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Let M be a Bade complete (or cr-complete) Boolean algebra of projections in a Banach space X. This paper
is concerned with the following questions: When is M equal to the resolution of the identity (or the strong
operator closure of the resolution of the identity) of some scalar-type spectral operator T (with a(T) c K) in
X? It is shown that if X is separable, then M always coincides with such a resolution of the identity. For
certain restrictions on M some positive results are established in non-separable spaces X. An example is
given for which M is neither a resolution of the identity nor the strong operator closure of a resolution of
the identity.

1991 Mathematics subject classification: 47B40.47D30.

1. Introduction

The most natural analogue in Banach spaces of selfadjoint operators in Hilbert
spaces is the class of scalar-type spectral operators introduced by N. Dunford in the
1950's, [4, 5]. These are (bounded) operators T which have an integral representation
of the form T — f^XdP(A), where P() is a projection-valued measure defined on the
a-algebra B(o(T)) of all Borel subsets of the spectrum o(T), of T, and which is a-
additive for the strong operator topology. The measure P, necessarily unique, is called
the resolution of the identity of T; its range {P(E); E e B(o(T))} is then a (a-complete)
Boolean algebra of projections.

What about the converse? It is a classical result that every a-complete Boolean
algebra of selfadjoint projections in a separable Hilbert space is the resolution of the
identity of some selfadjoint operator; see [2, p. 134], for example. By the Mackey-
Wermer theorem [1, p. 354] it follows that any a-complete Boolean algebra of
projections (not necessarily selfadjoint) in a separable Hilbert space is the resolution of
the identity of some scalar-type spectral operator with real spectrum.

The aim of this note is to consider the question of which Boolean algebras of
projections in Banach spaces are a resolution of the identity of some scalar-type
spectral operator with real spectrum? Such operators are also referred to as
pseudohermitian, [8]. There are known examples of Banach spaces where this question
always has a positive answer, usually due to the "special geometry" of the space. For
instance, in addition to separable Hilbert spaces, this is the case for any tr-complete
Boolean algebra of projections in a Grothendieck space with the Dunford-Pettis
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property, [9], or in any hereditarily indecomposable Banach space, [11, Appendix].
The main result of this note (c.f. Proposition 2) states that the same conclusion holds
in the (extensive) class of all separable Banach spaces. In the final section we consider
some relevant examples and results concerning the case of non-separable spaces.

2. Preliminaries

In this section we fix the notation, recall some definitions and concepts and establish
some basic results needed in the sequel.

The space of all bounded linear operators from a Banach space X into itself is
denoted by L(X); it is equipped with the strong operator topology r,. A Boolean
algebra (briefly, B.a.) of projections M c L{X) is called Bade complete (resp. o-
complete) if, for every family (resp. countable family) of elements {£„} c M the
supremum va£a and infimum AaEa exist in the partial order (of range inclusion) in M.
(i.e. E < F iff EX c FX) and (AaEa)X = n.EtX and (va£ j x = span(Ua£aAr), where
the bar denotes closure; see [1], for example. It is assumed that the identity operator
Ie M.

We recall the following definitions, where M c L(X) is always a B.a.

(i) A vector x € X is called separating for M if E — 0 whenever E e M satisfies
Ex = 0.

(ii) For each x € X, the carrier projection Cx (if it exists) is the element of M given
by Cx = A{£ € M; Ex = x}.

(iii) M is called countably decomposable iff every pairwise disjoint family {£„} c M
(i.e. ExEp — 0 whenever a / /?) is at most countable.

(iv) A non-zero projection E e M is called an atom if, whenever F e M satisfies
F < E, then either F = 0 or F — E. We say that M is atomic if there exists a
family {Ea}aeA of atoms in M such that, whenever E e M there is a subset
B c A such that 2a€B£a = E, i.e. E is the T,-limit of the net of finite partial sums
of {£„; a e B}. If M is Bade complete, then such a family of atoms is necessarily
maximal and pairwise disjoint. If {EJ^ is countable we say that M. is
countably atomic.

Lemma 1. Let Xbe a Banach space and M c L(X) be a B.a.

(i) If X is separable, then M is Bade complete iff it is Bade a-complete (c.f. [7, XVII
Lemma 3.21]).

(ii) If A4 is Bade a-complete and has a separating vector, then A4 is countably
decomposable. In particular, M is Bade complete.

(iii) If /A is Bade a-complete and is countably atomic, then M is Bade complete.
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Proof, (ii) Let {£„} be a family of disjoint elements of M. Then every series
E"i £ io i . with a(;)/a(fc) if k^j, is ^-convergent, [7, XVII Lemma 3.4]. Hence, if
x 6 AT is a separating vector, then Zn = {a; ||Eax|| > i} is a finite set, for every n e N,
and so Z = U~,Zn is countable. Moreover, if a £ Z, then Eax - 0 and so Ex = 0. This
shows that {£,} is countable. Hence, M is countably decomposable. The Bade
completeness of M follows from [6, IV Lemma 11.5].

(iii) Let {£„; n e N} be a countable family of atoms which generate M; see (iv) in
the previous definitions. The map F •-> 2neF£n, for F c N, is a B.a. isomorphism of 2N

onto M. and so M is complete as an abstract B.a. Since 2N is countably decomposable
so is M. and the conclusion follows from part (ii). •

Remark 1. Let M be a Bade complete B.a. with a separating vector. Then every
Bade cr-complete Boolean subalgebra of M is actually Bade complete. This is clear
from Lemma l(ii) as any separating vector for M is also separating for the
subalgebra.

Lemma 2. Let M c L(X) be a Bade complete B.a.

(i) M is countably decomposable iff M has a separating vector.

(ii) IfXis separable, then M is necessarily countably decomposable.

Proof, (i) Suppose M is countably decomposable. Let {CXJ be a maximal, disjoint
family of carrier projections from M. By hypothesis it is of the form {C.^}^,, where
we can suppose that ||x(n)|| = 1, for all n € N. Let x0 — E~,2~"x(n). By maximality
v~, Cx(n) = / and CXo = I from which it follows that x0 is a separating vector. The
converse is immediate from Lemma l(ii).

(ii) Let {Ex}aeiA be a maximal disjoint system and {xn}£L, be a countable dense set in
X. Since / = Ea£a we have xn = E0£Ixn, for each neN, and so there is a countable
subset An c A such that Eaxn = 0, for all a $ An. By density of {xn}~, it follows that
Ea = 0 whenever a £ U~,>ln. •

Remark 2. Lemma 2 shows that a Bade complete B.a. in a separable Banach space
always has a separating vector. There are examples of Bade complete B.a.'s in non-
separable spaces which also have separating vectors; see Example 1 in Section 4.

An abstractly a-complete (resp. complete) B.a. A is called countably generated if
there is a countable subset B c A such that the smallest (abstract) a-complete (resp.
complete) B.a. T c A with B c ? is T = A. An examination of [6, III Lemma 8.4] and
its proof, together with the fact that every abstract B.a. is isomorphic to a B.a. of
subsets of some set, shows that we may assume B is a subalgebra of A (i.e. contains 0
and 1, finite sups and infs and is closed under complements).

Let M c L(X) be a B.a. and x e X. The cyclic space, M[x], generated by x is the
closed subspace M[x] = span{£x; E e M).
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Lemma 3. Let M c L(X) be a Bade complete B.a. with a separating vector, say x0.

(i) M. is countably generated iff its restriction to M[x0] is countably generated.

(ii) If X is separable and x0 is cyclic for M, then M is countably generated.

(iii) If M[xo\ is separable, then M is countably generated.

Proof, (i) Let Y = 7U[xo], in which case the family MY = {E\Y; E e M) of restricted
operators is a Bade complete B.a. in L{Y). Then <J> : M -*• MY given by O(£) = E\Y

is onto and preserves the B.a. operations. Moreover, 0 is also injective (using the fact
xo is a separating vector) and so is an isomorphism between the abstract B.a.'s M and
MY.

(ii) Let {£Bx0}~, be a countable dense subset of the separable subset
W = {Exo\ E e M) of X. Let Af c L(X) be the abstract a-complete B.a. generated by
{£„}*,. By [7, XVII Lemma 3.4] and the Bade completeness of M it follows M is Bade
ff-complete. By Remark 1, TV is Bade complete.

Let E e M. Since MXo = {Fx0; F e Af) is a dense subset of W there exist elements
FkeAf, for k e N, with Ex0 = l im^^ FkxB. It follows, for every x = UJl

=\XjRjx0 with
X] e C and Rj e M, that Fkx -»• Ex, as k -*• oo. Since the set of all such vectors x is
dense in X and sup{||FJ|; k € N} < oo we conclude that Fk -» E in L(X), as k -*• oo.
This shows that E belongs to the TS-closure of TV in L(X). But, this T,-closure is
precisely Af, [7, XVII Corollary 3.8]. It follows that M=Af. So, M is countably
generated.

(iii) follows from (i) and (ii) after noting that the restriction of a Bade complete
B.a. to a cyclic subspace is again Bade complete; see Lemma 1 (ii) and [7, XVII
Corollary 3.11]. •

Remark 3. Lemmas 2 and 3 imply that every Bade complete B.a. in a separable
space X is necessarily countably generated. In particular, in a separable space X every
Bade <r-complete Boolean subalgebra of a Bade complete B.a. M, with M necessarily
countably generated, is also countably generated. This property fails in non-separable
spaces. For, let X be the non-separable Hilbert space £2([0, 1]) and, for each set
F e 2[0pl1, let P(F) e L(X) denote the operator in X of multiplication by XF- The11

M. = {P(F); F e 2[011} is a Bade complete B.a. (atomic even) which is countably
generated. Indeed, let 72. c M be any abstractly complete B.a. containing the countable
family B of all projections of the form P([a, b)) and P((a, b]) with both a and b being
rational numbers from [0,1]. Let x e (0, 1) be arbitrary. Then there exists an increasing
sequence {an}~, c (0, x) of rational numbers such that lim,,.^ an = x, in which case
[x, 1] = r\1ILi(an, 1]. It follows that P([x, 1]) e H. Choose a decreasing sequence
{&„}" i ^ (*. 1) of rational numbers such that lim,,.,.,,,, bn = x, in which case
(x, 1] = U~,(bn, 1]. It follows that P((x, 1]) e %. Hence, also P({x}) = P([x, l]\(x, 1])
belongs to U. Clearly 0,1 ell (as {0} = r£L,[O,i) and {1} = n~,(l -*-, 1]) and so
F({x}) e 72. for every x e [0, 1]. By the abstract completeness of 72 it follows that
P(F) e 72 for every F e 210". That is, 72 = M which shows that M is countably
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generated as an abstractly complete B.a. However, if E = {F e 2[<ul; F or F* is
countable}, then M = {P(F); F e Z ) is a Bade a-complete Boolean subalgebra of M.
which is not countably generated. To see this assume that H is generated by a
countable set £ = {P(y4(n))}~, with each A(n) e E. We may suppose that each A(n) is
actually countable, otherwise replace it with its complement. Hence, each A(n) is a
countable union of singletons, so we may assume that Af is generated by a sequence of
singletons {iJ({an})}^i. Let A = {an}~ i and Y.A denote the a-algebra of all sets
E c [0,1] for which either E c A or Ec c. A. Then P(ZA) is a a-complete B.a. with
£ c P(LA). Since P(ZA) is properly contained in M we have a contradiction. This
argument was suggested by Dr H. Vermeer. We also note that N" is not Bade complete;
this does not contradict Remark 1 since M does not have a separating vector.

A fundamental result of W. Bade, [1, Theorem 3.1], states that if M c L(X) is a
Bade tr-complete B.a. and xo e X, then there exists an element x̂  in the dual Banach
space X' (called a Bade functional for x0) with the properties that

(i) {Ex0, x'o) > 0, for every E e M, and

(ii) Ex0 = 0 whenever E e M satisfies {Ex0, x'o) = 0.

We end this section with the following

Lemma 4. Let M c L(X) be a countably generated, Bade complete B.a. with a
separating vector x0. Let x'B e X' be a Bade functional for x0. Define /x : M —* [0, oo) by

x'B), EeM. (1)

Then fi is a (finite) completely additive and separable measure.

Proof. Let A/" be a countable algebra from M which generates M as an abstract
B.a. Let Afa be the abstract (7-complete B.a. generated by M. Arguing as in the proof
of Lemma 3 it follows that Afa is actually Bade complete and coincides with M.. Since
M = Afa and Ma is countably generated it follows that fi is a separable measure. The
complete additivity of // is a consequence of the Bade completeness of M. •

3. Separable spaces

Given a Bade complete (or cr-complete) B.a. M c L(X) the aim of this section is to
investigate the following questions: When does there exist a psuedohermitian operator
T = f XdP(X) such that either M = {P(E); E e B(o(T))} or M coincides with the T,-
closure of {P(E); E e B(CT(T))}?

Recall that a set function Q : E - • L(X) satisfying Q(fi) = /, where E is a a-algebra
of subsets of some set fi, is called a spectral measure if Q is both cr-additive for the
topology x, and multiplicative (i.e. Q(G C\H) = Q(G)Q(H), for all G,H e E). The
connection between spectral measures and B.a.'s is well known, [7, Ch. XVII]. Indeed,
the range of a spectral measure is always a Bade tr-complete B.a. and conversely, every
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Bade cr-complete B.a. is the range of some spectral measure (e.g. defined on the Baire
subsets of its Stone space). Since the vclosure of a Bade cr-complete B.a. is actually a
Bade complete B.a. [7, XVII Lemma 3.23], it follows that a Bade cr-complete B.a.
M c L(X) is Bade complete iff M is a T,-closed subset of L(X).

An operator T e L{X) is called scalar-type spectral if there exists a spectral
measure Q : £ -> L{X) and a g-integrable function / : fi ->• C such that T = JafdQ.
Here Q-integrability of/ is meant in the usual sense of integration with respect to a
spectral measure, [3], and is equivalent to / being Q-essentially bounded, [7, XVIII
Theorem ll(c)]. The spectral measure P: B(p{T)) ->• L(X) given by P(F) =
Q(f~l(F)), for FeB(o(T)), satisfies T = / ^ XdP(X)\ it is called the resolution of the
identity of T.

Lemma 6. Let M C L{X) be a Bade a-complete B.a. which is countably generated,
has a separating vector and contains no atoms. Then M is the resolution of the identity of
some pseudohermitian operator.

Proof. Lemma l(ii) implies M is Bade complete. Choose a separating vector
x0 e X and a Bade functional x'o such that (x0, x'o) = 1. Lemma 4 implies the measure
fi: M -*• [0, oo) defined by (1), which takes its values in [0, 1] because of our choice of
x'o, is separable, non-atomic and satisfies n(I) = 1. By a result of Caratheodory, [12,
p. 321], there is a B.a. isomorphism <D of M onto the measure algebra A generated by
Lebesgue measure in [0, 1], which preserves countable sups and infs. If TV denotes the
Lebesgue null sets of B([0, 1]), then A is B.a. isomorphic to B([0,1])/7V. Let
p : B([0, 1]) -> B([0, \])/N be the quotient map. Then P : S([0, 1]) -»• L(AT) given by
P(G) = <&~\p(G)), for G e B([0, 1]), is a spectral measure whose range is precisely M.
Hence, T = f.Ql] XdP(k) is pseudohermitian and has the desired property. •

Given a B.a. M c L(X) and E e M we define EM - {EF; F e M). Then EM is
interpreted as a B.a. acting in the Banach space EX; it is clearly Bade complete (resp.
cr-complete) whenever M is Bade complete (resp. cr-complete).

Lemma 7. Let M c L(X) be a Bade complete B.a. which is countably generated.
Then, for each E G M, the Bade complete B.a. EM C L(EX) is also countably
generated.

Proof. Let {Fn} generate M as an abstract B.a. Then {EFn} generates EM as an
abstract B.a. Indeed, let AT c L(EX) be the complete abstract B.a. generated by {EFn}.
Since EM is Bade complete we have M c EM. Moreover, if A = {F e M; EF e A0,
then A is a complete abstract B.a. containing {FJ from which it follows that A = M.
Then A/" = EM, as required. •

We come to the main result of this section.

Proposition 1. Let M c L(X) be a Bade complete B.a. with a separating vector. Then
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M is the resolution of the identity of a pseudohermitian operator if and only if it is
countably generated.

Proof. Suppose that M is countably generated. By Bade completeness, if {Q,} is a
maximal disjoint family of atoms in M, then the series £„(?,, is T,-summable to the
element Q — v,ga of M. Since M has a separating vector, say x0, and E^x , , — Qx0

we conclude that M has at most countably many atoms, say {Q,,}~,. Let Q = v~,QB

and Xa = QX. Denote the closed subspace (/ — Q)X by Xc, in which case
y y a> y

Let Mc — (I — Q)M denote the restriction of M to Xc. Then Mc is a Bade complete
B.a. in L(XC) which is countably generated (c.f. Lemma 7), has no atoms and has
(/ — 0 x o as a separating vector. By Lemma 6 there is a pseudohermitian operator
Tc e L(XC) having Mc as its resolution of the identity.

Now Ma = QM, the restriction of M. to Xa, is a Bade complete, countably atomic
B.a. in L{Xa). Let [a, b] c R be an interval containing o(Tc) in its interior. Then
Ta = I.%l(b + li)Q^), where Q*? is the restriction of Qn to Xa and the series is v
convergent in L(Xa), is a pseudohermitian operator in Xa whose resolution of the
identity is Ma.

Let Pc : B(a(Tc)) -> L(^c) and Po : B(a(Ta)) ->• LCXJ be the resolutions of the
identity of Tc and 7 ,̂ respectively. By construction A = a(Ta) U o{Tc) is a disjoint union
(in R). Moreover, every Borel set G e B(A) has a unique decomposition G = Ga\JGc

into disjoint Borel sets Ga e B(o(Ta)) and Gc e B(o{Tc)). Define P(G) e L(X) by
P(G) = Pa(Ga) © PC(GC). Then the set function P : S(A) ->• L(X) so defined is a spectral
measure. Moreover, if T = Ta © Tc, in which case CT(70 = A, then T is pseudohermitian
with resolution of the identity precisely P and M = {P(G); G € B(CT(T))}.

Conversely, suppose M — P(B(o(T))) where P : B(c(T)) - • L(X) is the resolution of
the identity of a pseudohermitian operator T. Then P induces a B.a. isomorphism
between M and B(a(T))/Af(P) where A/"(P) = {£ e S(er(T)) : P(£) = 0}. Let x'o be a
Bade functional for x0 and define v : B(a(T)) -> [0, oo) by v(£) = (P(E)x0, x'o), for each
E e B(o(T)). Then M is B.a. isomorphic with B(<r(T))/Af(v), where J/V(V) =
[E e B(a(T)); v(£) = 0} = M{P), and hence .M is countably generated as an abstract
complete B.a. •

Combining Proposition 1 with Remarks 2 and 3 gives the following result which
answers completely the two questions posed at the beginning of the section.

Proposition 2. Let X be a separable Banach space and M c L(X) be a Bade a-
complete B.a. Then M is the resolution of the identity of a pseudohermitian operator.

4. Non-separable spaces

We continue our investigation of the two questions posed at the beginning of
Section 3, but now without the requirement that X be separable.
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Let P : Z -*• L{X) be a spectral measure. Then it has associated with it a locally
convex Hausdorff space LX(P) of P-integrable functions. Moreover, Ll{P) is a locally
convex algebra (for pointwise operations) and the integration map IP : Ll(P) -*• L(X)
given by IP(f) = JQfdP is a bicontinuous isomorphism of L'(P) onto its range
IP(Ll(P)) c L(X). AH of these notions and statements can be found in [3], for example.
If the underlying a-algebra S is countably generated (as a cr-algebra), then L'(P) is
necessarily separable, [10, Proposition 2], and hence its isomorphic image IP(L\P)) —
{jQfdP\f e L\P)} is a ^-separable subspace of L(X).

Let T — / ^ XdP(X) be a pseudohermitian operator in X. By the above remarks
7P(L'(P)) is a separable subspace of L(X) and hence, so is its 1,-closure /P(L'(P))J in
L(X). Let M be the Bade complete B.a. given by taking the vclosure of P(J3{o(T))) in
L(X). Since {M)s = 7P(L'(P))J = (P(B(ff(r))))J, where (M)s denotes the strong operator
closed algebra generated by M in L(X), we have established the following:

Proposition 3. If M c L(X) is the %,-closure of the resolution of the identity of a
pseudohermitian operator, then (M), is necessarily a separable subspace ofL(X).

Example 1. Let (Q, £, fi) be a finite, positive measure space such that ji is a non-
separable measure, and X denote the non-separable Hilbert space L2(ji). For each
E € S, let P(£) € L(X) be the operator in L2(ji) of multiplication by %E. Then
M. = P(E) is a Bade a-complete B.a. The constant function 1 is a cyclic vector for M,
that is, the cyclic space M[l] — X. In particular, 1 is a separating vector for M and
so M is actually Bade complete (c.f. Lemma 1).

Suppose T = f^AdP^X) is pseudohermitian and P{B{p(T))) = M. The map S i-» SI
from (M), into X is continuous and its range Y is dense in X (as 1 is a cyclic vector).
Since {M), is T,-separable (c.f. Proposition 3) it follows Y is separable in X and hence
X = Y is separable. This contradiction shows no such operator T can exist.

Suppose there was a resolution of the identity A/", say, such that M is the T5-closure
of M. Since (A/), = (A4), it would follow that (M), is separable which is already shown
not to be the case. Hence, no such J\f can exist. •

Example 1 shows one cannot have a positive answer to our questions in all non-
separable spaces; some restrictions on M are needed. For certain classes of atomic
B.a.'s something positive can be said, even without a separating vector (c.f.
Proposition 1).

Proposition 4. Let M C L(X) be a Bade complete B.a. which is atomic and is
countably generated as an abstract B.a. Then M is the strong operator closure of the
resolution of the identity of a pseudohermitian operator.

Proof. Let {£„} be a countable algebra generating M as an abstract B.a. and {Pa}aeA

be a maximal family of atoms generating M. For E e M, let A(E) = {a e A; PaE ^ 0}
and, for cc e A, let O(a) = (neN; PxEn / 0}. Denoting 2N by A we have a map O : A -*• A.
Then A(En) = <S>~\{G e A; n e G}) and En = VM>WP,, for n e N.
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Claim. Q> is injective.

Proof of Claim. Define ¥ : 2A - • 2A by V(U) = <t>~l(U), for U c A. Then ¥(2A) is
a complete B.a. in 2"* containing the algebra B — {/4(£J}~,. Since the identification
E <-*• A(F) between M and 2A is a B.a. isomorphism we can identify the algebra {F.n}£l|
with B and conclude that B is a countable algebra generating 2A as an abstract B.a.
So, *P(2A) is a complete B.a. in 2A containing B and with B generating 2A, which implies

A = 2A.
Suppose <x,/a2 in A. Let P ^ C A satisfy {a;} = ®~\Wj), for ye {1,2}. If

<D(a,) = O(a2) = w say, then w e H ^ n ^ which implies that both a, and a2 belong to
O~'(W, n W2) = {a,} n {a2} = 0. This is impossible and the claim is established.

The above Claim shows that #(A) < #(A) = c, where # denotes cardinality. So, we
may assume that A c [0, 1]. Let A = A. Define a spectral measure P : B(A) -*• L(X) by
P(p) = l.aeAnFPa, for each F € S(A). Then T = /A XdP(X) is a pseudohermitian operator
with o-(T) = A and resolution of the identity P. If E e X , then £ = vae/,(E)Pa with each
P, € P(B(ff(T))). By the Bade completeness of Af it follows that £ is the t.-limit of
the net of finite sums {HaeFPa}f as F varies through the finite subsets of A(E). This
shows that M = P(B(a(T))\ and completes the proof of the proposition. •

Proposition 4 shows that the countably generated B.a. M of Remark 3 is the strong
operator closure of the resolution of the identity of some pseudohermitian operator.
A natural question is whether it is possible to remove the phrase "strong operator
closure" from the previous sentence. The following result shows that an answer to this
question is dependent on the Continuum Hypothesis.

Proposition 5. Let M. c L{X) be a Bade complete B.a. which is the resolution of the
identity of a pseudohermitian operator. Assuming the Continuum Hypothesis it follows
that M is countably decomposable, and hence has a separating vector.

Proof. Let {Qa}a£A be any maximal disjoint system in M. For each F c A, let
Q(F) = vaeF& in which case F, ^ F2 iff g(F,) / Q(F2). Let P : B{a{T)) - • L(X) be the
resolution of the identity of a pseudohermitian operator T with P{B(p(T))) — M. For
F c A, choose F e B(o(T)) such that P(F) = g(F) and F, / F2 whenever FX^F2. Then
the map F^F from 2A into B{a{T)) is injective and so #(2A) < #(B(CT(T))) = 2K°.
Granted the Continuum Hypothesis we deduce A is countable. •

Remark 4. For the B.a. M of Remark 3 it is clear that there is no separating
vector. So, granted the Continuum Hypothesis, Proposition 5 implies that M is not the
resolution of the identity of any pseudohermitian operator.

We conclude with an example of a Bade complete B.a. which is countably generated,
has no atoms and no separating vector, but is the strong operator closure of the
resolution of the identity of a pseudohermitian operator.
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Example 2. Let Q = [0, 1) x [0,1). For each F c Q , define

F, = {xe [0 t l ) ; ( t , x ) sF} , t e [0,1).

Let B denote the Borel subsets of [0,1) and £ be the (j-algebra given by

2 = {F c Q; F, 6 S for all t e [0,1}.

Define fx : S -*• [0, oo] by /i(F) = Z0£,si?n(F,), for F e E, where m : B -» [0,1] is Lebesgue
measure. Then fi is a non-separable, localizable measure and ~L/N(ji) is a complete
abstract B.a. where A/"(/x) = {F e Z; /i(F) = 0}. Note that F e 7V(/i) iff m(F() = 0 for all
t e [0,1).

Let AT be the non-separable Banach space L}(ji) and M c L(X) be the B.a. of all
projections P(E), for E e Z, of multiplication in L'(/x) by xE- Then M is Bade complete,
has no atoms and no separating vector.

We need some notation. Whenever J c Q is a square, of the form [a, a + 2«)x [fc, b + 2w)
say, define a partition {J,};

3
=0 °f ^ into the 4 smaller squares Jo — [a, a + u)x [b, fc + u),

Jt=[a + u,a + 2w) x [b, fc + u), 72 = [a, a + w) x [b + u, b + 2M) and J3 — [a + u,a + 2«)x
[b + u, b + 2u). Now consider the case of J = Cl. For £ > 1, define inductively the sets

Kf) e {0> 1. 2, 3},

and the functions

= £ [*!r+-+irk.) ^ *(/>e to. 1.2.3}.

where Xfc(i) *<<) is the characteristic function of Jkm w . Then {^}Jli is an increasing
sequence of functions with values in [0, 1] satisfying j | / < + 1 - ^ H ^ < 3/4<+l. If/ denotes
the pointwise limit of {/J", on Q, then 0 < / < 1 and / is Z-measurable. Moreover,
we have the following properties.

(i) For each integer I > 1,

(ii) f~\Am m) = JKi) m , for each I > 1, where

6 | 0 . 1 ) ; y + + < t < + +

(iii) / is injective and/(fi) is dense in [0,1].
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Let T e L(X) be the pseudohermitian operator in L](ji) of multiplication by / . Then
the family 11 of projections iV^, , m), for all I > 1 and k(j) e {0,1, 2, 3}, belongs to
the resolution of the identity of T and hence M is the strong operator closure of the
resolution of the identity of a pseudohermitian operator. Finally, the density of the
dyadic rationals in [0,1] can be used to show that the countable family 72. generates
M ^ ~L/N(ji) as an abstract B.a., that is, M is countably generated.
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