,19,21,22]. Simon and
others state that members of the DSMB should hold expertise in
health system data and operations for pragmatic trials [3].
Similarly, Ellenberg and others encourage including a member
with informatics expertise [19,21,22].

Expertise around data generation. DSMBs for real-world trials
should include members who are acquainted with the source of the
study data critical for addressing study goals, potential issues with
data flow that may arise from the source(s), and the potential
downstream implications for study integrity. If the study involves
data from multiple healthcare systems, a healthcare information
technology expert would be a critical DSMB member. The
individual should understand the underlying data characteristics
and structure in the electronic health records, how those data are
captured and stored, and how each institution’s healthcare system
is uniquely dynamic. If data from a wearable device (e.g.,
continuous glucose monitor) are key, an expert on the device is
critical. If apps are used, inclusion of a software engineer or
information technology professional is prudent. More broadly,
these roles are often referred to as data quality engineers. DSMB
members unfamiliar with the data source may not know the right
questions to ask that would alert the study team to critical issues
such as missing or low-quality data that could indicate suboptimal
protocol implementation or result in entirely missing certain safety
events. Failure to understand and account for these issues in
analyses can lead to large biases and misleading inferences.

Expertise to consider data from the participant perspective. In
the typical trial setting, coordination staff or study team members
are often tasked with interacting with the participant directly to
consent, monitor engagement and safety, explain the intervention
and use of the data, and serve as a go-to point of contact for the
participant. In some real-world trial settings, there may be
pragmatic aspects to the trial – for example, if enrollment and data
collection are decentralized – that enable participants to have light
to nointeraction with study staff. This level of pragmatism relies on
automation and electronic processes to accomplish these goals
[22]. In these contexts, real-world trials put some of the onus on the
individual participants (e.g., to provide data, perhaps passively

through wearable devices or actively through participant-reported
outcomes). In such cases, it is critical to understand the burden on
the participant. This is especially important when devices are a part
of the intervention itself and inform or guide participant action, as
in the Apple Heart Study. Trials that rely heavily on participant
actions may face challenges with respect to engagement –
particularly if the intervention is algorithm driven – that may
not be distributed equally across clinical presentations or
sociodemographic factors. Thus, depending on the trial’s general-
izability goal, it may be important to include clinical experts who
engage the community [23]. Along similar lines, providing consent
for a real-world trial may require knowledge of not only the study
itself, but also how the participant’s data will be leveraged for the
participant, the study, and shared more generally. Although data
privacy issues are not necessarily specific to trials that incorporate
real-world data sources, inclusion of a board member who has
expertise in data privacy may be particularly advantageous, as data
privacy may pose unique issues. Consider for example data that
describe screen activity (time series screenshots from an
individual’s phone). Underlying data of screenshots may include
photos of individuals (family members and friends of the
participant) who have not provided consent, yet their data may
become part of the research study. The handling of such data may
require special expertise. Finally, depending on the study and not
necessarily specific to real-world trials, expertise in medical ethics
may be important.

We recommend DSMBs for real-world trials hold expertise in
the following: the clinical aspects of the condition, the patient
perspective, the intervention being evaluated (which may rely on
artificial intelligence or machine learning methods), the data types
generated, the source(s) generating the data, the fundamentals of
statistical principles, and the monitoring of trials [17]. It is
important to ensure diverse voices on the DSMB that can speak to
multiple aspects of the trial conduct and thatmore voices can speak
to key aspects of the data integrity.

Pre-launch

A kickoff meeting with the DSMB typically takes place prior to
launch of the study to orient DSMBmembers to their charge and to
obtain initial guidance. Materials are reviewed that include the
charter, the overall study design and goals, and the statistical
analysis plan. We argue that for real-world trials, additional
feedback may prove beneficial on plans related to data integrity.
This includes a data flow chart (See example from the STAGE PCT
Study in Fig. 1), the data sharing and monitoring plan, how the
data may impact the allocation of care provider attention,
definitions for key monitoring terms and how they will be
measured in the trial given the real-world data sources used
(e.g., lost to follow-up, study withdrawal, patient adherence,
adverse events, and protocol deviations), and, if available, findings
from a pilot phase, discussed in detail below. A list of topics and
associated reports that should be included for discussion at the
kickoff meeting for real-world trials are presented in Table 1.

Pilot
Previous literature points to the importance of a pilot phase prior
to study launch to provide insights into data flow and integrity
[24,25], especially if there are components that are not modifiable
after study launch. The pilot can test the strength and integrity of
data pathways, inform the study team on a finalized study design,
and provide the DSMB with insight into the study team’s rationale.
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Additionally, the pilot can inform the metrics to be reported to the
DSMB and how the metrics should be designed and tailored to
the type of real-world data used [26].

The Apple Heart Study team discussed the potential benefits of
a pilot study in their work on the lessons learned [24]. While the
Apple Heart Study team had to be nimble to respond to ongoing
issues, the static nature of the app required the team to fix certain
features before enrollment began. A pilot study was noted as the
most important lesson, as it may have provided insight into issues
with integrating data across multiple sources with a potential to
learn about record duplication, missing data, and the noise of
critical time stamp variables. Although not every issue will be
uncovered, conducting a pilot study that includes and goes beyond
end-to-end testing of the data capture will ultimately increase
efficiency and allow for a smoother trial.

The 4T Study team recognized the need for a pilot study and
gained considerable insight into data flow and operational
challenges. It was in the pilot phase of the 4T Study where the
team found continuous glucose monitor passive data uploads
were incomplete for participants with limited Wi-Fi. This data
discrepancy alerted the team to an issue of equity, as individuals
with lower socioeconomic status had less access to Wi-Fi, which
made them more likely to contribute less data. Local storage
solutions (iPods) were provided to reduce the gap in missing
data rates.

The data collection proposed in STAGE PCT relied heavily on
electronic health record and other data collected from the
respective healthcare systems of the participating sites. A common
algorithm would be developed to identify clinical outcome events.
The study team had proposed a pilot phase so that the common

Figure 1. Data flow chart of the the statin therapy and global outcomes in older persons pragmatic clinical trial (STAGE PCT).

Table 1. Topics of interest in a real-world trial requiring DSMB involvement with example reporting

Topics of interest Example report

Enrollment and retention numbers and trial characteristics CONSORT diagram, cohort description table, diversity metrics

Adherence and loss to follow-up Adherence monitoring diagram

Data pipeline issues Unlinkable data due to unique identifiers

Data linkage using time stamping across platforms Timestamp adjudication across devices

Uptake or engagement of the intervention Notification summaries, wear time

App glitches and software updates Before/after update comparison

Data sharing and management plans List of locations data was shared

Variable and endpoint definitions from real-world data Sensitivity analyses

Fairness of algorithms integrated into interventions Assessment of exposure and uptake by key subgroups
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algorithm could be tested for tailored refinement across the sites.
Thus, the pilot would be leveraged to understand the properties of
the algorithm and its ability to enroll from the same target
population across each healthcare system. The study team
additionally anticipated that the data collection process would
experience a lag due to the need to apply the algorithm at each site
and then transfer the data to the data coordinating center. Such a
lag is of importance to a DSMB, particularly when safety is being
monitored, and the proposed pilot would have provided insight
into the possible shortcomings of the data flow so that
corresponding solutions could be provided.

Conducting a pilot to refine the study design is a worthwhile
investment. Reviewing pilot findings with the DSMB will alert the
DSMB to issues they should be aware of and ongoing metrics to
monitor. Ideally, the pilot should result in a vetted data
infrastructure and a reproducible reporting structure for ongoing
study monitoring.

Key Monitoring Metrics
Monitoring retention, engagement, and adherence requires clear
pre-specified definitions for terms such as “lost to follow-up,”
“withdrawal,” and “lack of adherence.” Additional nontraditional
terms (e.g., device wear time) may be of interest depending on the
data and its collection strategy (active or passive). In traditional
trials, there may be standard ways of assessing adherence to study
drug such as counting the number of pills remaining at each study
visit. In real-world trials, the “dose” received may be based on
medication refill pattern or frequency of engagement with a
smartphone app. Further, there may be multiple domains of
participant adherence that should be captured. For example:
(1) engaging with an app to receive a text message that informs the
participant to exercise; (2) acting on the instructions provided in
the message; and (3) completing a daily patient-reported survey.
There may be trial-specific challenges to defining and measuring
such metrics. To complicate matters, trials that rely on real-world
data sources do not always include pre-specified follow-up visits
with protocol-defined windows, as in all three of our examples.
Often a mix of passively and actively collected data will contribute
to measurements and informmonitoring (See Fig. 2). For example,
if the study team wants to understand whether the participant
follows text-based instructions to exercise, they could measure
adherence to instructions (albeit noisily) by leveraging passively
collected heart rate data on a wearable. The pre-specified key
definitions surrounding participant monitoring should be dis-
cussed with the DSMB. Note that clarity on these metrics is
necessary for defining interpretable analysis sets (e.g., intent-to-
treat, safety, and per-protocol), which inform the quality and
generalizability of the clinical evidence generated.

For example, in the Apple Heart Study, consider a participant
who may not have contributed any heart rate data through the app
because they did not wear the watch throughout the study, but who
filled out the participant-reported survey at the end of the study
when they ultimately put their watch on. This participant may not
have been “exposed” to the app (i.e., the intervention) throughout
the study period, but they were considered retained in the study
through study completion. While the participant had complete
follow-up, they were not adherent to the protocol, as they were not
fully engaged with the app and did not have complete and accurate
outcome ascertainment. Consider another participant who
enrolled and then subsequently deleted the app without stating
that they were withdrawing from the study. This individual would

be considered lost to follow-up at the time they deleted the app. To
understand the “treatment dose” of the app, the study team and
DSMB may additionally wish to understand wear time and gain
consensus on how to measure it. With the value of hindsight, we
provide an example of a figure that could have been beneficial in
the monitoring of what we would consider adherence in the Apple
Heart Study. The proposed “Adherence Monitoring Diagram”
(Fig. 3) represents a periodically updated flow diagram to record
the counts of individuals who progress through important stages of
the protocol that may assess where in the pipeline the decentralized
study is “leaky” and at risk of losing participants. The diagram
shows multiple pathways where participants could be non-
adherent. It is nontrivial to aggregate such count data, as the
data needed will be in disparate locations.

All three example studies required unique definitions for each
of these terms (lost to follow-up, withdrawal, and protocol
adherence) along with methods for measuring how participants
meet those definitions. Note that study adherence and engagement
may be a time-varying state for participants. For example, for the
4T Study, to gain insight into engagement with the program’s
multi-faceted intervention, a heatmap may be a useful tool in
understanding time-varying features including wear time of the
continuous glucose monitor, if/when the clinical team messages
the participant, and if/when the participant reads the message
(Fig. 4). Such metrics can be aggregated to understand adherence
and engagement metrics on average with visualizations that also
sort the participants by diversity metrics like insurance status to
gain insight into fairness of the team’s engagement scheme/
algorithm as well as uptake of the intervention (Fig. 2).

Similar to the traditional trial, other key monitoring metrics
include protocol deviations and safety events. Protocol deviations
in a real-world trial may include a variety of situations such as apps
crashing, no connectivity to the internet, including an ineligible
participant due to inaccurate electronic health record data, delays
in documenting events only observed in the healthcare system, the
person wearing the device is not the person who consented, or the
data collected are not solely from the person who consented. These
could be particularly problematic if the study participant’s main
contact with the study is virtual. Anticipating protocol deviations
and how they will be captured requires expertise on the data source
and methods and is important to anticipate and pre-specify with
the DSMB.

Study teams of real-world trials should also consider the
potential biases in adverse event reporting when adverse event
collection is participant-initiated or collected passively.
Continuously sensing and informing participants may have
downstream effects such as over-diagnosis or over-utilization of
health care, particularly for new interventions or data collection
techniques that have yet to be well-studied. Nontraditional safety
events that capture this phenomenon must be defined in advance
(e.g., howmany additional medical tests were ordered downstream
of engaging the participant that did not result in a new diagnosis or
treatment deemed to improve the participant’s health or quality of
life) andmodified during the study if the approach ismisclassifying
true adverse events.

Post-Launch

With clearly defined key monitoring terms, longitudinally
following the regularly generated data reports that include
anticipated data integrity issues is key to monitoring the trial’s
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overall integrity. Seeing a rapid and sudden change in adherence
reports, for example, could reflect a problem in the data pipeline or
protocol. However, it is impossible to anticipate or uncover all
issues a trial may encounter. For this purpose, it is beneficial to
establish a structured process to report unanticipated problems in
data integrity to the DSMB (See Supplement). When problems
occur, it is important to assess how an informatics problem may
affect safety, study integrity, inference, or generalizability.
Corrective action plans can serve to address how the study team
can resolve issues and demonstrate success in mitigating issues. In
the Apple Heart Study, when duplicated records were discovered
despite an initial deduplication scheme, the study team developed
and evaluated performance of a refined deduplication algorithm
while the study was ongoing. While enrollment was not
interrupted, the study team continued to carefully assess the issue
of duplicated records throughout the lifespan of the study [16].
Additionally, access to intensively sampled data – a feature that
accompanies some real-world data – can be leveraged opportun-
istically tomonitor key study activities in real-time. This can enable
pre-specification of data-derived rules that trigger various actions.
For example, the Apple Heart Study team implemented metered

Figure 2. Violin plots highlight the data distribution of the overall Teamwork, Targets, Technology, and Tight Control (4T) Study population across different metrics used as
proxies for overall patient adherence, including CGM wear time, the open rate of messages sent from the patient’s clinical team, message response rate, message response time,
and finally the average change in time in range one week following a message. This last metric is proposed as an indicator of whether a given patient is adhering to behaviors
recommended by the care team. This illustrative visualization also allows for users to split data by factors including the patient’s race, gender, insurance type, age, and preferred
langauge. The lower visualization shows population level adherence metrics with a split across insurance type selected. Note that the distributions presented are illustrative and
are not necessarily representative of the 4T study.

Downloaded App

Enrolled

No�fied of Event

Not Yet No�fied

Spoke to Telehealth

Sent ePatch

Returned ePatch in 
Protocol Window

Contributed to Primary 
Analysis

Did Not Contact Telehealth

No Patch Sent

Did Not Return ePatch
Included in Cohort

N Excluded

Figure 3. Proposed participant adherence monitoring diagram based on the
protocol from the Apple Heart Study example. Each box represents a count of the
number of participants who completed the given step in the protocol.
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enrollment as a precaution to make sure a much higher than
anticipated notification rate was not observed which would have
signified abnormal behavior of the algorithm “in the wild” that
could lead to false positives.

Conclusions

Clinical trials can benefit from incorporating real-world data
sources, potentially increasing the generalizability of findings and
overall trial scale and efficiency. The data, however, present a level
of informatic complexity that relies heavily on a robust data science
infrastructure. The pragmatism of real-world trial design
commonly includes flexibility in data capture and the mechanism
of enrollment that differs from the tightly controlled traditional
trial. The real-world trial design trades the work of a clinical team
interfacing with study participants for an increased burden on the
informatics team around data capture, flow, integration, and
analysis. There are features to real-world trials that necessitate a
new way of providing oversight than necessary in previous eras.
Through three examples of real-world trials, we illustrate how real-
world trial oversight must evolve to uphold fundamental
principles. We provide guidance surrounding DSMBs in four
main areas that are particularly affected by the integration of real-
world data sources: the charge, the composition, activities prior to
launch, and activities post-launch.

An important consideration is whether a trial can benefit from a
DSMB in the first place. Ellenberg and others provide a tool to
assess whether a trial needs DSMB oversight, which considers the
level of risk posed to participants, as manymodern pragmatic trials
are considered low-risk [19]. In our experience, however, issues
with data integrity alone in certain real-world trial scenarios have
downstream impact that threaten the overall integrity of the trial,
even when risk to the participant is minimal. The heart of such
issues is bias. Leaving such issues unaddressed or ignoring biases

has potential to result in misleading, non-replicable, or otherwise
invalid conclusions [15]. Extending ideas from Evans and others
that state DSMBs are particularly needed in the context of high
uncertainty, we argue that the presence of real-world data
introduces a level of uncertainty that often well exceeds that of
traditional trials, and thus these real-world trials need DSMB
oversight even in the absence of direct risk to participants by the
intervention being studied. We, therefore, recommend DSMBs of
real-world trials have an increased focus on data integrity that
includes data flow and integration. We assert that the composition
and expertise of DSMBs for real-world trials should reflect the
monitoring needs of the data leveraged in the trial. Real-world
trials present atypical monitoring needs, opening the door for
informatics, software engineering, platform development, and
other unique facets of expertise for a DSMB.

Training a new generation of DSMBmembers is key in achieving
this goal [21,26]. The pool of data scientists and engineers familiar
with clinical trial design, conduct, and trial monitoring is small.
Ensuring real-world trials have experts available to serve on their
DSMBs requires curricular modifications for these fields to
incorporate and expand training in clinical trials, trial integrity,
and trial monitoring. With the right composition – specifically one
that is knowledgeable and well-positioned to monitor the data
integrity of real-world data sources – DSMBs can be even more
effective in providing support and oversight of real-world trials to
best aid the study team’s goal of generating evidence that is robust,
reproducible, and replicable.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/cts.2023.582.
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Figure 4. Example visualization picturing average weekly time in range for a given patient over time, split by time of day. Messages sent by clinical team are also overlayed, and
color coded by whether or not they were read by the patient. The purpose of this visualization is to provide a quick overview for whether or not a patient is responding to
recommendations provided by the care team.
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