ON THE DISTORTION AND CORRESPONDENCE UNDER
QUASICONFORMAL MAPPINGS IN SPACE

KAZUO IKOMA

Introduction

Récently many important results on rings and quasiconformal mappings in
space have been obtained by B. V. Sabat [9], F. W. Gehring [3], J. Vaisalad
[11] and others. The modulus of a ring in space can be defined in three ap-
parently different but essentially equivalent ways. (See Gehring [4]). In the
theory of quasiconformal mappings in space, some properties for moduli of
rings in space play an important role, because the method by means of moduli
acts also as a substitute in space for the Riemann mapping theorem which does
not hold in space.

In this paper, we shall give the extremal condition for spherical rings. an
extension of Grotzsch-Sabat’s theorem and an example of space K-quasiconformal
mappings constructed by associating with certain plane K-quasiconformal ones.
By using these results, the monotoneity for moduli of space rings (B. Fuglede
[11) and the extremality and estimates for moduli of the space Grétzsch and
Teichmiiller rings (Gehring [2]) as our main tools, we shall establish mainly
the space forms corresponding to our previous results ([5], [6]) of plane K-
quasiconformal mappings. That is to say, we are concerned with the Schwarz’s
lemma for space K-quasiconformal mappings, some distortions in these mappings
(under a certain normalization at the origin) and a criterion for two sets cor-
responding to each other by such mappings to be of the same dimensional
Hausdorff measure zero, where it is remarked that even if one of such mappings
transforms a plane domain into another plane domain, its correspondence between
these plane domains does not always induce a plane K-quasiconformal mapping.

For the sake of convenience, we shall mostly restrict rings and K-quasi-
conformal mappings to the 3-dimensional space.
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Preliminaries

1. A space ring R’ is defined as a domain whose complement in the Moebius
space, that is, the finite Euclidean 3-space plus the point at infinity consists of
two components Co and C; such that C; is bounded and C, is bounded or un-
bounded. Then the boundaries B, and B, of C, and C, are the boundary com-
ponents of R°

For each non-negative Borel measurable function p(x) defined in a space

ring R® if we put
L(p) =inf { ods, V(o) = Sggmpsdr,

where r denotes any locally rectifiable curve which joins the boundary compo-

nents By, By in R’ then the quantity

L(p)® }*;‘

47 su
{ T Pp V(o)

is called the modulus of R® which is denoted by mod R®
It is seen by Fuglede [1] that
mod R} < mod R} (monotoneity property)
if the ring Rj separates the boundary components of the ring R;.

2. For each a>1, let Ri(a) be the space ring whose complementary com-
ponents consist of the sphere |x| <1 and the ray a= % < «, =% =0, which
is called the space Grotzsch ring. Similarly for each 5>0, let R}(d) be the
space ring bounded by the segment —1=<x =<0, %,=x=0 and the ray 6 = x
< oo, %= x3=0, which is called the space Teichmiiller ring. If we set

mod Ri(a) = log 0s5(a), mod Ri(a) = log ¥s(a),
then clearly 0:;(a) and ¥s:(a) are non-decreasing in e, and it has been proved
by Gehring [2] that it holds

a=0sa)<la

for 1<a< o, where 2 is such a constant as 4<1<124. ...

As in the plane case, the rings Ry and R} have the following extremal
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properties respectively.

Lemma 1. (Sabat [9]). Suppose that R is a space ring whose C, contains
the sphere |x — x| < a and whose C; is unbounded and contains at least one

point at distance b( > a) from ., then there holds
mod R< log %( b >,
= a

where the equality holds when Cy is the sphere |x — %|< a and C: is the radial

ray from one point on |x — x| = b to the point at infinity.

Lemma 2. (Gehring [2]). Suppose that R is a space ring whose Cy contains
a point % and at least one point at distance a from %, and whose C, is unbounded
and contains at least one point at distance b from x,, then there holds
b
mod R< log ¥ ('a' )
where the equality holds when C, is a segment xx, with length a and C. is the
ray starting from one point at distance b from % and reaching the point at

. —_
infinity on the oriented half line x,x.

3. Now, a K-quasiconformal mapping in space is defined in terms of moduli
of rings in space as follows.

GEOMETRIC DEFINITION. A homeomorphism y(x) of a domain D is called a
K-quasiconformal mapping, 1 < K< =, if the modulus condition

1

Kmod R=<mod R\ < Kmod R

is satisfied for all bounded rings R with RC D, where R’ and R denote the
image and the closure of R respectively.

K-quasiconformality equivalent to this is analytically stated as follows.

ANALYTIC DEFINITION. A homeomorphism y(x) of a domain D is said to be
a K-quasiconformal mapping, 1 < K< «, provided that it is absolutely continuous
on almost all line segments, parallel to each of the coordinate axes, in each
sphere U with U c D, and holds

—}z‘., max [¥(2) < | J(x)| £ K? min |y'(2)[®
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almost everywhere in D, where y'(x) and J(x) denote the directional derivative
and Jacobian of y(x) respectively.
It is well known that the restriction of a Moebius transformation to a space

domain is equivalent to a 1-quasiconformal mapping of its domain.

Remark. Since Viisdlda [11] defined modulus of a space ring by the quantity
47 sup {L(p)*/ V(p)}, a mapping is K-quasiconformal in his sense if and only
p

1
if it is K? -quasiconformal by the above definitions.

A homeomorphism y(x) of a domain is referred to a K-quasiconformal map-
ping in the classical sense, if it is continuously differentiable with J(x) >0 and
satisfies

max |y'(x) |° [ J(%)]
[J(®)] 7 min[y(x)]?

max ( )éK 2
everywhere in D (except possibly for a set being isolated and relatively closed
in D). It is found by arguments in Vaiisdlsd [11] that a K-quasiconformal map-
ping in the classical sense is also K-quasiconformal according to the preceding
two definitions.

Similarly, a ring R" in the Moebius #-dimensional space is defined, and its
modulus is defined in terms of L(p), V(p) corresponding to R" by

”n 1
2at _ L(p)") T
7 P V(o) '

r(y) "

Further, in terms of these rings, a K-quasiconformal mapping of a domain in

the z-dimensional space is also defined. The monotoneity property of the

modulus of a ring in higher dimensional space remains also valid. (Fuglede

(1.

4. Gehring ([2], Theorem 3) showed the analogue of a theorem of G. M.
Golusin which gives an upper bound for the modulus of a ring. But the neces-
sary condition for the ring that its modulus attains the upper bound is not
clear.

For the moduli of the Grétzsch and Teichmiiller rings, Gehring [4] showed
that

0:(a) < 0x(a) and ¥.(a) < ¥s(a),
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where log @:(a) and log ¥:(@) denote the moduli of the Grétzsch and
Teichmiiller rings in the plane, respectively.

Here, we deal with the following special case where the necessary condition
for the space ring to be extremal in the above sense and the relation between
moduli of the plane ring with the symmetric axis and of the space ring obtained
by revolving it about its axis can be simultaneously clarified. The plane ring
R? bounded by two circles one of which lies in the other is called a circular
ring, and the space ring R’ obtained by revolving R® around its central line,
i.e. symmetric axis, is referred to the spherical ring corresponding to the circular
ring R®. In particular, it is well known that for a concentric circular ring R; :

a<|z|<b and a concentric spherical ring R} : a<|x|<b, it holds
2 b 3
mod R; = log a =mod R;.

We have the following

LemMma 3. The modulus of the spherical ring R bounded by two spherical

surfaces with radii r, b (r <b) is not greater than log % Further, mod R

attains the maximum value log I; if and only if R is the concentric spherical

ring Ry : r<|x|<b.

Proof. Without loss of generality, we may assume that R is a spherical
ring bounded by xi+xi+%3=1 and (i —c)*+ 2l + =72 (0=c<1-—7). Then,
by some elementary computations, it is seen that R can be mapped onto a con-

centric spherical ring ' < v ;ﬂ-i;ﬁjvﬁ <1 by the restriction of a composite map-

ping of
/ —
%= L(cc_*_‘rf)j}*l =Xi, %=X, %=X,
r(c—7)+1\*_
(—fﬂ’—r ) -1

S S s X; (j=1,2,3),

! —
- (yl + !'(’*C‘"r?“‘l) = Yl) Y2 = YZ; Y3 = Y."n

where 7' = 2—1’ {(FP+1-F = V(P +1=c))'=4»?}). Since this composite mapping
is a Moebius transformation and so a 1-quasiconformal mapping, it holds that

mod R = log 717 On the other hand, it is clear that mod R, = log —];7- Moreover,
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it can be easily verified that the inequality 3, é% holds and the equality holds
if and only if ¢ =0.

From the above proof of Lemma 3, we can find immediately the following

Lemma 4. The modulus of the spherical ring corresponding to a circular

ring is equal to that of the circular ring.

Distortion under quasiconformal mappings

5. The so-called lemma of Schwarz on bounded and regular functions in
a circular disc gives two precise estimates, at each point in the circular disc,
the first of which is made for absolute values of these functions and the second
of which is made for absolute values of their derivatives. A space analogue
corresponding to the first estimate in the lemma of Schwarz was shown by
Sabat, who states only K-quasiconformal mappings of |x|<1 “onto” itself. We
enunciate here, for the later use, in a slightly more general form replaced

“onto” by “into”, and prove it to make sure.

Tueorem 1. Let y=y.x) be any K-quasiconformal mapping of |x| =V x4 xi+ x
<1 such that |y(x)|<1 and v(0) =0. Then for any 0<|x|<1,

o (L) s L)

Proof. Let R, denote the unit sphere |x|<1 slit along the segment from
the origin to the point x, so that mod R; = log (03<ﬁ]—>- Similarly, define the
ring Ry in the unit sphere |y|<1 : mod R, =log @ (I—;l—> Since the image
»(Ry) of R, by y=9(x) is a domain in [y|<1 slit along a curve from the

origin to the point ¥(x), we have by Lemma 1 and by the modulus condition,

11{ mod R: < mod y(R.) < mod Ry,

whence follows our-assertion.

Applying Theorem 1 to the inverse of a mapping in Theorem 1, we have

CoroLLARY 1. Let y =y(x) be any K-quasiconformal mapping of a domain
in |x|<1 onto |y| <1 with y(0) =0. Then for any 0<|x|<1,
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05 (ﬁ) < {0, (liT)}K
In particular, we have

CoroLLARY 2. (Sabat [9]). Let y =y(x) be any K-quasiconformal mapping
of |x|1<1 onto |y| <1 with y(0) =0. Then for any 0<|x|<1,

o ()} () o (1

Remark. An extremal K-quasiconformal mapping which induces the equality

for each x in 0<|x|<1 in each of the above estimates has not yet been found.

6. Next, we consider a space form corresponding to the second estimate in

the lemma of Schwarz.

TueoREM 2. Let y =y(x) be any K-quasiconformal mapping of x| <1 such
that |y| <1, ¥(0) =0 and such that y(x) maps each radius of |x| <1 onto a curve

which is normal to the image of each surface |x|=7r(<1). Then

lim inf 121
x|

=1,

a1 L
where the equality holds only if y =y(x(7, 6, 6;)) : y1=7% cos 6;, y,=7r"* sin 6,
1

cos (6,4 ¢), ys=7 X sin 0; sin (6. + ¢) with a real constant c.

Proof. Denote by >, the image of the spherical surface |x|=7 under
y=y(x), and by A(r) and V(») the surface area of >), and the volume bounded
by >}, respectively. Let N(x) be the directional derivative in the radial direc-
tion: N(x) = ]hm: {9(x+ hx) —y(x)}/hx, where h is a real number, and let J(x)
be Jacobian of}(x). Then by some geometric considerations, it is found that
| J(x)]/I N(x)| is the ratio between corresponding elements of area on > and

|x| =7. Hence we have for almost every » (0<7r<1),

am={f a=ff, | ia

Applying Holder’s inequality, we have

1

(1) | A(r)zg(SSlxl=rdw) ”ﬁm_rz J(x) | zdw.
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In view of the analytic definition of a K-quasiconformal mapping in §3, we
i
see {|J(x)|/IN(x)[*}? = K almost everywhere. Hence we have

dVir)
dr

3
Alr)? ngﬁ‘rKSSI wldo=2VrrK

Taking account of the well-known isoperimetric inequality
(2) A(r)?=362V(r)=0
(vid., e.g. [81), we obtain for almost all 0 <r<1,

avir) _ 3 V(r)

dr = 7rK
and hence
d | V(r)
AR alEd
fK

1
Therefore V(r)/r ¥ is a non-decreasing function of . Thus we get

FN

(3) Vs E<vl) = Ln

w

Put min [y(x)|=m(7r). Then it is evident from y(0) =0 that gn(m(r))3§

|xl=r

V(s). Thus we obtain
(4) lim inf 125 _ jim jng 72(7).
-0 [xlfh: ) r-0 f?

31
Sliminf (3V(#»)/4nr¥}3 <1,
r->0

‘1
In the next place, we consider the extremal case where lim inf | y(x)|/|%| ¥
x>0

3

=1. Then it is noted that the equality holds in (3), because V(y)/r¥ is a
non-decreasing function of . Hence the signs of equality hold in (2) and (1)
also. This implies that the image of |x|=7(<1) by y=»(x) is a spherical
surface with radius ri“ .

Now, the modulus of the spherical ring bounded by >}, and |y|=1 is not

less than —11( log l in view of the modulus condition, while its modulus is not
greater than 11{ log i as is seen by making use of Lemma 3, from which fol-

1, 1.

lows that its modulus is equal to K log , We can see by Lemma 3 again

that the center of >}, for 0<7<1is always y=0. Hence, an extremal mapping
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y=y(x) * y1=pCOS ¢, ¥:=p sin ¢; cos ¢z, y3=p sin ¢; sin ¢, maps the surface
1 1
x| =7 for each 0<r=1 onto the surface |y|=7%. Thus we have p=7X.

Since the equality holds also in Hélder’s inequality (1), we have
[J(x)1/I N(x) | = sin ¢1dp: de/sin 61d6;db, = constant

for each fixed  and almost every 6;, 6 such that 0<7 <1, 0=<6:<rm and 0=0.

=2 r. In fact, we have from the equality in (1),

3

VE R

2
$os _ - / riK sin ¢1d¢1d¢z 2o, .
(4r)2 7K ——2\/ 71'7’5(l .\0 (m) 7° sin 0:d6,db,,

so that

(27" | sin ¢pidp,dgs . 3
50 f , ( “sin O:d6,db, 1)+ sin g:dpsdgn =0,

whence follows that for all 0<» <1

sin gidgudpe _ g

sin 6, d6, db,
This implies that the area element at (7, 6;, 6:) on |x| =7 is equal to that at
(7, ¢1, ¢2) on |y| =7 corresponding to (r‘l", ¢1, ¢2) on the image |y| = r’l" of
|x]| =7 by an extremal mapping y =v(x). Therefore 6; = ¢:, and accordingly
dpe = db,, so that ¢.=0,+c, ¢ being any real constant. Consequently, it has
been shown that any extremal mapping is nothing but y =y (x(7, 6;, 6))
mentioned at the latter half of the theorem. The converse holds obviously.

Our proof is completed.

7. The extremal mapping which induces the equality in the estimate obtained
in Theorem 2 is uniquely determined except for rotations of the sphere |x| <1.
If we exclude from the assumption of Theorem 2 the statement “y(x) maps
each radius of |x/<1 onto a curve which is normal to the image of each
surface |x|=7(<1)", it remains indistinct whether the uniqueness of the
extremal mapping in the above sense holds or not. However, we can show in

general the following

ProrosiTion 1. Let y =y(x) be any K-quasiconformal mapping of the n-dim-

ensional sphere |x|=Vxi+xi+ - +x,<1 (n=3) into another such |y|<1
with ¥(0) =0. Then there holds
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1
lim inf |y (%)}/|x| ¥ <1,
a0

where the equality holds for such a mapping y = y(x(r, 01, 02, . .. ,04-1)) as

1 1 1 1

yi=7r% cosb, y:=7% sinf;cos 0:, y3=7% sin f; sin 6, cos bs, ..., Yp-1=7%
1

sin 6, sin 0, sin 03+ - - sin x-2 cos (0n-1+¢), Yn=17% sin 8, sin 6, sin 3+ - - sin G2

sin (0a-1+ ¢) with any real constant c.

Proof. Denote by m(7) the shortest distance from y =0 to the image of
|x] =7 under y =y(x). Then the image y(r<|x|<1) of the ring r<|x|<1
under y = y(x) is contained in the ring m(7) <|y|<1, so it separates the boun-
dary components of the ring m(r) <|y|<1. Hence it follows from the monoto-

neity property of the modulus that

mod y(r<|x|<1) < log W};T

On the other hand, we get by the modulus condition,

1 log«»l— <mod y(r<|x|<1)

K r = ’

1
Hence m(r)/r¥ <1, so that
1 1
lim ionf [y(x)l/I 2] € = lin inf m(»)/r ¥ <1.
x> r-0

Considering the inverse of a mapping in Proposition 1, we have

CoroLLARY 3. Let y=y(x) be any K-quasiconformal mapping of a domain

in |zl =Vxl+al+ -« - +x2<1 onto |y|<1 with y(0) =0. Then there holds

lim sup ly) /12 =1,

where the equality holds for such a mapping y=y(x(7r, 01, ...,0,-1)) as »
= 7% cos 01, y» = 7r"sin 6; cos 6., y; =7 sin b, sinf.cosbs, . . . , Yu-1=7"sinb; sin 6,
sin B3« + *sin 42 coS (On-1+¢), ¥n =7 sin 6, sin 8, sin ;- * - sin Bp—-2sin (Op-1 +¢)

with any real constant c.

Remark. It can be easily verified from our above proof that under the same

assumption as in Theorem 2 or Proposition 1, it holds for all a é—ll{

lim inf |y(x) |/|x]*< 1,
€0
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and, under the same assumption as in Corollary 3, it holds for all « = X,

lim sup v /%" 21

By the above results, we can enunciate in particular the following

CorOLLARY 4. Let 'y =y(x) be any K-quasiconformal mapping of x|.<1 onto
|yl <1 satisfying y(0) =0. Then for a Z K,

lim inf |3( Vlxl® £1<lim sup |3 () |/1 21"

Remark. 1f we exclude the restriction that the origin is carried into itself
and each sphere is the unit one from the assumptions in Theorems 1,2 and
their corollaries, the cofresponding results to them can be obtained respectively
by means of them and auxiliary Moebius transformations, which will be noted

down elsewhere.

8. We denote by &, the family of all K-quasiconformal mappings of x| <1

into |y] < o such that »(0) =0 and lim |y(x)|/|%]|*=1, a being ‘real. Before
-0

we consider the distortion of mappings belonging to €., we shall establish the

following general theorem indicating the range of such an « as &, is empty.

TueoreM 3. Let v =y(x) be a K-quasiconformal mapping of |x|<1 (into
the Moebius 3-space). Assume that y(0) =0 and that the positive finite lim
x>0

[9(x)1/|x|* exists for a real number . Then 1/ K<a< K.
First we prepare for the proof of it. '

LemMa 5. The sphere |x| <1 cannot be mapped onto |yl <o by any K-

quasicoformal mapping.

Proof. For completeness, we give a proof based essentially on the ¢lassical
method due to O. Teichmiiller.

Suppose, on the contrary, that |x| <1 can be mapped onto |y|< « by a K-
quasiconformal mapping y=y(x). Then we can choose a suitable positive
number 7; ( <1) such that the image of |x| <7 by y=y(x) contains the origin
y=0. Put max | y(x)‘l =M. Then there exists a real number 7 (>7) such

lel=ry

that 'min |y(%)| = Me* for any positive number X. Since the ring M<|y| < Me*

x|=r2

separates the boundary components of the image y(r1<|x|<7) of n<|x|<»r
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by y =y(x), where 7, < r<1, the monotoneity property of the modulus and the
modulus condition imply

Me*
M

Klog-:—IZmody(n<lxl<r)Zlog =X,

which is a contradiction, since X can be chosen arbitrarily large.

Remark. It is noted by Lemma 5 that the complement Zy(|x|<1), in the
Moebius space, of the range of values taken by an arbitary K-quasiconformal
mapping ¥ =y(x) of | x| <1 cannot degenerate into the point at infinity, and is
also noted by using a suitable auxiliary Moebius transformation if necessary
that it cannot reduce to the single finite point. Therefore, Ey(l2|<1) is a
(bounded or unbounded) continuum including at least two points.

ProrosiTiON 2. (An extension of Lemma 1). Suppose that R is a ring in
the Mozbius space whose C, is bounded and contains the closed sphere |x| < a
and whose another C: contains at least two points x%p and x, satisfying |x, — %,
<|x,| —a. Then there holds

mod R= log 0 (-JTL;J;L’;ZH_)
— A3

In particular case where x, is the point at infinity, this reduces to Lemma 1.

Proof. Take the plane passing through three points the origin, %, and x,
as the coordinate (x, x2)-plane, and choose the oriented ray issuing from the
origin and passing through x, as the positive x;-axis, and introduce a system
of cartesian coordinates xi, %2, x;. We denote the coordinates of x, and x, re-
spectively by (1, p2, 0) and (g, 0, 0).

Now, we will construct a transformation which carries |x|=a into itself
and the point x,(q, 0, 0) into the point at infinity. After some elementary
computations, we can see that such a transformation is a composite mapping
y=y(x) of the following

a—%=X1, %=X, %=2X;,
s o
N+ag=Y, =Y, y3=Ys,

which is a Moebius transformation and so 1-quasiconformal mapping. Hence
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we have mod R =mod R', R’ being the image of R by y =y(x).
Denote by vy, =,(p1, P, p3) the image of the point %, under the above
composite mapping y =y(x). Then it lies on the Gaussian (y;, y.)-plane and

2
=B b= =0

= (a—p)—ip:
hence it holds that

1951 =V(gp1— a®)? + (gp)*/V (g — p)* + 1}
=V(p + 1))@ — a2 g — a®) /N (g — p)* + 13
VPRI + ) @IV (G= 0+ D2 =1xp] | %41/1 %5 — 7.

The complement of the image R' of R consists of two components C; and Ci
such that C) contains the closed sphere |¥|<a and Ci is unbounded and con-
tains the point y,. Consequently, by Lemma 1 we have

Proof of Theorem 3. We let y, denote a point at the shortest distance
from the origin to the complement of the image domain of |x|<1 under an
arbitrary mapping y = y(x) satisfying the condition of Theorem 3. Then, by
Lemma 5, y, cannot be the point at infinity. Now if we set 1ir? ly(x)1/1x]* =4,
then corresponding to ¥, and any positive number ¢ (<;;, there exists a

positive number § such that

(d=e)lx*<|y(x) [ <(d+e)|x]*<Iypl
for 0<|x|<3d. Denote by R the concentric spherical ring »<|x| <1, where 0<
<4, and by y(R) the image of R under y =y(x). It is easily seen that

(5) log Wl_i%’—; <mod y(R).

On the other hand, we find in view of Remark after Lemma 5 that the
complement of the image y(R) consists of two components Co, C;, where Co
contains the sphere |y| < (d—¢)r” and C; is a continuum including at least
and y, such that 0 <|y, — .| Zly41 = (d—¢)8°. Thus by Proposition 2,

mod y(R) < log ‘”3( (d—le{l;!‘ B:I—ypl )
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Since @:(a) = 1a for a>1 as is stated in §2, we get

(6) : mod y(R)él‘)gh(d—‘Ae‘jy:"LI‘J%‘—yq‘l .

Furthermore, it holds by the modulus condition that

(7) }( logé;émod (R) < K log »1;

Form the above (5), (6) and (7), we obtain the following two relations:

__Lypl l
log 53 5y e =K log

1

1 Alysl 194l
K log ’;,élog

(d=e)7*[9p—Yal

< a, which is the

NH

Here, by making -0, it can be deduced that « < K and
assertion.

Theorem 3 implies that the family €, is empty for a < % or « > K. More-

over, it will be shown in §10 and §11 that &, is not empty for —11? SaskK

9. Suppose that w=w(z)=uls, t)+idv(s, t) is a certain plane K-quasi-
conformal mapping'of‘ a symmetric domain D. with respect to the s-axis in the
z-planek onto a domain 4, with the same property in tﬁe u;-plane. We introduce
a system of cartesian coordinatés %1, %, % such Athat the %-axis and x-axis. co-
incide with the s-axis and #-axis of the z-plane respectively, and denote by Ds the
space domain obtained by revolving D, about the x;-axis. Following the same
procedure for #- and v-axes and the symmetric domain 4., we have y:-, 3- and
yraxes and. the space domain. 4; of revolution- about the-y,-axis. Then, the
certain mapping y =y(x) of D; onto 4. associated with w = w(z) can be defined.
In the next place, we treat with a relation betweeri'some mappings w = w(z) and

y=y(x) of this kind.

PropoSITION 3. Suppose that w=w(z) = f(r)e” (w=wu+iv, z=s+it = re'®)
is a K-quasiconformal mapping of |z|<1 in the classical sense. Then, y=
y(x(r,0, ¢)) : y1= f(r) cos 0, y2= f(r) sin 0 cos ¢, y; = f(7) sin § sin.¢ is also

a K-quasiconformal mapping of | x| = Vx' + %1+ x2<1 in the classical sense.

Proof. We have easily
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o(u, v) l _1owv) Jals, 1) _ 1f1(n) f(r)]

[Jz)| = I 13(Cs, 1) [ D(r, 6) r, 0) r

Let (w'(2));,m denote the directional derivative of w(z) in the direction whose

direction cosines are /, m. A simple calculation gives

0 (@)l = | 2214 2 |
= {f'(?')zl‘ (l(;t)-) }(l cos 6+ m sin 6)® + (fgl)z

Here, 1 cos 6 + m sin 8 denotes the cosine of the angle between the ray from
z with its direction cosines /, m and the ray passing through z from the origin.
Therefore it holds that 0= (I cos § + m sin §)*<1. Hence we have

max |(w/(2)),ml* = f'(7)* or (%)2

if | /(D=7 /7 or | f/(r)| =] f(7)|/7, respectively, so that

max | (w'(Niml _ 7110 £
[J(2)] lrmnl. 71f'(r)]

Hence our assumption yields that

7| f1(r)| £ (D]
® max (NG5 ) 5K
On the other hand, we have similariy
]](x)] - | a(yl, Y2, ya) 1 ‘ (1, P2, ¥3) /a(xl. 2, X3)

a(xl, %2, %) |

=111 ()7

(7, 0, go) o(r, 0, ¢)

Denote by ('(%))1,m,» the directional derivative of y(x) in the direction whose

direction cosines are I/, m, n. Then the square of its absolute value is expressed
as follows:

[ ()1, m,n]* = ( VIR 23;} m+ —%n)

oy 4, O 0y» ys ys aya 2
+(ax§l+ on ™ ox )+(E§a_c{-1+ on ™ o )

After some elementary computations, we obtain

g% (/’( ) — f(r)) cos? 0 + f(r)
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g}; = (f'(r) - ﬂ;"—)—) sin’ 0 cos® ¢ + —————fi') ,

g}-;; = (f’(r) - __f:r) ) sin® 6 sin® ¢ + ____f(rr) ,

%’;‘_; = “283))721 = (f’(r) - —-’:—(;—)) sin 6 cos 0 cos ¢,

_.E__Ll —_ _._.3_ = — _-[_Q 1 i
X = 2 ) = (f,(") ) Slnocosﬂsn'l (f,
_ayz -— .._.J 3 (4 - li._ 1) in? i

X = . ._.(f(f) )Sln osln‘fcos?.

Inserting these in the above expression, we have
2
[ ('), m,n|? = {f’(r)2 - (L(fﬁ-) } (I cos 0+ m sin 8 cos ¢ + n sin 0 sin ¢)°
f(r)\?
+(55) -

Since ! cos 8§ + m sin 6 cos ¢ + » sin 8 sin ¢ means the cosine of the angle between
the ray from x with its direction cosines /, m, n and the ray passing through
x from the origin, it holds 0= (I cos 6+ m sin f cos ¢ +# sin 6 sin ¢)*<1.
Therefore, if f'(#)*=(f(#)/7)? (or f'(r)2< (f(7)/7)?), then

max [(y'(x%)) 1, m,»l* = f'(r) (or (f(r)/7)?),
min (X)), m, 0> = (f(2)/7)? (or f'(r)?).

Thus we find that

max [('(%))t,m,n !

l,m,n —_ rf'(f) 2 _ l.](x” — f'f’(r)l
1J(x)] _< f(r) ) and Irrlﬂjrlnl(y’(x))z,m,nl’ TSl
max |[( ¥ (%)), m,al® | 2
Lmen _ _1fn| _ @ (S
(°’ x| =0 2 min ((F@)mal <ff'(r))>'

Recalling here the inequality (8), we have

max {(¥'(x))i.mal [ J(x)]
max [J2) | > min [ ),

)E3:&

Moreover, since w = w(z) is a continuously differentiable homeomorphism
of |z|<1, we see that y = y(x(r, 6, ¢)) has also the same property in |x|<1.
Thus y = y(x) is a K-quasiconformal mapping of |x| <1 in the classical sense.

10. Now, we consider the family &, of all K-quasiconformal mappings of
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lx| <1 into the Euclidean 3-space |y| < « such that y(0) =0 and lim |y(x)|/|x|*
-0
=1, a being real, and discuss about the cases where inf min |y(x)| is positive

VESe |zl=r

and sup_max |y(x)| is finite and where there exists the so-called Koebe’s con-
YEGa (xl=r

stant for €, and €, is a normal family.

TuaeoreMm 4. The infimum ofo min |y(x)| for all y(x) €S, is positive if
=1

<|z|=r=

and only if a= 7%

Proof. (i) The case a = 11{ The proof in this case proceeds similarly
to that due to Gehring. Let y = y(x) be an arbitrary mapping belonging to €.,
and denote the image of the ring 7' <|x| <7 for 0<#'<r<1 under y = y(x) by
y(r’'<jx|<7). Then the complement of y(#'<|x|<7) has two components, one

of which is bounded and contains the sphere |y| = min |y(x)| and the other of
o]

z|=r
which is unbounded. Thus we have by the modulus condition and Lemma 1,
1 ’ , min ly(x) ]
K log7,— =mod y(»' <|x| <7) < log 0, Imin &)
z|=r'

In view of the estimate @:;(a) < ia for a>1 stated in §2, we have
A Amin |y(x)]
(L)K < min |y
77/ = min [y(x)]’
l@|=r"
so that

r}‘ min |y(x)]
(9) min |y(x)| = —=="

0<|z|=r<1 A?’I i

Letting 7 -0, we have for all y(x)eS

1,
K

1
min [y(x)| =7 % /4,

0<|z|=r<l

which is also valid for r=1.

(ii) The case 71{ <a<1. Consider y=y(x(r, 6, @), n):
Y= falr) cos b, y>= fx(r) sin 0 cos ¢, ¥3 =f»(7) sin 0 sin ¢,

_ek-1
where f,(7) =r"{1 - (1 - —}1)7“""”}- Then it is a K-quasiconformal mapping
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of |x|<1 in the classical sense by Proposition 3, because it is proved in [5]
that w=w(z, n) = fa(r)e® (z=7€") is a K-quasiconformal mapping of |z|<1

in the classical sense. Obviously, ¥(0, #) =0 and lim |y(x, #)|/|x]|*=1, and
N -0

hence y =y(x, n) € S,. Since y =y(x, #») maps |x| <1 onto lyl<—7ll—, we obtain

inf min [y(x)| =0 by making n- .

1E€ESe 0<|z|=r=1

(iii) The case 1<a =K. Take y=y(x(r, 0, ¢), n):

yi1=1"cos 0, y.=7" sin § cos ¢, y;= 7" sin 6 sin ¢ for I";|<'71i"

a—=1

y a=1 a—1
Y= r(i) cos 0, y: = r(—};) sin 6 cos ¢, y3 = r( i‘) sin § sin ¢
for 1/n=|x1<1.
It is easy to see that this mapping y = y(x, #) is an «- and so K-quasiconformal
mapping of |#|<1 and belongs to €,. We have |y(x, n’)l=r°‘<(%) ->.0(n

1 _ 1 a=1 1 a-1 1
- o) for lx]=r<—1—'-- and ly(x, n)l—r(?) <(7i) -0 (n> ) for ;é

|%| =7<1. Thus we get inf min |y(x)]=0.

1EGe 0<|z =r=1
Since €, is empty for a> K or a < _Ilf by Theorem 3, our proof is com-
pleted.
In particular, we have the following

CoroLLARY 5. For the family €., there exists the so-called Koebe's constant
if and only if a = 1—1{— Further, if a#%~ then there exists mo Koebe's con-
stant even for the subfamily of S, each mapping of which is K-quasiconformal

in the classical sense.

Remark. Letting r—1 in the estimate (9) showed in the above proof, we
find immediately for any K-quasiconformal mapping of | x| <1 into |y| < o with

¥(0) =0 that
1 min |y(x)]
min |y(%) |z lim sup ==t ———,
lz]=1 550 ST

which is equivalent to the estimate (52) in Gehring [3] as is easily verified.
11. We can find the following facts in contrast with the results in §10.

TueoreM 5. The supremum ofo max |y(x)] for all y(x) €&, is finite if

<|z|=r<l

and only if a =K.
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Before proving the theorem, we prove the following lemma.

Lemma 6. The supremum of 'rr}m ly(x)| for all y(x) € Gk is not greater
than (ir)~.

Proof. Let y =y(x) be any mapping belonging to &k, and th xglr:<|y(x)|
=m. Then the inverse mapping x = x(y) of y =y(x) maps Iyl<m into |x| <7
<1. Let R, denote the sphere |y|<m slit along the segment from the origin
to the point y, and let x(Ry) denote the image of R, under x=x(y). Then

the monotoneity property of the modulus and Lemma. 1 yield

mod Ry = log 03({%) and mod x(Ry)=<log (Da( Tl )

Take the modulus condition —11{- mod Ry = mod x(Ry) and the estimate a <0:(a)

< ia for a>1 into consideration. Then

o m)sto ) s ()"
so that

m= ()% |y(x) /| x|".

Letting x —~>0 here, we have

sup min |y(x)| < ()%,

1ESE 0<|z|=r<1
which is also valid for r =1.
Proqf of Theorem 5. (i) The case « = K. Let y(r<|x|<1) be the image

of the ring 0<r<|x|<1 by any y =y(x) €&S,. Then we have by the modulus
condition and Lemma 2,

1 . min |y(x) |
1 1 S del=1
7 log—-=mod y(r<]x|<1) <log ¥ , max [y(x)]

Since %3(a) is a non-decreasing function of a, we get

max |y(x)| = mln ly()|/w:? {(-}’_)K}

0<|z|=r<1

where ¥';'(¢) denotes the inverse function of ¢ =%:(a). In view of Lemma 6,
we have for all y(x) € &,,
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1

max |y(x)|§x"/w;‘{(%)7}~

I<izl=r<i
(ii) The case 1<« <K. Consider y =y(x(r, 0, ¢), n):

y1= fn(?) cos 8, y:= fu(r) sin 0 cos @, y3 = fn(r) sin 0 sin ¢,
where fn(7) =7r*{1+ (n—l)r”%‘} for n> -K—I_{—‘;- Since it is shown in [5] that
w=w(z, n) = far)e® (z=17¢") is a K-quasiconfomal mapping of |z]<1 in the
classical sense, Proposition 3 implies that y = y(x(7, 6, ¢), n) is also a K-quasi-
conformal mapping of |x| <1 in the classical sense. Evidently y = y(x, ) satisfies
the normalization (0, n) =0 and lxxgr)rol |y(x, n)|/1%]*=1, so that it belongs to

€,. Furthermore y = y(x, #) maps |[%{<1 onto [y|<#n and
3(a(r 20 ) m)| = fa) =14 (=D 4w (o ).

(iii) The case 1/K<a<1. Take y=y(x(7, 0, ¢), n) as the mapping with
the form mentioned in the case 1 <« < K in the proof of Theorem 4. Then, it
is similarly verified that this mapping is K-quasiconformal in |x|<1 in the
classical sense and satisfies our normalization at the origin, so that it belongs
to &,. If we take m such that n>1/r for a given r (0<#<1), then we see
that on |x| =7,

1

a=1
iy(x, n) :r(%—) =rn %> 4+ 00 (B> ).

Thus our theorem is established.

A family {y(x)} of continuous vector-valued functions y(x), defined in a
domain D, is called a normal family if every infinite subfamily of {y(x)} con-
tains a sequence which converges uniformly on every compact subset of D.

Then we have
CoroLLARY 6. The family €. is normal if and only if a« = K.

Proof. 1t is easily verified that the estimateo max |y() | 2¥ /ey ‘((l/r)%}
obtained in the case (i) in the proof for Theoren;mS_irs< lalso valid for 0< x| <7
<1. Hence we have for all x in the sphere |x— x5/ <1~ V[x,| about each
point %, in |x| <1 and all y(x) =Gy,

[y(x)] §1K/T;l{(‘;m’;l“> * }v
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whose right hand side will be simply denoted by M(x;). Then, Y(X) =y(%;
+ X) — y(x) is K-quasiconformal with ¥(0) =0 and | Y(X)| <2 M(x,) in |X| <
1-+v]%,]. Thus, we see by Theorem 1,

(o2} s a2,

Using the estimate a < @y(a) = 1a for a>1, we get

1=Vig |\ K _ 2 AM(xy)
(—xet) = Yy
so that
2 AM(%p) *
- < e fvixp) LS
y(xp+ X)—y(xp) | = (1_\/“‘“)1/1( X%,

Hence, putting x,+ X = x, we have for |x —x,| <1 —V[x5],
ly(x) = y(Zp)| S =L [ — %] X .

Further, put (%) = min{1—v|xp|, (1—v|%p])e*/(2AM(x,))¥} for an arbitrary
positive number ¢. Then it follows that

ly(x) —y(xp) | <e

for all x in |x— x| <d(x,) and all y(x) € Sk, which yields that the family &g
is equicontinuous at each point of |x|<1. Hereafter, almost similarly to the
proof for the familiar Ascoli-Arzeld’s theorem, it can be proved that €k is a
normal family in |x]|<1.

In the case « % K, by using our examples mentioned in the cases (ii) and
(iii) in the proof of Theorem 5, it is easy to show that the family &. cannot
be normal.

Correspondence under quasiconformal mappings

12. Let E be any compact set in the bounded domain D in 3-space, and
denote by C(E) the logarithmic capacity of E, by m,(E) the (outer) logarithmic
measure of E, by C'*(E) the capacity of order « of E and by m.(E) the (outer)
a-dimensional measure of E. Then, we have immediately the following space
form of a result by A. Mori [7]:

TureoreM 6. Let y =y(x) be d K-quasiconformal mapping of the bounded
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domain Dy in 3-space onto another such domain, and let E. be a compact set
in D, and Ey its image by y(x). Then it hold

1
(10) C(Ey) = A{C(Ex)} ¥,
(11) mo(Ey) = Kmo(Ex),
(12) COE) < ACE ) (ENVE and
(13) ma(Ey) < A*m = (E),

where 0<a <3 and A is such a constant independent of y(x) as in the next
Lemma 7 due to Gehring (cf. [3], Cor. 6).

Lemma 7. Let y =y(x) be a K-quasiconformal mapping of a bounded domain
D, onto another such domain, and E. be any compact set contained in Dy .
Then, corresponding to E. and ils image set E,, there exists a constant A in-
dependent of y(x) such that

[y __y(Z»l < A|xV - x| ,:
for all 'V, x® in E; and their images "' = y(x'"), y'* = y(x®).

Proof of Theorem 6. 1t is well known that for any compact set E, C(E)
(resp. C'*(E)) is equivalent to the transfinite diameter of E (resp. of order «
of E), whose definition is

. (?VI,...,n . '
lim  max IT |27 — %]

nso 2(1),..,z(MeE i<k
1,..05m 1 1/a
. n
resp. lim max {( ) ————} )
( - 2, ... amerl\2 ,% |2 —xB)|®

(Cf. Frostman’s thesis or Ugaheri [10]). Thus, (10) and (12) are immediate

consequences of these relations and Lemma 7.

(11) is proved as follows: Take a countable number of subset U; such
that the diameter 6(U;)<e<1 and 2 U;DE,, and put V;=y(U;). Then, for
any 0<¢' <1, it is noted by LemmaJ7 that there exists a positive number ¢
such that §(V;)<¢' and 0< Kl|log Al/log (1/6(U;)) < —% for all 0<e<e¢. Thus

by making use of Lemma 7 again, we get

1 1

A

1 1 1
log ) {1 — K|log Al/log 30U } log 3(U;)TF
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1 1
§K<1+2K|log Al/log —;)/108 30’

from which we have

mo(Ey) <lim inf S}— 1
0 (V) 5 1 1

% (V)

<lim K(l +2 Kllog Al/log —E)}gf)z L = Kmo(Ey).

€0 F) 2 L
log 517

Since (13) is shown similarly to the above, we shall omit here.

13. A domain D is called a (space) Jordan domain if its boundary is
homeomorphic to the spherical surface |x|=1. Then, the following fact can
be verified by using the similar argument due to Viisdld ([12], §2) or Gehring
([3], §§22-24).

LemMma 8. Suppose that a part of the boundary of a space Jordan domain

. Dy consists of a plane Jordan domain G=. Then any K-quasiconformal mapping
y(%) of Dy onto another Jordan domain Dy can be extended to a homeomorphism
of Dx+ Gx. Suppose moreover that its homeomorphism maps Gx onto another
plane Jordan domain Gy. Then y(x) can be extended as a K-quasiconformal

mapping outside Dy over G,.

Such.a mapping as extended by Lemma 8 are led to a K-quasiconformal
one of a space domain including G onto another such domain including Gy
which let G. correspond to G,, and the correspondence between G. and G, by
such a mapping induces a plane quasiconformal mapping being not always K-
quasiconformal. For instance, y =y(%x) : y:= %1, y2=K; %, _3;3=K3 % is a K-
quasiconformal mapping in space, and the correspondence between (x;, x2)-
plane and (yi, ».)-plane induced by y =y(x) is the plane quasiconformal map-
ping but not the plane K-quasiconformal one. However, since such a correspon-
dence between G: and Gy is absolutely continuous or measurable, it transforms
any set of 2-dimensional measure zero on G, into a set of the same measure
on Gy.

Now we have the follbwing from Theorem 6.

CoroLrarY 7. Let y=y(x) be a K-quasiconformal mapping of a bounded

domain Dy in space onto another such Dy such that y =y(x) let a plane domain
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Gy on the closure of Dy correspond to a plane domain Gy on the closure of Dy.
For a compact set Ex in Gy, if the logarithmic capacity, measure, capacity of
order «, and a-dimensional measure of Ex are equal lo zero, then the logarithmic
capacilty, measure, capacity of order Ka, and Ka-dimensional measure of the

image Ey of E. by y =y(x) are also equal to zero, respectively.

14. As is proved by Gehring [3], any K-quasiconformal mapping y =y(x),
defined in a space domain D, is measurable, and hence it transforms any set
of 3-dimensional measure zero in D into a set of the same property. However,
it is indistinct whether y = y(x) transforms any set of a (0 <a <3)-dimensional
measure zero into a set of the same property. In the next place, we shall
give a criterion for both some closed set E, in a Jordan domain D and its
image set under any K-quasiconformal mapping v =y(x) of D to be of the
same «-dimensional measure zero.

Let E be a compact set in 3-space and let its complement E be a (con-
nected) domain. A set (R} (j=1,2, ...,»(n)<; n=1,2, ...) of rings
R} will be called a system inducing an exhaustion of YL if it satisfies the
following conditions:

(i) the closure RY? of RY" is contained in GE,
(ii) the one component Ci’ of the complement of R’ has at least one
point common with E, and the other component Ci“) contains the point at infinity,
(iii) any point of E is contained in a certain Cif’;i,
(iv) R iies in CIY) if kxj,
(v) each RY¥ is contained in a certain C3Y), and

(vi) {F¥En}n-1is an exhaustion of € E, where

vin) . .
FE.= N (Ci%UR).

=1

Denote by mod R3) =log /) the modulus of R, and put min log Y,

Xy 7
1=5=Vv(n)

=log us,»n. We can prove the following space analogue of our previous result.

TuroreM 7. Let Ex be such a set as E stated above and y=y(x) be any
K-quasiconformal mapping of a Jordan domain D including E.. If there exists
a system (R} (G=1,2, ..., vim)<o; n=1,2, ...) inducing an exhaus-
tion of C Ex which satisfies
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. n o 7\1'“ « ~
lqu»iup {aglog ik ) - (1— »3-)1og ,,(,,)} =+ o

for some a such that 0<a <3, then E. and its image Ey by y =y(x) are of a-

dimensional measure zero.

Proof. First, take a point x¢’, in Ci7) and put
7Dy = max |x— 2%, 00 = min |x—x,
serg veri?)

where B{/) and B}’) are the boundaries of Ci%) and C}7, respectively.

Since there exists a number N, such that the sub-system of {RY} for n

3(]) 3(]) 3(])

=N is contained in D, we can difine similarly uy’z, 73’2 and p3;
images R}/, »(Bi7) and y(BiY) of R, BY} and Bi'} for n= N, respective-
ly. Evidently, the image set {R¥%)} of {R¥)} (j=1,2,...,p(n) <o ; n=Np,

Np+1, ...) is u system inducing an exhaustion of the complement CEy. By

concerning the

the modulus condition and Lemma 2, we have for # = Np,

11( log us, » < log 129 < log s p00/ 7 '),
or
(14) 7S 03/ W (il
Similarly we have
(15) 780 < 0 nl W5 (g, )

Starting from (14) and applying Holder's inequality, we have for #n=Np

and 0<a =3,
(16) wi:( ) < W)—};Sﬁj( oyn)"
= ity (H
Now, it is obvious that —; E(p”’ is not greater than the sum of volumes

vin) Y(n=-1)
bounded by Uy(B”’) and that 437:: >3 (#8¥,2)) is not less than the sum of
j k=1

vin=-1)

volumes bounded by U y(B %), and so

oy/n)’< 2 (Y

~
[0
-
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From (14) again, we have for # — 1= Np,

v(n=1)

E (f"fn—x)a {ysl(lllx 1))3 Z\ (P(,fn 1)3

03, n—
Bringing these into the right hand side of (16), we have for n—- 1= Ny,

(n) (n)l—-u/?n Y(n=-1)
(7) e, B )3
St s g | s @]

This process can be continued up to R3'%,, and finally we obtain

vin) I~a/3 V(ND) «/3
vin)
D e L M B

n

J (T (oY "

Starting from (15) and proceeding almost similarly as stated above, we have
also

v(n
;(rx;’) RUEN v(n)'” m)l\’;(p;r’m) }
E(Ws (l—ta,l)}

Since ¥3'(p) =¥ (£*) for >1 and

lim sup H(Ws (b ’f)}“/v(n)"“”= + oo

n-sw =1

from our assumption, it holds

v(n) vin)
lim mf}_J (r$)* = 0=1lim me (r9)°,
n> 0 j= n-»>x 3=1

which proves our assertion.

CoroLLARY 8. Let E. and y =y(x) be the same ones as in Theorem 7. If there
exist a positive number 5 and a system {RE %)} (j=1,2, ..., p(m) <o ; n=1,
.) which satisfy

4y )1-a/3
lim inf s, > {#3(1 + 6)}* and lim inf 2%

m i mint - gyee =0

for some « such that 0<a <3, then the same conclusion as in Theorem 7 fol-
lows.

15. Finally, we consider the particular case when for E, and y=y(x) in
Theorem 7, y =»(x) induces the correspondence between the plane Jordan
domains on which Ey and y(E,) lie respectively.
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THEOREM 8. Suppose that y =y(x) is any K-quasiconformal mapping of a
Jordan domain D which transforms a plane Jordan domain G included in D
into another plane Jordan domain H and that E. is a compact set on G such
that the complement CE, of Ex in the extended plane on which G lies a (con-
nected) domain. If there exists a system {RY”} (j=1,2, ...,v(n)< o ; n=
1, 2, ...) of (plane) circular rings inducing an exhaustion of the complement
% E. which satisfies

lirf‘l_’swup {a:;:_‘l. log 75 ' (%) — (1 - %—) log -v(n)} =+ o

Jor some a such that 0<a <2, then E. and its image set Ey by y =y(x) are of

a-dimensional measure zero, where log u»»n means min mod RY¥’)= min
1=j=v(v) 1=5=v(n)
log 427,

Proof. First, construct the system (qu ,} of spherical rings corresponding
to the given system {R%%)} of circular rings, and let Ny be a number such that
the sub-system of {R3%)} for #= Ny is contained in D. Denote by R}’ the
intersection of the image R}’ of R for »=Np with the plane H. Then
(R} (j=1,2, ...,s(n)<; n=Np, Np+1, ...) is evidently a system of
rings inducing an exhaustion of the complement FE, of E, in the extended
pléme on which H lies.

Next put mod R}’ = log 4} for #=N,, and take a point v/ in the bounded
complement CJ’ of R%7), and put for n=Np,

7¥in= max |y -yl p¥n= min |y -y

ye i) ye )

(7)
where Bi7 is the inner boundary of R and B!} the outer one, and define
rZn, 0% for RYY similarly to 7%, o\, respectively. Then, the preceding
relations (14) for »= Np and (15) hold also in this case.

Applying Hélder’s inequality to (14) and (15), and proceeding almost simi-
larly to the previous argument, we have finally for 0 <a <2,

v(n) )l—a/Z {v(‘\'m

af2
Z(r"’ )< < v D (p}',’f\?p)z}

n

TG ™

and
vin) )l—alz v(1)

S (s w2 S oy}
- T3 () ™

https://doi.org/10.1017/5S0027763000011521 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011521

202 KAZUO IKOMA

Since us,; = m,1 by Lemma 4, we have @' (ua,1) Z¥5'(pi/f') = #7' (). Further,
from our assumption it follows that

lim inf »(n)'"*/? / lf{(m‘(;&ff‘))“ =0,

n-swo

which implies our assertion.

CoroLLARY 9. Let Ex and y = y(x) be the same ones as in Theorem 8. If
there exist a positive number & and a sysiem (R} (5=1,2, ...,v(n)<;
n=1,2, ...) of circular rings R%3) which satisfy
)1-11/2

lim inf g > {Fo(1+ )} and lim inf 27

n->®o n—>x (1+6)”m =0

for some a such that 0<a <2, then the same conclusion as in Theorem 8

JSollows.

We gave in [6] an example of the set, of positive logarithmic capacity, to
which a system satisfying the condition in Theorem 8 or Corollary 9 corresponds.
By the way, an example of the set with such a property in Theorem 7 or
Corollary 8 is also given as follows.

Let E(pi1, P2, . ..) be the symmetric Cantor set generated from a closed
segment with length /;, and let SY); (j=1,2, ...,2" be closed segments,
with equal length Il,:;, remaining after the zn-th deletion process taken in its
generation. Denote by R%? the concentric circular ring whose center is the
middle point of Si}; and whose radii %(1 +1/par1) (1= 1/pn) and %"— (1+1/pa).
We can see that mod RYX”=1/2(1—1/p,).

Now, take the direct product set E(pi, s, . ..) XE(p1, P2, ...) X E(py,

b2, ...) and make each spherical ring RY/*"

205)
”

, corresponding to each circular
ring R%’’, which has the center at the middle point of each cube Sy}, x S¥¥; x
S4.i. Then we have a system {R}™™} (j, k, 1=1,2, ...,2"; n=1,2,...)
inducing an exhaustion of the complement of the above direct product set in
the Moebius space. In particular, it is easily shown that this system for p,=
3{ws(8"%) Y¥/[3{¥>(8"%) }* — 1] satisfies the condition in Theorem 7 or Corollary

8 and the direct product set is of positive logarithmic capacity.

REFERENCES

[1] Fuglede, B.: Extremal length and functional completion, Acta Math., 98 (1957), 171-
219.

https://doi.org/10.1017/5S0027763000011521 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011521

DISTORTION AND CORRESPONDENCE UNDER QUASICONFORMAL MAPPINGS 202

[2] Gehring, F. W.: Symmetrization of rings in space, Trans. Amer. Math. Soc.,, 101
(1961), 499-516.

[3] Gehring, F. W.: Rings and quasiconformal mappings in space, Trans. Amer. Math.
Soc., 103 (1962), 353-393.

[ 4] Gehring, F. W.: Extremal length definitions for the conformal capacity of rings in
space, Mich. Math. J., 9 (1962), 137-150.

[ 5] Ikoma, K. and Shibata, K.: On distortions in certain quasiconformal mappings, Tohoku
Math. J.,, 13 (1961), 241-247.

[6]1 Ikoma, K.: A criterion for a set and its image under quasiconformal mapping to be
of a(0<ax2)-dimensional measure zero, Nagoya Math. J., 22 (1963), 203-209.

[ 71 Mori, A.: On quasi-conformality and pseudo-analyticity, Trans. Amer. Math. Soc.. 84
(1957), 56-77.

[ 8] Polya, G. and Szegd, G.: Isoperimetric inequalities in mathematical physics, Ann. of
Math. Studies, No. 27, Princeton 1951,

[9] Sabat, B. V.: On the theory of quasiconformal mappings in space, Soviet Math. Dokl,,
1 (1960), 730-733.

[10] Ugaheri T.: On the general capacities and potentials, Bull. Tokyo Inst Tech., 4
(1953), 149-179.

[11] Vidisidld, J.: On quasiconformal mappings in space, Ann. Acad. Sci. Fenn., A. I. 298
(1961), 1-36.

[12] Viisdld, J.: On quasiconformal mappings of a ball, Ann. Acad. Sci. Fenn., A. I. 304
(1961), 1-7.

Department of Mathematics

Yamagata University

https://doi.org/10.1017/50027763000011521 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011521



