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Introduction

Recently many important results on rings and quasiconformal mappings in

space have been obtained by B. V. Sabat [9], F. W. Gehring [3], J. Vaisala

[11] and others. The modulus of a ring in space can be defined in three ap-

parently different but essentially equivalent ways. (See Gehring [4]). In the

theory of quasiconformal mappings in space, some properties for moduli of

rings in space play an important role, because the method by means of moduli

acts also as a substitute in space for the Riemann mapping theorem which does

not hold in space.

In this paper, we shall give the extremal condition for spherical rings, an

extension of Grotzsch-Sabat's theorem and an example of space ϋf-quasiconformal

mappings constructed by associating with certain plane JfiΓ-quasiconformal ones.

By using these results, the monotoneity for moduli of space rings (B. Fuglede

[1]) and the extremality and estimates for moduli of the space Grδtzsch and

Teichmuller rings (Gehring [2]) as our main tools, we shall establish mainly

the space forms corresponding to our previous results ([5], [6]) of plane K-

quasiconformal mappings. That is to say, we are concerned with the Schwarz's

lemma for space K-quasiconformal mappings, some distortions in these mappings

(under a certain normalization at the origin) and a criterion for two sets cor-

responding to each other by such mappings to be of the same dimensional

Hausdorff measure zero, where it is remarked that even if one of such mappings

transforms a plane domain into another plane domain, its correspondence between

these plane domains does not always induce a plane Tf-quasiconformal mapping.

For the sake of convenience, we shall mostly restrict rings and /£-quasi-

conformal mappings to the 3-dimensional space.
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Preliminaries

1. A space ring Rs is defined as a domain whose complement in the Moebius

space, that is, the finite Euclidean 3 space plus the point at infinity consists of

two components Co and Ci such that Co is bounded and Ci is bounded or un-

bounded. Then the boundaries Bo and Bι of Co and d are the boundary com-

ponents of Rz.

For each non-negative Borel measurable function p(x) defined in a space

ring Rz, if we put

L(p)-=inf 1 pds, V(p)~\\\ pzdτ,

where γ denotes any locally rectifiable curve which joins the boundary compo-

nents Bo, Bi in Rs, then the quantity

is called the modulus of Rs, which is denoted by mod Rz.

It is seen by Fuglede [1] that

mod R\ ^ mod Rl (monotoneity property)

if the ring R] separates the boundary components of the ring R\.

2. For each a > 1 , let RG{a) be the space ring whose complementary com-

ponents consist of the sphere I x | ^ 1 and the ray a ^ X\ ^ °o, ^ = 3̂ = 0, which

is called the space Grδtzsch ring. Similarly for each b>0, let Rl(b) be the

space ring bounded by the segment -l-^XiSQ, Xι - Xz = 0 and the ray b ^ Xι

g oo t χ2 = χs=z0i which is called the space Teichmiiller ring. If we set

mod R3

G(a) = log Φ3(α), mod Rl(a) = log Ψz(a),

then clearly Φs(a) and Ψs(a) are non-decreasing in a, and it has been proved

by Gehring [2] that it holds

a Φzia) ^ λa

for l<a< oo, where λ is such a constant as ^ x 1 2 . 4 . . . .

As in the plane case, the rings RG and R3

T have the following extremal
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properties respectively.

LEMMA 1. (Sabat [9]). Suppose that R is a space ring whose Co contains

the sphere \ x — xQ | ^α and whose C\ is unbounded and contains at least one

point at distance bi>a) from xύ} then there holds

where the equality holds when Co is the sphere \ x - #01 a and C\ is the radial

ray from one point on 1 x — xo\ = b to the point at infinity.

LEMMA 2. (Gehring [2]). Suppose that R is a space ring whose Co contains

a point xQ and at least one point at distance a from XQ and whose d is unbounded

and contains at least one point at distance b from Xo, then there holds

mod log F. (.*.)•

tυhere the equality holds when Co is a segment χQxa with length a and Cι is the

ray starting from one point at distance b from Xo and reaching the point at

infinity on the oriented half line xaXo.

3. Now, a ϋΓ-quasiconformal mapping in space is defined in terms of moduli

of rings in space as follows.

GEOMETRIC DEFINITION. A homeomorphism y(x) of a domain D is called a

ϋΓ-quasiconformal mapping, l ^ ϋ C < 0 ° , if the modulus condition

L- mod R ^ mod R'^K mod R
K

is satisfied for all bounded rings R with Rα D, where Rf and R denote the

image and the closure of R respectively.

ϋί-quasiconformality equivalent to this is analytically stated as follows.

ANALYTIC DEFINITION. A homeomorphism y(x) of a domain D is said to be

a i£-quasiconformal mapping, 1 <: K< oo, provided that it is absolutely continuous

on almost all line segments, parallel to each of the coordinate axes, in each

sphere U with Πcz D, and holds

1
K2 max \y'(x)\z \J(x)\ K* min \y'(x)\
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almost everywhere in D, where y'(x) and J(x) denote the directional derivative

and Jacobian of y(x) respectively.

It is well known that the restriction of a Moebius transformation to a space

domain is equivalent to a 1-quasiconformal mapping of its domain.

Remark. Since VaisalS [11] defined modulus of a space ring by the quantity

4π sup {L{pΫI V{p)}, a mapping is ϋf-quasiconf ormal in his sense if and only
p

1

if it is K2 -quasiconformal by the above definitions.

A homeomorphism y{x) of a domain is referred to a if-quasiconf ormal map-

ping in the classical sense, if it is continuously differentiable with /(#)>0and

satisfies

/maxl/(*)l5

m a x l |/(*)| '

everywhere in D (except possibly for a set being isolated and relatively closed

in D). It is found by arguments in V&isalS [11] that a ϋf-quasiconformal map-

ping in the classical sense is also K quasiconf ormal according to the preceding

two definitions.

Similarly, a ring Rn in the Moebius ^-dimensional space is defined, and its

modulus is defined in terms of L(p), V(ρ) corresponding to Rn by

Further, in terms of these rings, a if-quasiconformal mapping of a domain in

the w-dimensional space is also defined. The monotoneity property of the

modulus of a ring in higher dimensional space remains also valid. (Fuglede

[1]).

4. Gehring ([2], Theorem 3) showed the analogue of a theorem of G. M.

Golusin which gives an upper bound for the modulus of a ring. But the neces-

sary condition for the ring that its modulus attains the upper bound is not

clear.

For the moduli of the Grδtzsch and Teichmϋller rings, Gehring [4] showed

that

Φz(a) ^ Φz(a) and Ψ2(a) S
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where log Φzia) and log Ψ2{a) denote the moduli of the Grδtzsch and

Teichmϋller rings in the plane, respectively.

Here, we deal with the following special case where the necessary condition

for the space ring to be extremal in the above sense and the relation between

moduli of the plane ring with the symmetric axis and of the space ring obtained

by revolving it about its axis can be simultaneously clarified. The plane ring

R2 bounded by two circles one of which lies in the other is called a circular

ring, and the space ring R* obtained by revolving R2 around its central line,

i.e. symmetric axis, is referred to the spherical ring corresponding to the circular

ring R2. In particular, it is well known that for a concentric circular ring Rl

a<\z\<b and a concentric spherical ring Rl : a<\x\<b, it holds

mod Rl = log = mod Rl.

We have the following

LEMMA 3. The modulus of the spherical ring R bounded by two spherical

surfaces with radii r, b (r<b) is not greater than log—. Further, mod R

attains the maximum value log —- if and only if R is the concentric spherical

ring RQ : r<\x\<b.

Proof Without loss of generality, we may assume that R is a spherical

ring bounded by x\ + xl + xl = l and (Xi- c)2 + x]-\- x\ = r2 ( 0 ^ c < l - r ) . Then,

by some elementary computations, it is seen that R can be mapped onto a con-

centric spherical ring rf<"Jy\ + y\ +y\<l by the restriction of a composite map-

ping of

r'(c-r) + l v • _ v *> - Ύ

c+r'-r )

xi Xj

iwhere rf = -ψ- {r2 + 1 - c2 - V(r2-f I~c2)2-4V2}. Since this composite mapping

is a Moebius transformation and so a 1-quasiconformal mapping, it holds that

mod R = log — On the other hand, it is clear that mod /?0 = log— Moreover,
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it can be easily verified that the inequality ^ — holds and the equality holds

if and only if c = 0.

From the above proof of Lemma 3, we can find immediately the following

LEMMA 4. The modulus of the spherical ring corresponding to a circular

ring is equal to that of the circular ring.

Distortion under quasiconformal mappings

5. The so-called lemma of Schwarz on bounded and regular functions in

a circular disc gives two precise estimates, at each point in the circular disc,

the first of which is made for absolute values of these functions and the second

of which is made for absolute values of their derivatives. A space analogue

corresponding to the first estimate in the lemma of Schwarz was shown by

Sabat, who states only iΓ-quasiconformal mappings of I x \ < 1 "onto" itself. We

enunciate here, for the later use, in a slightly more general form replaced

Onto" by "into", and prove it to make sure.

THEOREM L Let y=y[x) be any K-quasiconformal mapping of \x\ = VΛΓI-{-AΓI

< 1 such that \y{x)\<l and y(0) =0. Then for any 0<\x\<l,

Proof. Let Rx denote the unit sphere I AT l < 1 slit along the. segment from

the origin to the point x, so that mod Rx- log 03 (T— γ) Similarly, define the

ring Ry in the unit sphere | j y | < l : mod Ry = log 03 (η—r) Since the image

y(Rx) of Rx by y-y(x) is a domain in | j y | < l slit along a curve from the

origin to the point~y(x), we have by Lemma 1 and by the modulus condition,

-w mod Rx <; mod y(Rx) ^ mod Ry,

whence follows our-assertion.

Applying Theorem 1 to the inverse of a mapping in Theorem 1, we have

COROLLARY 1. Let y= y(x) be any K-quasiconformal mapping of a domain

in \x\<l onto \y\<l with y(Q) = 0. Then for any 0 < | # | < l ,
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In particular, we have

COROLLARY 2. (Sabat [9]). Let y-y{χ) be any K-quasiconformal mapping

of \x\<l onto \y\<l with y(0)=0. Then for any o < | * | < 1 ,

Remark. An extremal ijf-quasiconformal mapping which induces the equality

for each * in 0 < | * I < 1 in each of the above estimates has not yet been found.

6. Next, we consider a space form corresponding to the second estimate in

the lemma of Schwarz.

THEOREM 2. Let y =y(x) be any Kquasiconformal mapping of I * |<1 such

that M < 1 , V(0) =0 and such that y(x) maps each radius of \x\ <1 onto a curve

which is normal to the image of each surface | * | = r( < 1). Then

J 1

where the equality holds only if y =y(x(r, θi, Θ2)) '- yi — r* cos θu yz — r* sin 1̂
1

cos (02 -f c), yz = r κ sin θι sin (θ2 + c) with a real constant c.

Proof. Denote by Σ r the image of the spherical surface I * | = r under

y =y(χ), and by A(r) and V(r) the surface area of Σ r and the volume bounded

by Σ r respectively. Let M*) be the directional derivative in the radial direc-

tion: N(x) = lim {yixΛ-hx) -y(x)}/hx, where h is a real number, and let /(*)

be Jacobian of y{x). Then by some geometric considerations, it is found that

l/(*)|/l A'(*)| is the ratio between corresponding elements of area on Σ - and

| * | = r. Hence we have for almost every r ( 0 < r < l ) ,

Applying Holder's inequality, we have

\xlz=r
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In view of the analytic definition of a if-quasiconformal mapping in §3, we

see {\J(x)\/\N(x)\3}2 SK almost everywhere. Hence we have

A(r)$2 ^2y/πrκ\\ \J(x) \dω = 2 >Jπ~r^

J J 1*1=7-

Taking account of the well-known isoperimetric inequality

(2) A(r) 3~36τrF(r) 2>0

(vid., e.g. [8]), we obtain for almost all 0 < r < l ,
dV(r) > 3 V(r)

dr ^ rK
and hence

1

Therefore V(r)/r κ is a non-decreasing function of r. Thus we get

(3)

tPut min \y(x)\ = m(r). Then it is evident from y(0)=0 that -tπ(mlr))*ύ

V(r). Thus we obtain

ω i r \y(x) I i £ τn(r)lim mf - ^ — ~ = lim mf — \ —
\x\κ - rκ

3 1

£ lim inf {3 V(r)/4 πrγ p 1.
r->0

1

In the next place, we consider the extremal case where lim inf |.y(tf)|/M *
3

= 1. Then it is noted that the equality holds in (3), because V(r)/rκ is a

non-decreasing function of r. Hence the signs of equality hold in (2) and (1)
also. This implies that the image of U | = r ( ^ l ) by y=y(x) is a spherical

1

surface with radius rκ .

Now, the modulus of the spherical ring bounded by Σ r and l^| = 1 is not

less than -g.- log in view of the modulus condition, while its modulus is not

greater than ^ log as is seen by making use of Lemma 3, from which fol-

lows that its modulus is equal to κ log We can see by Lemma 3 again

that the center of Σ r for 0 < r < l is alwaysy = 0. Hence, an extremal mapping
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y=y(x) : yi=p cos ψu y z = P sin φι cos φ2t y$ = 9 sin φx sin ψ2 maps the surface
1 1

\x\=r for each 0 ^ r ^ 1 onto the surface \y | = r * . T h u s we have ρ - r κ .

Since the equality holds also in Holder's inequality (1), we have

\J(x) \/\N(x) i = sin φιdφidφ2/sm βidθiddi = constant

for each fixed r and almost every θi, θ2 such that 0 < r < l , 0 ^ι π and o

^ 2 π. In fact, we have from the equality in (1),

rκ =2Vπ

so that

Jo Jo W sin

whence follows that for all 0 < r < l

This implies that the area element at (r, θu Θ2) on \x\ ~r is equal to that at
1 1

(r, φu Φ2) on I vl = r corresponding to (r Λ ' , <ρlt φ2) on the image \y\ - rκ of

\x\ = r by an extremal mapping jy = v(#). Therefore θi = φu and accordingly

dφ2 = dθ2, so that $2 = 02-f-c, c being any real constant. Consequently, it has

been shown that any extremal mapping is nothing but y~y(χ{r, d1} 62))

mentioned at the latter half of the theorem. The converse holds obviously.

Our proof is completed.

7. The extremal mapping which induces the equality in the estimate obtained

in Theorem 2 is uniquely determined except for rotations of the sphere |ΛΓ|<1.

If we exclude from the assumption of Theorem 2 the statement "y(x) maps

each radius of I # | < 1 onto a curve which is normal to the image of each

surface \x\=r(<l)"y it remains indistinct whether the uniqueness of the

extremal mapping in the above sense holds or not. However, we can show in

general the following

PROPOSITION 1. Let y =y(x) be any K-quasiconformal mapping of the n dim-

ensional sphere |x\ = V#?-+• x\ + + # i < l (w>3) into another such \y\<\

with v(0) =0. Then there holds
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liminf Γ

where the equality holds for such a mapping y-y{χ{r, 0i, 02f . . . , 0*-i)) as
1 1 1 1

yi = rκ cos 0i, y2 = r* sin 01 cos 02, .y3 = r κ sin 0i sin 02 cos 03, . . . , :v«-i = r κ

1

sin 0i sin 02 sin 03 sin 0rt-2 cos (0«-i -f c), yn = r * sin 0i sin 02 sin 03 * sin 0«-2

sin (dn-i + c) with any real constant c.

Proof, Denote by m(r) the shortest distance from y = 0 to the image of

| * | = r under y-y(χ). Then the image y(r<\x\<l) of the ring r < | x | < l

under y =y(x) is contained in the ring m(r) <\y\<l, so it separates the boun-

dary components of the ring m(r) <| jy |<l. Hence it follows from the monoto-

neity property of the modulus that

• " * m(r)

On the other hand, we get by the modulus condition,

Xlog y moάyir< 1*1 <1).

Hence m(r)/rκ l, so that

1 1

lim inf \y(x) |/| * | κ - lin inf m(r)/r κ ^ 1.
a5-»0 r-*0

Considering the inverse of a mapping in Proposition 1, we have

COROLLARY 3. Let y=y(x) be any K-quasiconformal mapping of a domain

in | * | = V*J + * J + + * i < l owίo |>>i<l ^ί/Λ ̂ (0) = 0 . T^w there holds

lim sup L y ( * ) | / l * Γ > l ,
X-+Q

where the equality holds for such a mapping y=y(χ(r, dlt . . . , 0 r t - x ) ) as yι

= rκ cos 0i, y2 = rκ sin 0i cos 02, jv3 = τ s > sin 0i sin 02 cos 03, . . . ,yn-i = r x sin 0i sin 02

sin 03 sin 0W_2 cos (0w-i -f c), yn = rκ sin 0i sin 02 sin 03 sin 0W_2 sin (0rt-i + ^)

wtί/i any real constant c.

Remark, It can be easily verified from our above proof that under the same

or Proposition 1, it ho

liminf \y(x)\/\x\*£l,

assumption as in Theorem 2 or Proposition 1, it holds for all a -^
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and, under the same assumption as in Corollary 3, it holds for all a Kt

By the above results, we can enunciate in particular the following

COROLLARY 4. Let y==y(x) be any K-quasiconformal mapping of \x\<lonto

\y\<l satisfying jy(O) = 0. Then for a>K,

lim inf |^U)|/ΓΛrΓα^l^lim sup
0 Qcc->0

Remark. If we exclude the restriction that the origin is carried into itself

and each sphere is the unit one from the assumptions in Theorems 1, 2 and

their corollaries, the Corresponding results to them can be obtained respectively

by means of ,them and auxiliary Moebius transformations, which will be noted

down elsewhere.

8. We denote by ©Λ the family of all ϋf-quasiconformal mappings of M < 1

into \y\< °° such that y(0) = 0 and lim \y{χ) \/\x\a = 1, a being real. Before
X-+Q

we consider the distortion of mappings belonging to δ«, we shall establish the

following general theorem indicating the range of such an a as Srt is empty.

THEOREM 3. Let y =y(x) be a K-quasicoήformal mapping of I # | < 1 {into

the Moebius 3-space). Assume that y(0) = 0 and that the positive finite lim
OJ-> 0

\yXx) \l\x\a exists for a real number a. Then l/K^ a ^ A'.

First we prepare for the proof of it.

LEMMA 5. The sphere \x\<l cannot be mapped onto |j>| < oo by any K-

quasicoformal mapping.

Proof. For completeness, we give a proof based essentially on the classical

method due to 0. Teichmiiϊίer.

Suppose, on the contrary, that | # | < 1 can be mapped onto \y\< °o by a K-

quasiconformal mapping y=y(χ). Then we can choose a suitable positive

number rx ( <1) such that the image of \x\ ̂  r\ by y-y(x) contains the origin

v = 0. Put max ί^(^)| =M. Then there exists a real number r2 (>n) such
l a ; | = r i

that min \y(x) \ ̂  Mex for any positive number X. Since the ring M< \y\ <Mex

separates the boundary components of the image y{n<\x\<r) of ri<\x\<r
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by y=y(x), where ^ r < 1 , the monotoneity property of the modulus and the

modulus condition imply

tflog —— S m o d ^ ( r i < k l < r ) > l o g ^ ~ = X ,

which is a contradiction, since X can be chosen arbitrarily large.

Remark. It is noted by Lemma 5 that the complement Ήy(\x\<l)y in the

Moebius space, of the range of values taken by an arbitary ϋf-quasiconformal

mapping y =y(x) of |#I<1 cannot degenerate into the point at infinity, and is

also noted by using a suitable auxiliary Moebius transformation if necessary

that it cannot reduce to the single finite point. Therefore, ζ€y(\x\<l) is a

(bounded or unbounded) continuum including at least two points.

PROPOSITION 2. (An extension of Lemma 1). Suppose that R is a ring in

the Mozbius space whose Co is bounded and contains the closed sphere \x\ika

and whose another Ci contains at least two points xp and xQ satisfying \xp - xq\

£\x<,\-a. Then there holds

In particular case where xq is the point at infinity, this reduces to Lemma 1.

Proof. Take the plane passing through three points the origin, xp and xq

as the coordinate (xit x2)-plane, and choose the oriented ray issuing from the

origin and passing through xQ as the positive #raxis, and introduce a system

of cartesian coordinates xu x-2, #3. We denote the coordinates of Xp and xq re-

spectively by {pu p2, 0) and (#, 0, 0).

Now, we will construct a transformation which carries | x | ̂  a into itself

and the point xq(qf 0, 0) into the point at infinity. After some elementary

computations, we can see that such a transformation is a composite mapping

y=y(x) of the following

τr._ (q2-a2)Xj , . - 9 ox

=Yu v3 = Y2, ^3 = Y3,

which is a Moebius transformation and so 1-quasiconformal mapping. Hence
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we have mod R = mod R1, R1 being the image of R by y -y(x).

Denote by yp=yp(p[f Pu P^ the image of the point xp under the above

composite mapping y-y(x). Then it lies on the Gaussian (yu j^-plane and

hence it holds that

-cΐ.Ϋ+ίqpzfHiq-piY + pl

The complement of the image R* of R consists of two components C[ and C[

such that Cί contains the closed sphere \y\^a and Cί is unbounded and con-

tains the point yp. Consequently, by Lemma 1 we have

mod Rf < log 03 (-i^il^ί ).
- * *\a\xp-xQ\)

Proof of Theorem 3. We let yp denote a point at the shortest distance

from the origin to the complement of the image domain of | x \ < 1 under an

arbitrary mapping y = y(x) satisfying the condition of Theorem 3. Then, by

Lemma 5, yp cannot be the point at infinity. Now if we set lim \y{x) \l\x\* = d>

then corresponding to yp and any positive number ε (<d), there exists a

positive number δ such that

for 0 < I x I < δ. Denote by R the concentric spherical ring r < \x \ < 1, where 0 <

r<δ, and by y(R) the image of R under y =y(x). It is easily seen that

(5) l o g —

On the other hand, we find in view of Remark after Lemma 5 that the

complement of the image y{R) consists of two components Co, Cu where Co

contains the sphere ^ l id- ε)ra and d is a continuum including at least yp

and yq such that 0 < l ^ -yQ\ ^\yQ\ - (d- ε) δ*. Thus by Proposition 2,

m o d * * ) Slog * ( jj
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Since Φz(a) ^λa for e > 1 as is stated in §2^ we get

(6)

Furthermore, it holds by the modulus condition that

(7) -^ log -ί mod y(R) S K log --.

Form the above (5), (6) and (7), we obtain the following two relations

1 log -1- < log^ l o g - r * log

Here, by making r-*0, it, can be deduced that a K and ~ ^ α , which is the

assertion.

Theorem 3 implies that the family β α is empty for a < -j? or a> K. More-

over, it will be shown in §10 and §11 that ©α is not empty for ^ a ^

9. Suppose that w = w(z) = u(s, t) -f iυ(s, t) is a certain plane ϋΓ-quasi-

conformal mapping of a symmetric domain Dz with respect to the s-axis in the

2-plane onto a domain Δ2 with the same property in the w -plane. We introduce

a system of cartesian coordinates xu x z, x* such that the #i-axis and ΛΓ2-axis. co-

incide with the s-axis and /-axis of the z-plane respectively, and denote by Ds the

space domain obtained by revolving A about the #i-axis. Following the same

procedure for u- and r-axes and the symmetric domain J2, we have yr> y2- and

^3-axes and the space domain Δz of revolution about the praxis. Then, the

certain mapping y =y{x) of A onto Δz associated with w = w(z) can be defined.

In the next place, we treat with a relation between some mappings w = w(z) and

y=y{x) of this kind.

PROPOSITION 3. Suppose that w = w(z) = f(r)et0Xw^uΛ-iυ, z = s + it = ret0)

is a K-quasiconformal mapping of 121<1 in the classical sense. Then, y =

y(x(r,d, ψ)) '- y± = f(r) cos θ, y2 = fir) sin θ cos ψ, y^ = f(r) sin 0 sin.̂ > is also

a Kquasiconformal mapping of \x\- ^x\-\-x\-\ x\<l in the classical sense.

Proof. We have easily
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l J { z n ~ , t)
lf'lr)f(r)\

r

Let {w'Cz))ι,m denote the directional derivative of w(z) in the direction whose

direction cosines are /, m. A simple calculation gives

cos sin

Here, / cos θ + msinθ denotes the cosine of the angle between the ray from

z with its direction cosines J, m and the ray passing through z from the origin.

Therefore it holds that 0 (I cos β + m sin θ)2 1. Hence we have

max \(w'(z)),,m\2 = f'(rY or

if \f'(r) l 1 f(r)\/r or l/'(r).J^|../(r)|/f, respectively, so that

!.^ _ r\/'(r)
1/(2)1

Hence our assumption yields that

(8)

/ | /
l/(f)| . 0 Γ r |/ ' (r ) | . "

On the other hand, we have similarly

Denote by (̂ '(̂ ))/,m,n the directional derivative of .?(#) in the direction whose

direction cosines are /, m> n. Then the square of its absolute value is expressed

as follows:

After some elementary computations, we obtain
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| f = (fir) - *ψ-) sin2 θ sin2 ?

| g = (/'(r) - ^ ) sin 0 cos 0 cos|g

Inserting these in the above expression, we have

1 (/U))/,m,»l2 » {/'(r)2 - ( ^ ~ ) } (/ cos 0 + m sin 0 cos φ + n sin 0 sin <pΫ

HΨί-
Since ί cos 0 + m sin β cos V5 + » sin 6 sin y> means the cosine of the angle between

the ray from x with its direction cosines /, m, n and the ray passing through

x from the origin, it holds 0Sί(/ cos θ + m sinθ cos ψ + n sin θ sin ψY^l.

Therefore, if /'(r)2> (f(r)/r)* (or /'(r) 2 ^ (f(r)/r)2), then

max KyU))i,»,,,f = / ' ( r ) ! (or

min | (/(*)), . m > ί , | 2 = (/(r)/r) 2 (or f'(rY).

Thus we find that

y W _ Λ^W* | / M _

I7U)| ~ V /(r) λ a n Q m i n ] ( y ( « ) ) . „ ! * " ~ \/(r)\ '

Γ^ ώ ^ * ^ ' |/(r)| a n d I/U)| _ / / ( f ) Π
~ "7--ri ~ " - " " r ) | a n minKyu))/,m.n|

3 ~ \rf'(r) ) J

Recalling here the inequality (8), we have

/max|(y(^))j^ |̂ \J{χ)
m a x V f7ΰl "

Moreover, since ^ = ̂ (2) is a continuously differentiable homeomorphism

of l z | < l , we see that y -y(x(r, 6, ψ)) has also the same property in | # | < 1 .

is a jfiΓ-quasiconformal mapping of | # | < 1 in the classical sense.

10. Now, we consider the family θ« of all if-quasiconformal mappings of
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U | < 1 into the Euclidean 3-space \y\ < oo such that y(0) = 0 and lim \y(x)\/\x\*

— 1, a being real, and discuss about the cases where inf min \y(x) I is positive

and sup. max \y{x) | is finite and where there exists the so-called Koebe's con-

stant for <Sα and @α is a normal family.

THEOREM 4. The infimum of min \y(x)\ for all y(x) e ©α is positive if

and only if oc = ~jζ

Proof, (i) The case a = ~ The proof in this case proceeds similarly

to that due to Gehring. Let y -y(x) be an arbitrary mapping belonging to Sα,

and denote the image of the ring r'<\x\ <r for 0 < r ' < r < l under y =y(x) by

yir'<\x\ <r). Then the complement of y(r'<\x\<r) has two components, one

of which is bounded and contains the sphere |y | ^ min \y(x)\ and the other of
| Λ | = Γ '

which is unbounded. Thus we have by the modulus condition and Lemma 1,

\y(x) \ \
Λ

\ \x\=r'

In view of the estimate Φzia) Sλa for a>1 stated in §2, we have

χ -κ λ min \y(χ)\

V r11 ~ min I
|a?|=r'

so that

rk min \y(x)\
(9) min \y(x)\ fc^-

*<.\x\=r<l ^ κ

Letting r'-^O, we have for all y{x)^S i ,
K

min
0<[α;|=r<l

which is also valid for r = 1 .

(ii) The case -~ <a l. Consider ^ = y(x(rf θ, ψ), n):

jVi = fn(r) cos 0, 3>2 = fn(r) sin 0 cos y, JV3 =/«(r) sin 0 sin ̂ >,

1 — (̂ 1 — - J r A Ί n " υ | . Then it is a /£-quasiconformal mapping
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of ! # | < 1 in the classical sense by Proposition 3, because it is proved in [ 5 ]

t h a t w = w(z, n) = fn(r)etθ (z = retB) is a ϋΓ-quasiconformal mapping of | z | < l

in the classical sense. Obviously, jy(Q, n) = 0 and lim \y(χ, n)\/\x\* = 1, and

hence y = y(x, n) e <Sβ. Since y =yixy n) maps \x\ < 1 onto \y\ <- , we obtain

inf min \y(x)\ = 0 by making n-+ oo.
?/e©ot 0<|a?|»rSl

(iii) The case l < a if. Take y -y(x(r, 0, y>), n) :

3Ί = r* cos 0, jy2 = rα sin 0 cos <p, ^ 3 = r* sin ^ sin φ for I i | < —.

^i = r[ n-J. cos 0,̂ 2 = r(—J sin 0 cos y,,yβ = r( - J sin θ sin ^

for I / Λ ^ I X K L ,

It is easy to see that this mapping y =y(x, n) is an α-and so ϋi-quasiconformal

( 1 \a

— J ~*-0{n

->oo) for U|.= r<~- and \y(χ, n)\ = r(^)* <{--)* ->0 (w^ ») for i

\x\=r<l. Thus we get inf min |JV(ΛΓ) 1 = 0.
/εgα 0<|a?| =r^l

Since @* is empty for α>/JC or a<--jr by Theorem 3, our proof is com-

pleted.

In particular, we have the following

COROLLARY 5. For the family ®β, there exists the so-called Koebe's constant

tf and only if a= -g- Further, if <x*-j?% then there exists no Koebe's con-

stant even for the subfamily of @α each mapping of which is K-quasiconformal

in the classical sense.

Remark. Letting r-+l in the estimate (9) showed in the above proof, we

find immediately for any ϋΓ-quasiconformal mapping of \x\ < 1 into \y\ < oo with

;y(O)=Othat

- min \y(x)\

min l,y(*)l>4ϋmsup l a ; '= 8

which is equivalent to the estimate (52) in Gehring [3] as is easily verified.

11. We can find the following facts in contrast with the results in § 10.

THEOREM 5. The supremum of max \y(x) | for all y(x) e ©α is finite if
0<ja?|=r<l

and only if oc-K.
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Before proving the theorem, we prove the following lemma.

LEMMA 6. The supremum of min \y(x) \ for all yix) e ® x is not greater
0<|a;|=r^l

than (λr)κ.

Proof. Let y = yix) be any mapping belonging to ©*, and put min \y(x)\
0<|a;|=r<l

= m. Then the inverse mapping χ=χ(y) of y^y(χ) maps \y\<m into | # | < r

< 1 . Let Ry denote the sphere \y\<m slit along the segment from the origin

to the point y, and let x(Ry) denote the image of Ry under x = x(y). Then

the monotoneity property of the modulus and Lemma 1 yield

mod Ry = log 0s(τ^r) a n d m o d

Take the modulus condition -~-mod ̂  mod x(Ry) and the estimate a

^ λa for a>1 into consideration. Then

so that

Letting χ-*0 here, we have

sup min \y(x)\ (λr)κ

i

@ 0<|a;|=r<l

which is also valid for r = 1.

Proof of Theorem 5. (i) The case α: = /£ Let ^(r<|Λ;| <1) be the image

of the ring 0 < r < | # | <1 by any y =y(x) e @β. Then we have by the modulus

condition and Lemma 2,

rnin \y(x) \ \

Since ^(α) is a non-decreasing function of α, we get

1

max \y(x)\ mm\y(x)\/Ψϊ1{(±-)K }.
0<|a;|=r<l Jα?| = 1 \\ r ' >

where Ψΐι(c) denotes the inverse function of c = Ψz(a). In view of Lemma 6,

we have for all yix) e ©α,
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max \y(x)\£λκ/r;ιl(±-)K)'

(ii) The case l<,a<K. Consider y = y(x(r, θt φ), n) -

yι ~ fn(r) cos 0, y2 = fn(r) sin θ cos <p% y$ = fn(r) sin θ sin φt

where fn(r) - rβ{l + In - D ^ ) for w> -«.—— S i n c e 'ιt i s shown in [5] that
Jx — cc

w = w(z, n) ^fn(r)e^ (z-retQ) is a /f-quasiconfomal mapping of U | < 1 in the

classical sense, Proposition 3 implies that y —yixir, θ, φ), n) is also a ϋΓ-quasi-

conformal mapping of \x\ < 1 in the classical sense. Evidently.y =y{x,n) satisfies

the normalization y(0t n ) = 0 and lim \y(x, n) \l\x\* = 1, so that it belongs to

©α. Furthermore 3? = y(x, n) maps | ^ I < 1 onto \y\<n and

> T ' "2")f M)l =

(iii) The case 1/K a<1. Take y = y(x(r, θ, ψ), n) as the mapping with

the form mentioned in the case Koc^K m the proof of Theorem 4. Then, it

is similarly verified that this mapping is i£-quasiconformal in | x \ < 1 in the

classical sense and satisfies our normalization at the origin, so that it belongs

to ©*. If we take n such that n>lit for a given r ( 0 < r < l ) , then we see

that on \x\- r>

\y(x9 n)\^r{-~) =rnι~*-+ + <*> (n-* <χ>).

Thus our theorem is established.

A family iy(x)} of continuous vector-valued functions y(x), defined in a

domain J9, is called a normal family if every infinite subfamily of iy(x)} con-

tains a sequence which converges uniformly on every compact subset of D.

Then we have

COROLLARY 6. The family S α is normal if and only if cc = K.
1

Proof It is easily verified that the estimate max \y(x)\^λκ/Ψz1Ul/r) κ }
0<la;l=r<l

obtained in the case (i) in the proof for Theorem 5 is also valid for 0 < | ^ r | < r

< 1 . Hence we have for all x in the sphere 1 AT — ΛΓ/, l < 1 — VΓ^T about each

point xp in \x\ < 1 and all

+ }•
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whose right hand side will be simply denoted by M(xp). Then, Y(X) -y(xp

+ X)~y{xp) is if-quasiconformal with Y(0) = 0 and \Y(X)\^_2M(xP) in |Zi <

l — >/\xp\. Thus, we see by Theorem 1,

Using the estimate a Φs(a) ̂ λa for a>1, we get

\γ\

so that

H-Vl*/>1 \*^ 2λM(xP)
V \X\

Hence, putting xp + X=x, we have for \x-Xp\<l-j]xp\,

Further, put δ(xp) = min{l - VΪ^I, (1 - yJ\xJ\)εκ/(2 λMixp))κ} for an arbitrary

positive number e. Then it follows that

\y{x)-yixp)\<*

for all x in \x-~ xp\<δ(xp) and all y(x) e@ κ , which yields that the family ξ5κ

is equicontinuous at each point of | # | < L Hereafter, almost similarly to the

proof for the familiar Ascoli-Arzela's theorem, it can be proved that (&κ is a

normal family in | # | < 1 .

In the case a=*K, by using our examples mentioned in the cases (ii) and

(iii) in the proof of Theorem 5, it is easy to show that the family @α cannot

be normal.

Correspondence under quasiconformal mappings

12. Let E be any compact set in the bounded domain D in 3-space, and

denote by C(E) the logarithmic capacity of E, by mo(E) the (outer) logarithmic

measure of E, by C(a)(E) the capacity of order a of 2s and by mΛE) the (outer)

α -dimensional measure of E. Then, we have immediately the following space

form of a result by A. Mori [7]:

THEOREM 6. Let y-y(x) be ά K-quasiconformal mapping of the bounded
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domain Dx in 3-space onto another such domain, and let Ex be a compact set

in Dx and Ey its image by y(x). Then it hold

(10) ^

(11)

(12) C(a){Ey)^A{C^\Ex)Y^ and

(13) m*(Ey)£A*m « {Ex),
k

where 0<<x<3 and A is such a constant independent of y(x) as in the next

Lemma 7 due to Gehring (cf. [3], Cor. 6).

LEMMA 7. Let y =y(x) be a K-quasiconformal mapping of a bounded domain

Dx onto another such domain, and Ex be any compact set contained in Dx.

Then, corresponding to Ex and its image set Ey, there exists a constant A in-

dependent of y{x) such that

for all x{1), x{2) in Ex and their images y(1} =y(x(1)), y{2) = y(χ{2)).

Proof of Theorem 6. It is well known that for any compact set E, C{E)

(resp. Cίβ°(jE)) is equivalent to the transfinite diameter of E (resp. of order a

of E), whose definition is

lim max ^ V Π ' ! ^ - / ' !

(resp. lirn ̂ m^ j ( « ) / Σ " ^ ^ Π '

(Cf. Frostman's thesis or Ugaheri [10]). Thus, (10) and (12) are immediate

consequences of these relations and Lemma 7.

(11) is proved as follows: Take a countable number of subset Uj such

that the diameter δ(Uj)<ε<l and ̂ Uj^>Ex, and put Vj=y(Uj). Then, for

any 0<ε'<l, it is noted by Lemma 7 that there exists a positive number eo

such that δ{ Vj) < ε' and 0 < K\ log A I/log (l/δ( Uj)) < \ for all 0 < e^e0. Thus

by making use of Lemma 7 again, we get

1 ^ 1

l o g ΊiWi) ί1 -
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Sκ(l + 2K\logAI/log i)/log -J^.

from which we have

m§(Ey)^\\ΐΆ inf 5]

log —)inf Σ —Λ— = Kmo(Ex

ε V j } 3 1

Since (13) is shown similarly to the above, we shall omit here.

13. A domain D is called a (space) Jordan domain if its boundary is

homeomorphic to the spherical surface I x I = 1. Then, the following fact can

be verified by using the similar argument due to Vέiisala ([12], §2) or Gehring

([3], §§22-24).

LEMMA 8. Suppose that a part of the boundary of a space Jordan domain

Dx consists of a plane Jordan domain Gx. Then any K-quasiconformal mapping

y{x) of Dx onto another Jordan domain Dy can be extended to a homeomorphism

of Dχ+Gχ. Suppose moreover that its homeomorphism maps Gx onto another

plane Jordan domain Gy. Then y(x) can be extended as a K-quasiconformal

mapping outside Dx over Gx.

Such a mapping as extended by Lemma 8 are led to a if-quasiconformal

one of a space domain including Gx onto another such domain including Gy

which let Gx correspond to Gy, and the correspondence between Gx and Gv by

such a mapping induces a plane quasiconformal mapping being not always K
4 2

quasiconformal. For instance, y =jy(#) : yι = xu y* = K* x>, yz~K 3 Xz is a if-

quasiconformal mapping in space, and the correspondence between (xu x2)-

plane and (yu jy O-plane induced by y=y(χ) is the plane quasiconformal map-

ping but not the plane i£-quasiconformal one. However, since such a correspon-

dence between Gx and Gy is absolutely continuous or measurable, it transforms

any set of 2-dimensional measure zero on Gx into a set of the same measure

on Gy.

Now we have the following from Theorem 6.

COROLLARY 7. Let y~y(x) be a K-quasiconformal mapping of a bounded

domain Dx in space onto another such Dy such that y =y(x) let a plane domain
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Gx on the closure of Dx correspond to a plane domain Gy on the closure of Dy.

For a compact set Ex in Gx, if the logarithmic capacity, measure, capacity of

order cc, and cc dimensional measure of Ex are equal to zero, then the logarithmic

capacity, measure, capacity of order Kα, and Kα-dimensional measure of the

image Ey of Ex by y =y(x) are also equal to zero, respectively.

14. As is proved by Gehring [33, any ϋf-quasiconformal mapping y=y{x),

defined in a space domain D, is measurable, and hence it transforms any set

of 3-dimensional measure zero in D into a set of the same property. However,

it is indistinct whether y-y(x) transforms any set of cc (0<α:<3)-dimensional

measure zero into a set of the same property. In the next place, we shall

give a criterion for both some closed set Ex in a Jordan domain D and its

image set under any A'-quasiconformal mapping y-y(x) of D to be of the

same αr-dimensional measure zero.

Let £ be a compact set in 3-space and let its complement *€E be a (con-

nected) domain. A set {RnJ)} (j=1, 2, . . . , v(n) < °o n = 1, 2, . . .) of rings

RnJ) will be called a system inducing an exhaustion of *€E if it satisfies the

following conditions:

(i) the closure R%j) of R^j) is contained in

(ίi) the one component Cΐ/i of the complement of RlίJ) has at least one

point common with E, and the other component Cf/n contains the point at infinity,

(iii) any point of E is contained in a certain Cj$,

(iv) Rlίk) lies in C\% if k*j,

(v) each 2?«fi is contained in a certain Cl% and

(vi) {tfEn)ϊ-\ is an exhaustion of "€E, where

Denote by mod R^ ί, = log μ*J?} the modulus of /?*% and put min log μVfn

= logμ3,Λ. We can prove the following space analogue of our previous result.

THEOREM 7. Let Ex be such a set as E stated above and y~y(x) be any

K-quasiconformal mapping of a Jordan domain D including Ex. If there exists

a system {RHn} (j = 1, 2, . . . , v(n) < oo n = 1, 2, . . . ) inducing an exhaus-

tion of "€EX which satisfies
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limsy{aφlogψ;Hμg)-(l- ")logp{n)}= + °o

for some a such that 0 < α ^ 3 , then Ex and its image Ey by y —y(x) are of a-

dimensional measure zero.

Proof. First, take a point x{^n in Cl'/n and put

r£n = max \x-Xo{]n\, p{£n~ min \x—χl{\\t

where B[j

tn and B\J

tn are the boundaries of C\[jn and C]%\ respectively.

Since there exists a number ND such that the sub-system of {RnJ)} for n

^ND is contained in D, we can difine similarly μyfi, ry'?n and py

(?l concerning the

images Ry% y(B\%) and y(B\(/ί) of R]}/i, Bΐ£ι and BΪ/n

] for n ND, respective-

ly. Evidently, the image set {Ry/n} of {#*'/*} (y= 1, 2, . . . , i (w) < °° n = Nn,

Nπ + ly . , .) is a system inducing an exhaustion of the complement %Έy. By

the modulus condition and Lemma 2, we have for n> ND,

•J*- log μz, n log ^ n log

or

Similarly we have

(15) Txϊn ̂  Pxl

)n/Ψϊ1(μa.n)

Starting from (14) and applying Holder's inequality, we have for n>ND

and 0 < or ̂  3,

4 7Γ v ( n )

Now, it is obvious that ~— Σ ( ^ « ) 3 is not greater than the sum of volumes
O j = 1

V(M) . ^ V ( / i - l )

bounded by U^(i5ίf») and that o - Σ (rj. n-i) is not less than the sum of
i=1 o k=l

v(/ι-υ
volumes bounded by U jy(J5ί;i), and so

V(ri) v ( n - U

Σ ( Λ ( i ) ^ 3 ^ ^ / ik) \ 3

; x »i
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From (14) again, we have for n-l^ND,

V(n-l) 1 V(n-l)

Bringing these into the right hand side of (16), we have for n — l>NΒ

M*-i- ίiiiL: J x p / (Jfe) \3l

^/ ^ /? z Γ-i/ i / ϊ α β / r i / tυκ \\a ) ZJ \Qy,n-\) (
XΨi \fJz,n)ί \Ψz \fM,n-ι!f ι k=1 ]

This process can be continued up to RI^D* and finally we obtain

v(n) . /^U-a/S , vfiV/)) ^ α/3

Starting from (15) and proceeding almost similarly as stated above, we have

also

. v Π ) \aί3

Σ ( P ( Γ 1 ) 3

Since ψ;Hμ)^ψ;\μlκ) for μ>l and

from our assumption, it holds

lim m f Σ ( r ^ ) Λ = 0 = lim in
n->co j = 1 n->ao j = 1

which proves our assertion.

COROLLARY 8. Let Ex andy —y(x) be the same ones as in Theorem 7. If there

exist a positive number δ and a system {Rl(fn) (j = 1, 2, . . . , v(n)< oo n = 1,

2, . . . ) which satisfy

lim inίμz.n^ { W l + <5)}* αwd Urn inf τ τ x > ~ ^ = 0

/or so we a such that 0<αr^3, then the same conclusion as in Theorem 7 fol-

lows.

15. Finally, we consider the particular case when for Ex and y-y(x) in

Theorem 7, y -yix) induces the correspondence between the plane Jordan

domains on which Ex and y(Ex) lie respectively.
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THEOREM 8. Suppose that y = yίx) is any K-quasiconformal mapping of a

Jordan domain D which transforms a plane Jordan domain G included in D

into another plane Jordan domain H and that Ex is a compact set on G such

that the complement (€EX of Ex in the extended plane on which G lies a {con-

nected) domain. If there exists a system {RnJ)} (j=1, 2, . . . , v{n)< °° n =

1, 2, . . . ) of {plane) circular rings inducing an exhaustion of the complement

which satisfies

limsup {αΣlogSTV*;*) - ( l - ^r)logv(n)} = + <χ>

for some a such that 0<oc<L2t then Ex and its image set Ey by y=y{x) are of

a-dimensional measure zero, where log pι,n means min mod /?*/« = min

log^

Proof. First, construct the system {Rx\
jn) of spherical rings corresponding

to the given system {Rxfn) of circular rings, and let ND be a number such that

the sub-system of {#*/«} for n ND is contained in D. Denote by R2J/i the

intersection of the image Ryfi of Rll$ for n ND with the plane H. Then

{Ryfn} (/ = 1, 2, . . . , p(n) < oo n = ND, ND+l, . . . ) is evidently a system of

rings inducing an exhaustion of the complement *€Ey of Ey in the extended

plane on which H lies.

Next put mod Ry\
Jn = log μyfi for n>ND> and take a point yfy in the bounded

complement Cl\n of Ryfi, and put for n^Nn,

rifi= max I ^ - ^ I. P& = min \y -y^ I,

where JSjf̂  is the inner boundary of Ryfn and B\\n the outer one, and define

rxfn, Pxfn for /?ϊ/« similarly to ry% py% respectively. Then, the preceding

relations (14) for n ND and (15) hold also in this case.

Applying Holder's inequality to (14) and (15), and proceeding almost simi-

larly to the previous argument, we have finally for 0 < a ^ 2,

Wn) . , ί •» \1 —oc/2 jWΛT)) N ot/2

Σ < * • # . ) • * - s - ^ Σ »*}
IKF - Uίf)}" - 1

and V(n) . , , ί - M ^ l - β / 2 ί v ( 1 ) l α / 2

j = 1 Π ^ ' ί ) } " "•'
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Since μ3j = μ*,ι by Lemma 4, we have Wil(Mij)>¥i^l{f) = Ψ^iμlί*). Further,

from our assumption it follows that

f v{n)ι-an

Tl-»CD

\im inf v{n)ι-an/ήiΨ Hμlίΐ)}* = 0,
/

which implies our assertion.

COROLLARY 9. Let Ex and y-y(x) be the same ones as in Theorem 8. If

there exist a positive number δ and a system {#*/«} (/ = 1, 2, . . . , v(n) < °°

H = 1, 2, . . .) of circular rings Rl\Jn which satisfy

/ \l-α/2

liminf μitn>{Ψz(l + δ)}κ and lim inf , ,"\l-JrO)

for some or such that ^< a 2, then the same conclusion as in Theorem 8

follows.

We gave in [6] an example of the set, of positive logarithmic capacity, to

which a system satisfying the condition in Theorem 8 or Corollary 9 corresponds.

By the way, an example of the set with such a property in Theorem 7 or

Corollary 8 is also given as follows.

Let E(pu Pz> . ) be the symmetric Cantor set generated from a closed

segment with length h, and let Sίiii O'=l, 2, . . . , 2n) be closed segments,

with equal length /«+J, remaining after the n-th deletion process taken in its

generation. Denote by Rn3) the concentric circular ring whose center is the

middle point of S^, and whose radii -^-(1 -f l/pn+i)(l - 1/Pn) and ^- (1 + l/pn).

We can see that mod R)ϊj^l/2(l~l/pn).

Now, take the direct product set E(pu Pz, . . .)xE(pu p2, . . .) *E{pu

p2t . . .) and make each spherical ring Rnjkl), corresponding to each circular

ring RnJ), which has the center at the middle point of each cube S^+iXS^Λx

S&i. Then we have a system {RVkl)} (j> k, I = 1, 2, . . . , 2* w = 1.2, . . .)

inducing an exhaustion of the complement of the above direct product set in

the Moebius space. In particular, it is easily shown that this system for pn~

3{r3(81/α)}x/C3{r3(81/α)}x~l] satisfies the condition in Theorem 7 or Corollary

8 and the direct product set is of positive logarithmic capacity.
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