
TRIANGLES IN AN ORDINARY GRAPH 

E. A. NORDHAUS AND B. M. STEWART 

1. Introduction. An ordinary graph is a finite linear graph which con­
tains no loops or multiple edges, and in which all edges are undirected. In 
such a graph G, let N, L, and T denote respectively the number of nodes, 
edges, and triangles. One problem, suggested by P. Erdôs (1), is to determine 
the minimum number of triangles when the number of edges is specified, 
subject to suitable restrictions. For any ordinary graph with N = 2u, 
L = u2 + k, and k < u, he conjectured that T > ku. The case k = 1 is an 
unpublished result due to Rademacher, and the cases k = 2, 3 (also unpub­
lished) were established by Erdôs, who also showed that the conjecture can 
fail when k = u. In this paper we seek a function/(iV, L) such that T >/(iV, L) 
for every G, and develop various inequalities for the minimum number of 
triangles, valid for the entire range of L. In particular we readily establish an 
inequality quadratic in L which for many graphs is the best possible. However, 
most of our efforts deal with inequalities linear in L. This approach was 
motivated by the observation that the conjecture of Erdôs implies that 
ST > TV (4L - N2) when N2 < 4L < N2 + 2N. One obvious modification is 
to write RT > xV(4L — N2) and attempt to determine the positive number 
R (independent of L and N) as small as possible so that the resulting inequality 
is valid for all ordinary graphs. It is simple to show that this inequality holds 
for all graphs when R = 12 and that R = 9 is the minimal possible value 
of R. Of course this does not exclude smaller values of R, as in the Erdôs 
conjecture, for certain subclasses of graphs in which the number of edges is 
suitably restricted. 

We say that G is £-ary if the graph complementary to G has exactly t com­
ponents, and are able to show that the inequality 97" > N(4L — N2) holds 
for all graphs with N nodes if it holds for all "unary" graphs (t = 1). We also 
show that this inequality holds for all symmetric graphs, for all graphs satis­
fying N2 < 3L, for all graphs with Àr < 10, and for certain other types of 
graphs. 

2. Preliminary observations. Unless 4L > iV2, we cannot be certain 
that a triangle will appear. If N = 2«, we may divide the nodes into two 
groups each with u nodes and insert edges only between nodes not in the 
same group; then 4L = N2 and no triangles occur. Similarly if N = 2u + 1 
we divide the nodes into two groups with u and u + 1 nodes respectively, 
and insert edges as before, obtaining 4L = ,V2 — 1, and again no triangles 
occur. Accordingly, we shall usually assume that 4L > xY2. 
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Let %i denote the number of edges terminating at the node P^ and call xt 

the order of the node Pim Then 2L = Y^xu where the summation symbol, unless 
otherwise restricted, will indicate the range i = 1, 2, . . . , N. 

Let Tk be the number of sets of three nodes having k edges, k = 0, 1, 2, 3. 
Then L3 = Lis the number of "full" triangles, and L0 the number of "empty" 
triangles. Each edge e;- is an edge of Tkj "triangles" of type k, and 

Tu + T2j + TZj = N - 2, 

for the edge itself joins two nodes, and with each of the other N — 2 nodes 
determines a triangle of type 1, 2, or 3. Summing the displayed expression 
for j = 1, 2, . . . , L, we obtain 

(1) Tx + 2L2 + 3T = L(N - 2). 

By considering the number of pairs of edges at each node we find 

which we write in the form 

(2) 2L2 + 6T= E x\ - 2L. 

Let X7 indicate summation over all pairs i and j , ranging independently 
from 1 to N, subject to the restriction i > j . Note that 

/ J Xi ~\~ Z / j XiXj — \ / j Xi) = 4i-/ , 

(N — 1) X) xl — 2 S ' xiX} = S ' (xi — xi)2> 

(3) N^ x\ = 4 i 2 + YJ (xt - xj)2. 

Eliminating T2 from (1) and (2) we have 

ST = Ti + E x\ - LN. 

Then using (3) we obtain 

(4) 377V = NTX + L(4L - N2) + ^ (xt - *J)2-

Since Ti and ^'{xi — Xj)2 are non-negative, we obtain the inequality 
(quadratic in L) 

(5) ZTN > L(4Z - N2), 

in which the equality sign holds if and only if T\ = 0 and X/O*^ ~ XJ)2 = 0. 
The latter condition of course implies that every node of G has the same order, 
that is, G is regular, and as shown in § 3, the condition 7\ = 0 implies that G 
is a symmetric graph. We also observe that T > 0 when 4L > A72, and from 
the examples given at the beginning of this section that no smaller value of L 
will guarantee that T > 0. Thus the critical condition is 4L > A72, as sus­
pected. From (5) we observe that for every graph G the point (L, T) always 
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lies above or on the parabola 3TN = L(4L — N2), whose graph is shown 
in Figure 1. 

Since the tangent line at point A : (iV2/4, 0) has the equation 12T = 
N(4L - ^ 2 ) , we have 

THEOREM 1. The relation 12 T > iV(4L — iV"2) holds for all ordinary graphs. 

For the ideas expressed in (1) and (2) and the first proof of Theorem 1, 
we are indebted to J. H. McKay. 

THEOREM 2. The minimal value of R for which RT > TV (4L — N2) can hold 
for all ordinary graphs is R = 9. 

Proof. The value R = 9 cannot be improved, for there are graphs for which 
9T = N(4:L — N2). One such graph may be obtained by taking N — 3U, 
dividing the nodes into three sets each containing U nodes, and inserting 
edges between all nodes that are in different sets, but no other edges. Then 
L = 3U2 and T = Us. Furthermore, (see Figure 1) we note that the line 
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FIGURE 1 

through points A : (N2/4,0) and B : (iV2/3, N*/27) has the equation 
9T = N(4:L - N2), and so the inequality 9T > N(4L - N2) is valid for all 
ordinary graphs having 3L > N2 or TV2 > 4L. It remains to consider this 
inequality when 3L < N2 < 4L. For convenience, we define 

(6) J = $T + Nz - 4.VL, 

and conjecture that J > 0 for all ordinary graphs when 3L < N2 < 4L. The 
following sections are devoted mainly to a study of this conjecture. 
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3. Symmetric graphs. If in an ordinary graph G there is a path consisting 
of edges leading from node P to node Q, then P and Q are said to be con­
nected. If this notion is extended to mean that each node is always considered 
to be connected to itself, then "being connected" is an equivalence relation 
dividing the nodes of G into disjoint subsets called ''components'' of G. In 
general not every pair of nodes in a component is connected by an edge, for 
it may be that every path joining the two nodes involves more than one edge. 
But if every pair of nodes in a component is connected by an edge, then 
the component is called "complete"; and a component consisting of a single 
node is also called complete. 

By the "complement" G* of a graph G is meant the graph obtained from 
G by using the same nodes, but removing all edges of G and inserting an edge 
in G* wherever there was none in G (see 3). We define the graph G to be 
"/-ary" if its complement G* contains exactly t components. Thus if we say 
that G is "unary", then the complement G* must have t = 1, that is, G* is 
connected. 

A graph G is called "symmetric" if all components of G* are complete. Thus 
a symmetric /-ary graph G of N nodes can be constructed by dividing the 
nodes into / disjoint subsets containing Nh iV2, . . . , Nt nodes with 
A7 = i\7i + ^ 2 + . . . + Nu where nodes of a subset are not joined by edges, 
but every possible edge is inserted between nodes of distinct subsets. In this 
description the completely disconnected subsets of G become the completely 
connected components of G*. A symmetric graph may also be defined as the 
product of distinct empty graphs (see 4). 

THEOREM 3. G is symmetric if and only if T\ = 0. 

Proof. A "triangle" of type 1 consists of three nodes with exactly two 
edges missing. If a "triangle" in a symmetric graph has two edges missing, 
then the three nodes must belong to the same disconnected subset, hence the 
third edge is also missing. Thus a symmetric graph has T\ = 0. 

Conversely, if T± = 0, every "triangle" with two edges missing must have 
the third edge missing. The corresponding graph G must have the following 
characteristics. Consider any node P of G. Either P has the order x = N — 1 
and the single node is itself to be considered a disconnected subset, or P has 
x < N — 1 and then we can show that P and every node not joined to P 
constitute a completely disconnected subset. For (a) if P i is not joined to P 
and if Q is joined to P , then Q must be joined to Pi , for otherwise T\ > 0; 
hence the set of nodes not joined to P i can consist only of P and nodes not 
joined to P . And (b) if P i and P 2 are not joined to P, then P i and P 2 are 
not themselves joined, for otherwise T\ > 0. Thus (a) and (b) show that P 
is a node of a completely disconnected subset of G corresponding to a complete 
component of G* of exactly N — x nodes. But P was any node of G. Hence 
Pi = 0 implies that G is symmetric. 
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As an application of Theorem 3, we consider the problem of determining 
when a point (L, T) lies on the parabola of Figure 1, and note from the 
remarks following (5) that the corresponding G is regular and symmetric. If 
such a G is u/-ary" and each node has order x, then t(N — x) = N, so t is a 
divisor of N. The number of such regular symmetric graphs is therefore the 
total number of positive integer divisors of N. Since t = 1, 2, 3 gives L = 0, 
iV2/4, N2/3 respectively, no such graph gives a point on the parabola when 
3L < N2 < 4L. 

4. An inequality for positive real numbers. It is possible to prove an 
inequality for the elementary symmetric functions 

Ei= XMP> E2 = J2A
PAq, £3= J^ApAqAr 

of any / positive real numbers Ah A2, . . . , A t similar to the conjectured 
inequality J > 0 for graphs. 

THEOREM 4. The inequality Jt = 9E3 + Ei3 — 4EXE2 > 0 holds for any set 
of t positive real numbers. 

Proof. The proof is by induction on t, starting from the obvious cases t = 1, 
where Jx = Ax* > 0, and / = 2, where J2 = (Ax + A2)(A1 - A2)

2 > 0. For 
the case t + 1 let A 0 be the additional number and assume (since the induction 
hypothesis will be Jt > 0 for any t positive numbers) that 0 < A$ < Ai < 
. . . < At. Then tA0 < Ex implies for t > 2 that A0 < Ex /2 < 4Ei/5. Since 

/ H - I = 9(^3 + .40£2) + (Ei + A0y - 4(EX + A0)(E2 + A,E,) 
= Jt+ Ao(E1/2 - Ao)2 + (4E2 - E!2)5^0/4, 

it is easy to see that if 4E2 — Ei2 > 0, Jt > 0 implies /j+i > 0. The other 
possibility of 4E2 — E{2 < 0 may be handled by use of the previous observa­
tion Ao < 4Ei/5, for then 

Jt+1 > J t - (Ex2 - 4E2)5/l0/4 > Jt - E^E,2 - 4E2) = 9E3 > 0. 

By induction the proof is complete. 

When t > 2 the first inequality of the last-displayed chain is strict because 
the omitted term A0(Ei/2 — A0)

2 is positive; thus Jt > 0 holds for t > 4. 
When t = 2 the first inequality of the chain is strict unless Ao = Ei /2 and 
the second inequality is strict unless Ei2 — 4E2 = 04 2 — ^4i)2 = 0. Thus 
Jz > 0, except when Ao = A\ = ^42. 

THEOREM 5. For every symmetric graph the inequality J > 0 is satisfied. 

Proof. For the symmetric graph described in § 3, we have the special 
relations: 

N = Z Np, L=Y, NpNq, T=Y, NpN,Nr, 
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where A7, L, T are the elementary symmetr ic functions of the t positive 

integers Nh N2, . . . , Nt. Hence Theorem 4 may be applied to establish 

J>0. 

5. R e d u c t i o n of t h e p r o b l e m t o u n a r y g r a p h s . If the graph G with 
N nodes is £-ary, let the connected components of G* have N1} iV2, . . . , Nt 

nodes. Let the vertices Pt and Pj belong to a component of G* having NT 

nodes where Nr > 2. Suppose t h a t in G the nodes Pt and Pj are joined by 
an edge PtPj which is an edge of ktj triangles of G. Let Gtj be the graph 
obtained from G by deleting the edge P tP j , and using the nota t ion in (6) let 
Jij be associated with G^-. 

L E M M A 1. If Nr < 5N/9, then Jtj < J. 

Proof. Since N^ = N, Ltj = L — 1, 7\;- = T — kijy it follows t h a t 

Jtj = QTij + A73 - ±NLtj = J - (9ktj - 4A7). 

Bu t from the concept of components the Nr nodes to which Pt and Pj belong 
are connected in G to all the other N — Nr nodes. Consequently, if Nr < 5N/9, 
then kij> N - Nr > 4iV/9; hence Jtj < / . 

T H E O R E M 6. / / G has every NT < 5.V/9, then J > 0. 

Proof. By repeated application of Lemma 1 the edges in each subset Gr of 
G, corresponding to a component of G* with Nr nodes when Nr > 2, can be 
deleted wi thout increasing " / " . After a sufficient number of deletions a 
symmetr ic graph G" is reached with J" < / . Bu t from Theorem 5 we know 
0 < J". Hence J > 0. In the above proofs an isolated node, corresponding 
to the case Nr = 1, causes no difficulty. 

T H E O R E M 7. / / / > 0 holds for all G with N nodes which have t = 1 or t = 2, 
then J > 0 holds for all G with N nodes. 

Proof. We mus t consider G with t > 3. If every A7
r of G satisfies A7

r < 5N/9, 
then Theorem 6 applies. Since a t most one Nr, say A7i, can satisfy ATi > 5N/9, 
in the case which remains G has t > 3, Ni > 5N/9, and A7

2 + Nz + • • . + A7
4 

< 4A7/9. By Lemma 1 each of the subsets Gr of G corresponding to A7,-, for 
2 < r < t, can be replaced by a completely disconnected subset wi thout 
increasing "J". But A^ + A7

3 < 47^/9 shows t h a t each edge of G joining a 
node of G2 to a node of G3 can be deleted (by the same a rgument as in the 
proof of Lemma 1), wi thout increasing ilJ,J. By repeti t ion of this a rgument 
all of G corresponding to the nodes counted by AT

2 + A7
3 + . . . + Nt can be 

combined into one completely disconnected subset wi thout increasing " J " . 
T h u s the problem of establishing J > 0 for graphs with A7 nodes has been 
reduced to the two cases t — 1 and t = 2. 

T H E O R E M 8. If J > 0 holds for all unary G\ with Ni nodes, N\ < N, then 
J > 0 holds for all G with A7 nodes. 

https://doi.org/10.4153/CJM-1963-004-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1963-004-7


TRIANGLES IN AN ORDINARY GRAPH 39 

Proof. By Theorem 7 the only case requiring discussion occurs when G 
has t = 2, with iVi > 5N/9 and N2 = N - Nh with G2 completely dis­
connected itself and completely joined to G\. Let the subgraph Gi contain 
Li edges and r 3 i triangles. From the relations N = Ni + N2j L = Lx + NiN2j 

T = Tn+ UN2, it follows that 
(7) J = N(N - 2iVi)2 + 9r 3 i - (9^1 - 5N)LL 

We set A = N(N - 2N1)
2/(9N1 - 5N) and note that A > 0 since 9i\7i > 5N. 

Since TZ1 > 0, it follows directly from (7) that J > 0 if A > Lx. If Lx > A 
we make use of the hypothesis that J > 0 holds for Gi, so that 97^i > 
iVi(4Li - iVi2). Then if we study (7) it follows that / > 0 providing that 
Li> B = (SNNi - N2 - N!2)/5. However, Lx > A > 5 , since the latter 
inequality reduces to 7Vi(37Vi — 2N)2 > 0. This completes the proof of 
Theorem 8. 

THEOREM 9. The relation J > 0 /w/ds /or every G of N nodes which is t-ary, 
t>2, if the largest NT, say Nh satisfies TVi < 2N/3. 

Proof. From Theorem 7 we may assume that G has t = 2 with G2 completely 
disconnected and completely joined to G\. Moreover, we may assume 9iVi > 5N 
and 3L < ^ 2 . Since Lx = L - NxN2y where N2 = N - Nh we find 

(9iVi - 5iV )̂Z,i < (9iV î - 5N) (AV - NiN + N2/3) < N[N - 2iVi]2, 

for the last inequality reduces to (SNi — 2N)Z < 0, which is true from the 
hypothesis A\ < 27^/3. From (7) we find J > 0. 

Theorems 7 and 8 seem important because they reduce the study of / > 0 
to the consideration of unary graphs. Unfortunately the general unary case 
is still undecided, so the positive result of Theorem 9 (which subsumes Theorem 
6) for certain non-unary graphs has been included, since its proof is independent 
of the unary case and since these graphs, which may be symmetric but are 
not necessarily symmetric, considerably augment (without completely in­
cluding) the class of symmetric graphs covered by Theorem 5. 

6. Special results for unary graphs. If L > 0, we say that G is "non­
empty." 

THEOREM 10. / / G is unary and non-empty, then Ti > N — 2. 

Proof. The proof is by induction on N with N > 3. 
When A7 = 3, if G is unary and non-empty, then G has exactly one edge, 

so Ti = 1 = 3 - 2. 
We assume that the statement of the theorem is correct for every non­

empty unary graph with N' nodes, 3 < N' < TV, and we consider any non­
empty unary graph G with N + 1 nodes. We fix attention on one node P 
of order x and the graph G obtained from G by deleting P and all x edges 
joining P to nodes of G'. We then consider three cases: 
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A. G is unary with 7Y = 0 ; 

B. G is unary with 7Y > 0; 

C. G is /-ary with t > 2 and iV = Nx + N2 + . . . + #«. 

Case A. Since TV = 0, it follows from Theorem 3 that G is symmetric. But 
G is unary, so V = 0. Since G is unary and non-empty, it follows that 
1 < x < N — 1. Since V = 0, we have 7\ = x(iV — x). If x = 1, 
7\ = iV - 1 = (iV + 1) - 2. If x > 1, 7\ = x(N - x) > (A7 - 1) because 
this latter inequality reduces to N > x + 1. 

Case B. Since G' is unary with 7Y > 0, hence L' > 0, the induction hypo­
thesis applies, and T± > N — 2. Since G is unary, x = TV" cannot occur. If 
x = 0, then 

Fi = 7Y + 1/ > (A7 - 2) + 1 = (N + 1) - 2. 

In the remaining cases, 1 < x < N — 1, there is at least one node Qi of C 
which is (in G) not joined to P and at least one node Q2 of G which is (in G) 
joined to P. Since G is unary, there must exist in (G)* a path joining Qx to 
Q2, say from P± = Qi to P 2 to . . . to Ps = Q2. Then because of the properties 
of Qi and Q2 there must be a minimal value j , 1 < j < s — 1, such that 
(in G) P is not joined to Pj and P is joined to Py+i. In (C)* the nodes Pj 
and Py+i are joined, but in G they are not joined, hence PPjPj+\ is a "tri­
angle" of G with exactly one edge. Thus again 

7\ > 7Y + 1 > ( # - 2) + 1 = (A7 + 1) - 2. 

Case C. We have that G is /-ary with £ > 2. Let G* for i = 1, 2, . . . , t 
indicate the subgraph of G corresponding to the Nt nodes that form one of 
the connected components of (G')*. From the definition of the /-ary graph, 
every node of Gt is connected to every node of Gjy when i 9^ 7. Since G is 
unary, in each Gt there exists at least one node Pt which is not joined to P . 
We note that (a) when i 5̂  j , "triangle" PPiPj has exactly one edge. 

The subgraph Gi+ consisting of Gu P , and the edges of G that join P to 
nodes of Ĝ  is a unary graph with fewer than N nodes. Let Tu

+ indicate the 
value of Pi for G*+. If Tu

+ > 0, then this implies Nt > 2, so the induction 
hypothesis applies to Gt

+. We note that 
(b) Tu+ > (Ni + 1) - 2 = Nt - 1. 
But if Tu+ = 0, then Theorem 3 shows that Gt

+ is symmetric. But Gt
+ is 

unary, so Gi+ is empty, and there is no node of G* joined to P . Since t > 2, 
there exists j 9^ i, and then all the "triangles" with P and Pj as two nodes 
and any node of Gt as the third node have exactly one edge. We note that 
the number of these "triangles" is given by 

(c) Nt = 1 + (Nt - 1). 
Combining the observations (a), (b), and (c) we have shown that 
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r i > V 2 / + S ( i V * - 1 ) E E C 

However, C = N + (t2 - 3t)/2 > (N + 1) - 2 when / > 2. 
Since cases A, B, and C exhaust all possibilities, the induction step from 

N to N + 1 is successful, completing the proof of Theorem 10. 

THEOREM 11. The inequality J > 0 holds for all G when N < 10. 

Proof. The conjecture J > 0 may be rewritten with the aid of (4) and (6) 
in the form 

(8) 3NT± + 3D > V, 

where D = £ ' ( * , - Xj)2 and F = (N2 - 3L) (4L - iV2). 
The maximum value of V, considered as a function of L, is iV4/48, obtained 

when L = 77V2/24. Since D > 0, the relation (8) will hold if 7\ > iV2/144. 
From Theorem 8 it will suffice to establish (8) for unary graphs. If 7\ = 0, 

then by Theorem 3 the graph must be symmetric, and we can either apply 
Theorem 5, or note that a symmetric graph cannot be unary unless it is 
empty, and then V < 0 so that (8) holds trivially. If 7\ > 0 and the graph 
is unary, then from Theorem 10 we have T\ > N — 2. However, 
N - 2 > iV3/144 when 3 < N < 10. The cases N = 1 and N = 2 are trivial, 
so the proof is complete. 

The authors have also proved that J > 0 for all graphs with N = 11, 12, 
or 13, but the argument here becomes much more tedious, and we omit the 
details. It is evident from (8) that an estimate is needed for D. This can be 
obtained from the following lemma, whose proof we also omit. 

LEMMA 2. If x±, %2, . . . , xN are non-negative integers, if S = YLxu and if 
S = QN + R with 0 < R < N, then the minimal value m of M = J^xf, for 
a fixed value of S, is given by m = (N — R)Q2 + R(Q + l)2 . 

Using 5 = Y,xi = 2L, and applying Lemma 2 to (3), we find D > R(N — R), 
an estimate which can be used to establish / > 0 when N = 11. More refined 
estimates are used for the cases N = 12 and N = 13. 
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