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TOPOLOGICAL TRANSVERSALITY:

APPLICATIONS TO DIFFERENTIAL EQUATIONS

T. SENGADIR AND A.K. PANI

In this paper, existence results for both integro-differential and functional differen-
tial equations are discussed using topological transversality arguments. As appli-
cations, third and fourth order boundary value problems are considered. For third
order problems, an example has been cited to show that our results cover a wider
class of problems than Theorem 2.3 of D.J. O'Regan, Topological transversality:
Applications to third order boundary value problems, SIAM J. Math. Anal. 18
(1987) 630-641.

1. INTRODUCTION

In this paper, we consider existence of solutions to the boundary value problems

where / : [0, 1] x R3 —> R is continuous, B is a suitable set of boundary conditions and

S is one of the following forms:

(I) a Volterra integral operator of the type

(1.2) [Su](t) = f k{s, t)u(s)ds,
Jc

where c £ [0, 1] and k(a, t) is continuous for 0 ^ s ^ t ^ 1;

(II) a Predholm integral operator of the type

(1.3) [Su}(t) = f G(s, t, u(s))ds,
Jo
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where G(a, t, r) is continuous for 0 ^ a, t ^ 1 and r £ i ;
(III) a 'delay' operator of the type

( u(g(t)), if g(t) E [0, 1]

(1.4) [S«](t)= j <Pi(9(i)), if5(*)e[a,0]

I <P2(g(t)), if g(t) e [1,6],

where a < 0, 6 ^ 1, g: [0,1] -> [a, 6], <pi: [a, 0] -> K and tp2: [1, b]->R

are continuous functions with yi(0) — V2(l) = 0.

Equations of the type (1.1) with S as in (1.2) have recently been considered by
Aftabizadeh and Leela [1] for Dirichlet boundary conditions and by Hu and Laksh-
mikanthan [6] for periodic boundary conditions, using monotone iterative techniques.
Based on fixed point argument, Agarwal in [2] has discussed existence of solutions to
the problem (1.1) with 5 as in (1.3).

Erbe and Krawcewicz [3] have considered the differential inclusions

V 2 ) e F(t, u, Sm, S2u,..., Smu, «

with each Si, 1 ^ i ^ m, an operator of the type defined in equation (1.4). Boundary
value problems for functional differential equations which are of the form (1.1) with 5
as in (1.4) are also discussed in [7], [8] and [9].

In the present paper, based on topological transversality arguments as in [5] we
have derived existence results for the problem (1.1). Several applications of these results
are also discussed. Finally, condition (a) of Theorem 3.1 generalises the condition (1)
in Theorem 2.3 of [10, p.631], that is,

'there is a constant M ^ 0 such that Xif(t, xo, x\, 0) > 0, for | z i | > M and (t, XQ) 6
IxR'.
Therefore, our results cover more classes of differential equations than Theorem 2.3 of
O'Regan [10]. An example has been cited to illustrate this.

After presenting some preliminary material in Section 2, we prove our main results
in Section 3. Section 4 deals with integro-differential equations. As applications, ex-
istence results for third and fourth order boundary value problems are discussed. In
Section 5, existence of solutions to functional differential equations is examined. Finally
in Section 6, an example of a non-linear boundary value problem satisfying the hypoth-
esis of our main Theorem 3.1 is cited to compare our results with that of O'Regan
[10].

2. PRELIMINARIES, DEFINITIONS AND NOTATIONS

Let C"*[0, 1] denote the Banach space of n times continuously differentiable func-
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tions defined on / = [0, 1] with the norm

where ||v|| = sup \v(t)\, for v G C[0,1].
*6[0,l]

Let B stand for various boundary conditions (see below) and further let Cg[0, 1]
denote the subset of Cn[0, 1] consisting of functions satisfying the boundary conditions
B. CB[0, 1] is defined similarly.

Let £ be a, Banach space, K C E be convex and V C K be open in if. A
compact map T: V —* K which is fixed point free on dV is said to be essential if every
compact map C: V —> K with C = T on dV, has a fixed point in V. For a fixed
element u0 in V, let T(u) — u0, for all u G V. Then, T is essential by an application
of the Schauder fixed point theorem, [4, 5].

Let C, T: V —» K be compact maps. C and T are said to be homotopic if there
is a compact map H: V x [0, 1] —> K such that H{-, A) is fixed point free on dV for
each A G [0, 1] and H(-, 0) = T with H{-, 1) = C.

Now we state without proof the topological transversaJity theorem, for our subse-
quent use. For a proof, see Granas [4].

THEOREM 2 . 1 . Let C,T: V -* K be compact homotopic maps without fixed
points on dV. Then T is essential if and only if C is.

3. MAIN RESULTS

Consider B as one of the following boundary conditions:

(i) «(0)= U ( l ) = 0;

(ii) ttW(O) = «(1)(1) - 0.

Now we state the main result of this paper.

THEOREM 3 . 1 . Let B denote either one of the boundary conditions (i) or (ii)
and let Y be a subspace of C[0, 1] containing CB[0, 1]. Assume that S.Y-+ C[0, 1]
is a continuous operator with

(3.1) | |5* | |<aH|+l ,

for some non-negative constants a, 0. Further assume that f: JxR s —» R is continuous
and satisfies the following properties:

(a) t ie re is a constant M > 0 such t i a t x i / ( t , x0, x\, 0) > 0, for all

(i, x0, * 0 in the set I x {(p, ? ) e R ! : \p\ ^ a \q\ + 0 and \q\ > M}
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and
(b) \f(t, x0, xi, x2)\ ^ C{t, x0, xi)x\ + D(t, x0, xi) for all (t, x0, x1, x2) G

I x R3, where C(t, xo, xi) and D(t, XQ, XI) are non-negative functions
bounded on bounded subsets of I x R ! .

Then the problem (1.1) has at least one solution.

First, we shall establish a priori estimates, independent of A, for the solutions of
the family of problems

(3.2O u& -u = \[f(t, Su, u, «<*>) - « ] , t G [0, 1],

for A G [0, 1]. Below Lemma 3.2, the bounds for solutions u\ are obtained, and the
bounds for u\ are established in Lemma 3.3. The technique used follows closely that
in [5].

LEMMA 3 . 2 . Let f and S be as in Theorem 3.1. Then for any solution u\ of
(3.2*j, \\u\\x^M.

PROOF: Since for A G (0, 1), f\: I x R3 -> R denned as fx(t, x0, xx, x2) =
A/(f, xo, xi, x2) + (1 — A)xj also satisfies the condition (a) of Theorem 3.1 with the
same M, it is enough to show that for any solution u of (1.1), we have ||u|| ^ M. Let
u be a solution to (1.1) and let <o £ [0) 1] be a point where |u| attains its maximum.
Then

(3.3) \[Su](to)\ < ||5u|| ^ a \\u\\ + 0 = a |u(io)| + 0.

Assume that u(t0) > M. If (i) holds then t0 G (0, 1). Thus, for (i) and (ii), u(1)(<o) =
0. Then

0 ^ uW(io)u{to) = /(to, [Sv](to)t «(*o), 0)«(*o)

contradicting (a). The case u(to) < M follow similarly. D

LEMMA 3 . 3 . Let f and S be as in Theorem 3.1. Then there exists a constant

Mi > 0 such that for any solution u\ of (3.2\), \Wx\\ ^ ^ i •

PROOF: Let P = sup{C(<, x0, xi): t G / , |xo| ^ aM + 0, \Xl\ < M} and Q =
sup{D(t, xo, xi): t e / , |xo| ^aM+P, |si| ^ M} + M.

From Lemma 3.2, we have ||UA|| ^ M. Moreover,

Thus

(3.4) <(t) ^ K(t) | < \fx(t,

i, [Sux](t), ux(t), u
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where P andQ are independent of A. From (3.4)

A " A

Now u'x vanishes at least once in [0, 1]. By a standard argument (see (5), for example),
we obtain

a
PROOF OF THEOREM 3.1: Consider the family of problems (3.2x) for A £ [0, 1].

From Lemmas 3.2 and 3.3, there exist constants M and Mi independent of A such
Mi for all A G [0, 1]. In addition, the continuity of fxthat ||ux|| < M and llu^l

on
/ x [-(aM + /?), {aM + 0)] x [-M, M] x [-Mi, Afi]

implies that there is M2 ^ 0 such that ||u(2)|| ^ M2, for all A £ [0, 1].
Now let E denote the Banach space C%[0, 1]. Define an operator L: Cg[0, 1]

C[0, 1] by Lu = v.(2) — u. It is easy to show that L has a bounded inverse L~l.
Consider a family of maps F\: C^[0, 1] -> C[0, 1] defined by

and the completely continuous embedding j : C%[0, 1] —* Cg[0, 1].
Note that Fx is weU defined since C^[0, 1] C CB[0, 1] C Y. As in [5], set

H(u, A) = L~1F\ju. This is a compact homotopy and is also fixed point free on
the boundary of V, where V = {u £ E: ||u(2)|| < 1 + max(M, Mlt M2)}. Since
Ho = 3(-, 0) is the zero map, it is essential and so is Hi. In particular Hi has a
fixed point which is the required solution to the problem (1.1) and this completes the
proof. D

COROLLARY 3 . 4 . Let B and S be as in TAeorem 3.1 and let us assume that
f: I x Rs —> K is a continuous function satisfying

(a') there ia a constant M ^ 0 such that xif(t, XQ, X \ , 0) ^ 0 for all (t, xg, xi)
in the set

Ix{{p,q)eR2: \p\^a\q\+/3 and \q\ > M}

and (b) of Theorem 3.1. Then the problem (1.1) has at least one solution.

PROOF: For k G N, define fk(t, x0, xu x2) as f(t, x0, xu x2) + zi/Jfe. Each
fk satisfies (a) of Theorem 3.1 and hence for every k, there is at least one solution
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uk e C2[0, 1] to the problem

uW=fk(t,Su,u,u

u 6 B.

As in the proof of .Theorem 3.1, we now obtain a bound for «* in ||-||2-norm, namely
||ujfe||2 ^ N, where N is independent of k. Continuity of / and 5 and the Ascoli-Arzela
theorem imply the existence of a subsequence Ukj which converges to a solution of the
problem (1.1). This completes the proof of the theorem. D

REMARK 3.1. As in [5], Theorem 3.1 can be extended to cover the following boundary
conditions:

ti(O) = 1.(1),

(iii) ti^fO) = «(1)(1),

- /xu(0) + £u(1)(0) = 0, ni > 0.

(iv) au(l) + 6u(1)(l) = 0,a,b> 0.)

(v) w(0) = 0, au(l) + 6u(1)(l) = 0, O 0, 6 > 0.

(vi) »(1) = 0, -fiu(0) + ^l\0) = 0,(*>0,t>0.

(vii) u(1)(0) = 0, ou(l) + ^ ( l ) = 0, a > 0, 6 ̂  0.

(viii) «(1)(1) = 0, -/«i(0) + ^ ( 1 ) (0) = 0, p > 0, £ > 0.

(ix) «(0) = -u ( l ) ,

The following Theorem can be easily proved by making minor modifications in the
proof of Theorem 3.1.

THEOREM 3 . 5 . Let T and E be as in Theorem 3.1 and assume that S:Y^>
C[0, 1] is a continuous operator with

(3.5) ||Su||<a||tt | |*+/?)

wiere 8 ̂  0 is a constant. Further assume that f: J xE 5 -» R is a continuous function
satisfying

(c) there is a constant M ^ 0 such tiat Xif(t, xo, sci, 0) > 0 for all (t, XQ, X{) in
the set

/ x { ( M ) 6 R 2 : \p\$a\q\'+fJand\q\>M}

and (b) of Theorem 3.1. Then the problem (1.1) has at ieast one solution.

Below we consider an integral type of monotonicity condition on the nonlinear
function / and obtain existence of solution to problem (1.1).
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THEOREM 3 . 6 . Let Y and S be as in Theorem3.1 and assume that f: 7 x R s ->
R is a continuous function satisfying

(d) there is a constant M ^ 0 such that

i, Sv(a), v(s), v(1)(«))]<fc > 0, 0 < t ^ 1,

for |t;(t)| > M, » E C'[0, 1] witA v(0) = 0, and condition (b) of Theorem 3.1. Then

the problem (1.1) with B as in (i) has at least one solution.

PROOF: It is enough to show that for any solution u of (1.1) with B as in (i),
the estimate \u(t)\ < M for t G [0, 1] holds. By (i), |u| attains its maximum at some
t0 G (0, 1). Then u( 1 )( t0) = 0. Suppose that |u(to) | > M , now the condition (d)
implies

/ u(1)(«)u(2)(a)(ifl > 0.
Jo

So we obtain

" > 0

which is a contradiction, and hence |u(to)| ^ M. The rest of the proof follows from
Theorem 3.1. D

REMARK 3.2. As in Corollary 3.4, we may replace the condition (d) in the previous

Theorem by

(d1) There is a constant M > 0 such that

J v^\s) [/(«, Sv(s), v(a), *(1)(«))](fa ^ 0, 0 < t ̂  1

for \v(t)\ >M,«ECrl[0,l] with v(0) = 0.

4. INTEGRO-DIFFERENTIAL EQUATIONS

In this section, we consider equations of the type

(4.1)
u EB

and

(4 2) U(2)(t) = / ( * > I! G(a' <J u(fl))dS) tt(<)t

uGB,

where 5 stands for the boundary conditions (i) or (ii).
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THEOREM 4 . 1 . Let k: I x I -» R be continuous. Let G : J x J x R - > l be
continuous such that for some m, q ^ 0,

(4.3) \G{s,t,p)\^m\p\ + q

for all p e l and a, t e I. Then,

(A) t ie equation (4.1) has a solution if f satisfies (a) and (b) of Theorem 3.1

with a ^ sup \k(s, t)\ and /? ^ 0,

(B) the equation (4.2) has a solution if f satisfies (a) and (b) of Theorem 3.1

with a ^ m and /? ^ q.

PROOF: Consider the problem (4.1). Let Y be C[0, 1] and let S:Y -> C[0, 1] be
an integral operator defined by (1.2). Then 5 satisfies (3.1) with a and /3 as in (A).
The proof of (A) is completed by the application of Theorem 3.1.

Consider the boundary value problem (4.2). With Y = C[0, 1], let S: Y -> C[0, 1]
be an integral operator, which is defined by (1.3). Then from (4.3), 5 is continuous and
satisfies (3.1) with a and /3 as in (B). An application of Theorem 3.1 now completes
the rest of the proof. U

As an application of Theorem 4.1, we have the following existence results for third

and fourth order boundary value problems:

(4.4) yW = f(t, y, t^\ y™), t G [0, 1], y € B,

where E stands for one of the boundary conditions

(x)

(xi) y (c )=0 , y(2)(0) = 0,

with c e [0, 1], and

(4.5) y(4) = /(*,2/,2/(2),2/(3)), * e [o, i], ye

where B stands for one of the boundary conditions

(xii) 2/(0) = y(l) = 2/(1)(0) = yW(l) = 0

(xiii)

COROLLARY 4 . 2 . Let f satisfy (a) and (b) of Theorem 3.1 with a = 0 and
/3 = 0. Tiien there exists at least one solution for each of the boundary value problems

(4.4) and (4.5).

PROOF: Consider the problem (4.4) with B as in (x). We first observe that it is
sufficient to show the existence of a solution u E C2[0, 1] to (4.1) with k(s, t) = 1.
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Indeed, if u is a solution of (4.1), with B as in (i), then y(t) = JQ u(s)ds is a solution

of the problem (4.4) with B as in (x). Similarly the problem (4.4) with B as in (xi) is

reduced to the problem (4.4) with B as in (ii). Hence by putting k(s, t) = 1, the proof

is completed by an application of (A) of Theorem 3.1.

For the problem (4.5), define G: I x I -* R as

( s(l-t), s ^ t
(4.6) G(s, t)=\ ^ '

K ' \t(l-B), 3>t

and set G(s, t, r) = G(s, t)r, for all r € R. Now we have m = 1/4 and q = 0 in (4.3).
Consider the boundary condition (xii). The transformation u(t) — y^2\t) reduces the
problem (4.5) to that of (4.2). Indeed, if u € C2[0, 1] is a solution to the problem (4.2)
with B as in (i), then y £ C4[0, 1] defined as y(t) = / 0 G(a, t, u(s))ds is a solution to
the problem (4.5) with B as in (xii). Similarly the problem (4.4) with B as in (xiii) is
reduced to the problem (4.2) with B as in (ii). Hence an application of (B) of Theorem
3.1 now completes the rest of the proof. U

5. FUNCTIONAL DIFFERENTIAL EQUATIONS

In this section, we consider the following functional differential equation:

u™(t) = f(t, u(g(t)), u(t), »W(*)), t e [0, 1],

t5-1) «(*) = Vl(<), *e [o ,o ] ,
u(t) = tp2(i), t e [l, 6]

where g, ipi, ip2, <*• and b are as in (III) of Section 1. We say that u £ C\a, b] is a

solution of (5.1) if u |[o,i]£ C2[0, 1] and u satisfies equation (5.1).

T H E O R E M 5 . 1 . L e t q = m a x ( s u p \ < p i { t ) \ , s u p | p 2 M l ) . F u r t h e r , l e t f : I x
^tefo.o] te[i,6] '

IK.3 —» R be a continuous function satisfying (a) and (b) of Theorem 3.1 with a ^ 1
and /3 Js q. Then the problem (5.1) has a solution.

PROOF: Let B stand for the boundary condition (i). For u E CB[0, 1], we define
Su: I —» R as in (1.4). Su is continuous since g,<fi and <f2 are continuous and
pi(0) = <p2(l) - 0. Thus we have an operator 5 : C B [ 0 , 1] -> C[0, 1]. We now claim
that 5 is a continuous affine map, and hence satisfies (3.1).

Let 0 E CB[0,1] be the zero function. Then Sv. - S6 is given by

0,
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Defining T : CB[0, 1] -» C[0, 1] by Tu = Su- SO, it is easy to verify that T is linear.
Now

||ru| |= sup \Tu(t)\= sup Ks(<))K sup
*e[o,i] ( ) [ ] []

Thus, T is continuous and so is 5 . Further, S satisfies (3.1) with a ^ 1 and f) ^ q.

Now an application of Theorem 3.1 yields the existence of w £ C2[0, 1] satisfying

w«\t) = f((t,[Sw)){t), «(<), ™(1)W)> * e [o, l]

t»(0) = w(l) = 0.

Setting ti g C[o, i] as

{ <pi(s), a 6 [a, 0],

«(«), a G [0, 1],

V l ( j ) , « G [1, 6],
ii satisfies (5.1) and this completes the proof. U

6. EXAMPLES AND COMPARISIONS

First we compare our results for the problem (4.4) with a result of O'Regan [10].

(I) Consider the following differential equation:

(6.1) y ~ ^ y

yen,

where B stands for the boundary conditions (viii), (ix) or

(xiv) ay(J)(l) + ty(2)(l) = 0, a, 6 > 0.

THEOREM 6 . 2 . ([10]). Let f: I x Rs -» E be continuous. Suppose that

(e) t iere is a constant M ^ 0 such fiat x\f(t, x0, xi , 0) > 0 for \xi\ > M
and (t, x0) £ J x R and

(f) |/(f, z 0 , xlt x2)\ < C(t, x0, Xi)x\ + D(t, x0, si)(*, xo, « i , x2) G / x R s ,

wiere C(t, XQ, X\) and D(t, x0, Zi) are non-negative functions bounded on bounded

subsets of I x R.
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Tien t ie problem (4.4), where B stands for either of the boundary conditions (x),
(xi) or (xiv), has at least one solution.

Clearly (e) of the above theorem implies (a) of Theorem 3.1. Since the function /
defined as /(*, xo, xi, x2) = 1 + x\ + x\ + x\ does not satisfy (e). Theorem 6.2 does
not guarantee that the problem (6.1) has a solution. But below we shall now show that
the problem (6.1) has at least one solution using Corollary 4.2 and Remark 3.1.

Consider x i / ( i , xo, xi, 0) = x\ + XIXQ + x\. Let a, /3 ^ 0 be given. Suppose
M < a | x i | + / 3 . We have

where <f> is a polynomial of degree at most 3.

Let M = max{3a2, (6a/?)1/2, [3(/?2 + l ) ] 1 ' 2 } . Now for \Xl\ > M,

(6.1) ** ><K\*i\) > \*i + *i*l\.

If xi > 0, then trivially xi + Xix\ + x\ > 0. For zi < 0, xi + xxx\ ^ 0 and by (6.1)
for |xi| > M, xi + XIXQ + x\ > 0.

To verify the condition (b) in Theorem 3.1, take C = 1 and D(t, xo, xi) = 1 +
x% + |xi | . Therefore, Corollary 4.2 guarantees that the problem 6.1 has at least one
solution for each of the boundary condition (x) and (xii).

For the boundary condition (xiv) we proceed as follows. Define the operator

S:Y = C[0, l ] -»C[0 , 1] as

[Su(t)] = eu(c)/d+ I u(s)ds.
Jc

5 is a continuous linear operator which satisfies (3.1) of Theorem 3.1 with a ^ 1 -f- \e/d\
and f3 ^ 0. We now apply the extension of Theorem 3.1 as indicated in Remark 3.1,
and obtain existence of a solution u to the problem (1.1) with B as in (iv). Defining
y(t) = [Su](t), it is easy to see that y is a solution to the problem (6.1) with B given
by (xiv).

(II) Consider the following non-linear integro-differential equation:

(6.2)

where B stands for the boundary conditions (i) or (ii) and k, p, m are positive in tegers
such kp <m and m is odd.
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The operator 5 : C[0, 1] -» C[Q, 1] defined as

[Su)(t) = f\u(8)]kds
Jo

satisfies the condition (3.5) fo Theorem 3.5 for a = 1, /? = 0 and 6 — k. As in

the previous example, we can show that the function defined as /(<, xo, Zi, x2) —

1 + x% + x? + x\ satisfies (c) of Theorem 3.5 and (b) of Theorem 3.1. Hence by

Theorem 3.5, the problem (6.2) has at least one solution.

(Ill) Consider the boundary value problem:

yew,
where IB stands for the boundary condition (viii) of Section 4 with c — 0 and </>: R —> R

is defined as
f - s i n M » if r £ (-oo.ir),

<f>(r) = <
[ r — 7T, if r € (TT, OO).

As in Corollary 4.2, it is enough to consider the existence of solution to the following

second order equation:

(6.4) u& = *[«(*)] +

where B stands for the boundary condition (i) and Su is defined as [5u](t) = / 0 u(s)ds.

Set f(t, x0, xu x2) = <£(zi) + (x2xl)/{l + |a;21) + x2 \x2\. For v £ C 1 ^ , 1] with

v(0) — 0, we have,

Let v(t) ^ 0. Then

vW{s) [f (s, Sv(s), v{s), vW{,)) ] ds

<j>(s)ds = /
J0

(6.5) / <t>(a)ds = - I - [
J0 Jv(t)
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For v(t) >7r,

/ 4>{s)ds = / <i>(a)ds + / <f>(s)ds

Jo Jo Jv

= [v{t)}2/2 - Tvv{t) + TT2/2 - 2.

Thus, for v(t) ^ 7T + 2

(6.6) / (/>{s)ds ̂  0.
Jo

From (6.5) and (6.6) (d ') of Remark (3.2) is satisfied for M - n + 2. Now by taking

C(t, xo, zi) = 7T + |xj | + x\ and D(t, xo, SBI) = 1, the condition (b) of Theorem 3.1

is also satisfied. Therefore by Remark 3.2, the problem (6.4), and hence the problem

(6.3), has at least one solution.

REMARK 6.3. For the problem (6.3), neither (a) of Theorem 3.1 of this paper nor the

integral type of monotonicity condition in Theorem 3.2 of [10] is applicable. Therefore,

neither Theorem 3.1 of this paper nor Theorem 3.2 of [10] covers this example.
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