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Abstract
Automated visual anthropometrics produced by mobile applications are accessible and cost effective with the potential to assess clinically rel-
evant anthropometrics without a trained technician present. Thus, the aim of this study was to evaluate the precision and agreement of smart-
phone-based automated anthropometrics against reference tape measurements. Waist and hip circumference (WC; HC), waist:hip ratio (WHR)
and waist:height ratio (W:HT) were collected from 115 participants (69 F) using a tape measure and two smartphone applications
(MeThreeSixty®, myBVI®) across multiple smartphone types. Precision metrics were used to assess test-retest precision of the automated mea-
sures. Agreement between the circumferences produced by each mobile application and the reference were assessed using equivalence testing
and other validity metrics. All mobile applications across smartphone types produced reliable estimates for each variable with intraclass cor-
relation coefficients ≥ 0·93 (all P< 0·001) and root mean square coefficient of variation between 0·5 and 2·5 %. Precision error for WC and HC
was between 0·5 and 1·9 cm. WC, HC, and W:HT estimates produced by each mobile application demonstrated equivalence with the reference
tape measurements using 5 % equivalence regions. Mean differences via paired t-tests were significant for all variables across each mobile appli-
cation (all P< 0·050) showing slight underestimation for WC and slight overestimation for HC which resulted in a lack of equivalence for WHR
compared with the reference tape measure. Overall, the results of our study support the use of WC and HC estimates produced from automated
mobile applications, but also demonstrates the importance of accurate automation for WC and HC estimates given their influence on other
anthropometric assessments and clinical health markers.
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Obesity is rapidly increasing with disparately high rates for indi-
viduals who are of low socio-economic status(1) or living in rural
communities(2,3). Specifically, both low socio-economic sta-
tus(4,5) and rural occupancy(6) are associated with higher rates
of abdominal obesity, which is itself linked to a higher risk of car-
diometabolic abnormalities(7). Traditionally, abdominal obesity
is evaluated by standard anthropometric assessments that
include circumferences of the waist -and -hips specifically, given
their association with cardiometabolic health risks(8,9) and mor-
tality(10). Nevertheless, traditional anthropometric measures lack
feasibility for those without access to clinical care, which is con-
cerning given that there are few alternativemethods that can suc-
cessfully provide remote and cost-effective assessments without
a trained technician present. Therefore, the development of
remote healthcare tools that can provide accurate

anthropometric assessments without additional costs are of criti-
cal importance.

Interestingly, the adaptations made to traditional health-
care models during the COVID-19 pandemic may have, unin-
tentionally, provided a potential solution to this pressing
issue. At the onset of the pandemic, healthcare facilities were
forced to find remote alternatives to providing clinical care.
Given that the majority of USA adults own a smartphone(11)

with a similar ownership existing across more vulnerable pop-
ulations(12,13), the demand for remote healthcare solutions led
to the swift integration of mobile healthcare models that
enable patients with access to care regardless of limited trans-
portation or geographical location. In fact, recent evidence
demonstrates the feasibility of mobile healthcare interven-
tions in a rural setting showing reductions in waist
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circumference (WC) and visceral adiposity with this
approach(14). Additionally, and contrary to the observations
made in a traditional healthcare setting(15), intention to use
and satisfaction with mobile health services is inversely asso-
ciated with perceived health status which notes its utility for
individuals of poor health. However, increased access to com-
munication with healthcare providers is only one facet of the
total healthcare experience. As such, the surge in mobile
healthcare use coupled with the accelerated increase in
obesity requires parallel advancements in remote health tools,
such as automated anthropometrics, that can conveniently
assess patient health status without additional costs.

Because virtually all smartphones can now employ high-
resolution imaging through advances in smartphone camera
technology, newly developed mobile applications can now
leverage machine learning to automate anthropometric
assessments from as little as two self-taken images.
Furthermore, this method has recently shown to be associated
with traditional measurement methods(16), agree with multi-
compartment body composition estimation models(17) and
demonstrates higher predictive ability of visceral adipose tis-
sue compared with physical circumferences and other mea-
sures(18). Thus, this methodological approach may be a
potential solution to collecting large-scale anthropometric
information and improve access to health information for
those with monetary or geographic limitations. However,
the consumer level and accessible nature of this method fos-
ters continual industry competition and thus there are several
mobile applications that claim to produce accurate automated
anthropometric evaluations from smartphone-based imaging.
As such, there are currently no studies, to our knowledge, that
have fully assessed the equivalence of clinically significant
measures of abdominal adiposity such as WC, hip circumfer-
ence (HC), w:hip ratio (WHR) and waist:height ratio (W:HT)
produced by multiple mobile applications across smartphone
types to a reference measurement. Therefore, the purpose of
this study was to determine the agreement and precision of
automated anthropometric assessments produced by three-
dimensional (3D) mobile scanning applications compared
with a reference tape measure.

Methods

Participants

A total of 115 individuals (F: 69, M: 46) between ages 18 and 75
years were prospectively recruited for this cross-sectional study.
Participants were excluded if theywere younger than 18 or older
than 75; were missing any limbs or part of a limb that influenced
an accurate assessment of the primary anthropometricmeasures;
were pregnant; trying to become pregnant or breast-feeding or
lactating. The study took place from March 2022 through July
2022 and was conducted according to the guidelines laid down
in the Declaration of Helsinki, with all procedures involving
human participants approved by the university ethics committee
(IRB#21–213). Written informed consent was obtained from all
participants.

Procedures

Our procedures for visual body composition scanning have been
previously reported(19) but are summarised below. Participants
reported to the laboratory after abstention from food, beverages,
supplements/medication and exercise for≥ 8 h. Upon arrival
participantswere asked to remove any external accessories (jew-
elry, shoes, etc.) and/or loose clothing and underwent measure-
ments of height collected by a digital stadiometer (SECA,
Hamburg, Germany), weight collected by a calibrated digital
scale (SECA, Hamburg, Germany) and WC and HC collected
using an aluminum tape measure. Following tape measure-
ments, participants were lead to a specific area of the laboratory
to complete the smartphone-based assessments. For scanning
on each mobile application, participants were instructed to wear
minimal form-fitting clothing. For example, female participants
were instructed to wear a sports bra and tight-fitting shorts/leg-
gings, and male participants were instructed to wear compres-
sion shorts/tights only. Higher waisted shorts that covered the
participants bellybutton were altered to expose the participants
entire abdominal region to the smartphone camera. Participants
with long hair were instructed to tie their hair up so that no hair
was present below the shoulder line.

Reference tape measurements

Traditional WC and HC were collected by an aluminum tape
measure, and these measurements were used as, or used to cal-
culate, all reference variables for this study. Because there are no
standardised measurement sites for WC and HC across mobile
applications, estimates of WC and HC from these applications
could be generated from different locations at or around the
waist and hip regions. Therefore, the reference tape measure-
ments were standardised to specific locations, where the refer-
ence WC was measured at the level of the iliac crest(20) and
the reference HC was measured at the widest portion of the lat-
eral hips(9) given the ease in the visual detection of pronounced
or distinct body areas during the landmarking procedures of
smartphone-based imaging. In addition, the American Heart
Association waist circumference risk classifications are based
off measurements collected at the level of the iliac crest(21). All
tape measurements were conducted by the same two investiga-
tors for all participants.WC andHCwere used to produce aWHR
by dividing WC by HC and measurements of W:HT by dividing
WC by height collected from the digital stadiometer. For WHR
measurements, the first WC was divided by the first HC and
the secondWCby the secondHC. Because height wasmeasured
at a single timepoint, both the first and second WC were divided
by the same height measurement. All measurements were con-
ducted in duplicate and averaged to produce a final estimate.

Mobile applications and smartphone types

Our procedures for each smartphone application and type have
been described elsewhere(19). Two mobile applications were
used for this study which included MeThreeSixty® (ME360;
Size Stream LLC) and myBVI® (Select Research LTD). Because
mobile applications are frequently updated under real-world cir-
cumstances, and because these updates are often necessary to
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fix unavoidable issues with the application’s performance, appli-
cations were updated daily prior to testing, when available. The
study began with software version 3.3.0 (ME360Apple), 3.2.2
(ME360Samsung) and 3.0.0 (myBVI®) and ended using versions
3.4.2 (both ME360) and 3.1.2 (myBVI®), respectively. Further,
two different smartphones were used for this study to compare
the precision and agreement of the applications across smart-
phone types. The smartphones used in this study included an
iPhone® 12 Pro (Apple® Inc.) and a Samsung Galaxy® S21þ
(Samsung® Group). Assessments using the iPhone® were con-
ducted using the same software version for the entirety of the
study (iOS 15·0·1) but due to Samsung’s® forced security
updates, multiple software versions were employed for this
smartphone specifically (One UI version 3·1, 4·0 and 4·1 and
Android® version 11 and 12). All images for ME360 were col-
lected using the front facing camera from both smartphones,
whereas images frommyBVI® were collected using the front fac-
ing camera from the iPhone® only due to compatibility issues
between myBVI® and Samsung Galaxy®.

Anthropometric assessment protocol for the mobile
applications

Our procedures for collecting smartphone-based body compo-
sition estimates have been previously reported(19). To perform
the assessments for each mobile application, participants were
taken to a designated area of the laboratory that did not have
any objects or light behind the participants’ back. All images
were taken in front of a gray vinyl wall in this designated area,
and all external windows were covered so that no other back-
ground or external light source polluted the scanning region.
The smartphone was positioned at a standardised distance from
the participant’s mid-foot unless instructed otherwise by the
application and a standardised height for all participants using
a stationary tripod with adjustable angle settings. The smart-
phone order was assigned randomly for each participant.
Each participant’s personal information (age, sex, height and
weight) was uploaded into the application before testing com-
menced. The smartphone was locked into place at an angle
determined appropriate by the mobile application. Once the
smartphone and the participant were situated appropriately, par-
ticipants were asked to stand in two positions, in accordance
with the manufacturer guidelines, while images were collected.
For the first image, participants faced the camera and stood with
arms and feet positioned away from the torso. For the second
image, participants were instructed to turn to their profile with
either their left (ME360) or right (myBVI®) shoulder facing the
camera, face forward, extend the elbows completely and place
their hands against their lateral thigh while images were col-
lected. All assessments were conducted in duplicate and subjec-
tively inspected for quality to ensure that there were no errors
during landmarking procedures. WC and HC from ME360 were
provided directly by the mobile application. WHRME360 was cal-
culated as WCME360 divided by HCME360. Because myBVI® pro-
vides WHR and W:HT, but not WC or HC, WCmyBVI was
calculated as height from the stadiometer multiplied by W:
HTmyBVI. The newly produced WCmyBVI was divided by
WHRmyBVI to produce HCmyBVI. Because myBVI® requires the

user to round their height, and because ME360W:HT used height
measured by stadiometer, we calculated W:HTmyBVI by dividing
WCmyBVI from the stadiometer height. For WHR measurements
from each application, the first automated WC was divided by
the first automated HC and the same was done for the second
scans. Similar to the reference method, both the first and second
automated WC were divided by the same height measurement.
All measurements were conducted in duplicate and averaged to
produce a final estimate.

Statistical analysis

We conducted a non-directional power analysis to determine the
sample size necessary to detect significant differences using a
paired-samples t test (the primary statistical analysis for deter-
mining group mean differences (MD)). Prior to analysis, we
determined ±4·0 cm to be a meaningful MD and thus using a
MD of 4·0 ± 6·0 and an α= 0·05 it was determined that twenty
participants were necessary to observe at least 80 % power.
All outcome variables were normally distributed as assessed
by Shapiro–Wilk and visual inspection of Q-Q plots. Means
and 95 % confidence intervals (95 %CI) for each device were cal-
culated for WC, HC, WHR and W:HTand the MD and 95 %CI for
each variable were calculated as the mobile application in ques-
tion minus the reference. Test-retest precision of each anthropo-
metric assessment was assessed using intraclass correlation
coefficients (ICC) with two-way, random effects and absolute
agreement. Precision was also measured using precision error
(PE) and root mean square coefficient of variation (RMS-%
CV). For ME360, precision metrics were used to determine pre-
cision between smartphone types using the first scan from each
smartphone. Because WHR and W:HT are unitless, PE was not
calculated for these variables. A device error resulted in one par-
ticipant (n 1) missing a single scan from one smartphone
(Samsung®) for ME360. Therefore, 114 participants were used
to determine precision, and 115 participants were used to assess
agreement. An average of the two scans for each mobile appli-
cation was used to determine agreement, and only one scan was
used for the participant with a missing scan. Equivalence testing
was used to determine equivalencewith the reference tapemea-
surements for WC, HC, WHR and W:HT using 5 % equivalence
regions. Additionally, and because WC is often used to assess
abdominal obesity for the evaluation of cardiometabolic health
risk, the percentage of correct abdominal obesity classifications
according to the guidelines put forth by the American Heart
Association (≥ 88 cm for females;≥ 102 cm for males) are pre-
sented for eachmobile assessment(21). Agreement with the refer-
encemethodwas also assessed by separate paired samples t test,
Pearson correlation coefficients, root mean square error
(RMSE=

p
∑(predicted-actual)2/n) and standard error of the esti-

mate. Individual accuracy was assessed using the methods of
Bland and Altman(22) to determine the 95 % limits of agreement
(LOA), and regression techniques were used to determine pro-
portional biases. Subgroup analyses were conducted for sex and
racial differences. For race, analyses were conducted for non-
Hispanic white and non-Hispanic Black/African-American
(B/AA) individuals (Table 1). Data from other racial and ethnic
groups were included in the complete sample analyses only.
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Anthropometric differences between groups were assessed by
independent samples t test. Statistical significance was accepted
at P< 0·05. Data were analysed using the TOSTER package(23) in
R version 4.1.2, IBM SPSS version 27 and Microsoft Excel
version 16.

Results

Participant characteristics are reported as mean and the 95 %CI
or as a percentage of the total for each column (Table 1).

Precision analysis

Results of the precision analysis are presented in Table 2. For
precision, all ICC, including assessments between smartphone
types, ranged from 0·933 to 0·998 (all P< 0·001). For WC and
HC, ME360Apple produced the lowest PE and RMS-%CV followed
by tape measurements and ME360Samsung. myBVI® had the larg-
est PE and RMS-%CV for both WC and HC across applications.
Overall, precision was lower between smartphone types for
WC and HC produced by ME360Apple × Samsung. RMS-%CV for
WHR was lowest for ME360Apple (0·70 %) which was slightly
lower thanME360Samsung (0·80 %), but both ME360WHR estimates

had lower RMS-%CV than those conducted by tape measure-
ment (1·05 %). myBVI® had the highest RMS-%CV for WHR
(2·43 %) which was also higher than the RMS-%CV between
smartphone types for ME360Apple × Samsung (1·98 %).

Agreement analysis

Results of the agreement analysis for the total sample are pre-
sented in Table 3. Overall, the number of correct abdominal
obesity classifications for each mobile application was 103
(89·6 %) for ME360Apple, 104 (90·4 %) for ME360Samsung and
106 (92·2 %) for myBVI®. Of the incorrect classifications, both
ME360Apple (twelve incorrect) and myBVI® (nine incorrect)
incorrectly classified participants as having abdominal obesity
on three occasionswith the remaining incorrectly classifying par-
ticipants as not having abdominal obesity. ME360Samsung incor-
rectly classified participants (eleven incorrect) as having
abdominal obesity on five occasions with the remaining incor-
rectly classifying participants as having abdominal obesity.

Paired t tests revealed that all variables produced by the
mobile applications differed significantly from the reference tape
measurement for the total sample. WC was slightly underesti-
mated by each mobile application (all MD: ≤ −2·5 cm,

Table 1. Participant characteristics

Total Male Female

n 115 n % n % n %

Sex 46 40·0 69 60·0
Race White 83 72·2 31 67·4 52 75·4

Black/AA 28 24·3 14 30·4 14 20·3
Asian 4 3·5 1 2·2 3 4·3

Ethnicity Hispanic 7 6·1 2 4·3 5 7·2
Mean 95% CI Mean 95% CI Mean 95% CI

Anthropometry Age (year) 29·4 27·1, 31·7 26·5 23·8, 29·1 31·3 28·0, 34·6‡
Height (cm) 170·2 168·4, 172·0 178·0 175·5, 180·4 165·0 163·5, 166·5*
Weight (kg) 80·4 76·3, 84·4 94·3 87·4, 101·1 71·07 67·5, 74·7*
BMI (kg/m2) 27·5 26·2, 28·7 30·2 27·9, 32·5 25·6 24·4, 26·9†
Waist (cm) 91·4 88·5, 94·3 96·2 91·2, 101·3 88·2 84·9, 91·6†
Hip (cm) 103·0 101·7, 106·1 106·2 102·3, 110·5 102·4 99·8, 105·0
Waist:Hip 0·88 0·86, 0·89 0·90 0·89, 0·92 0·86 0·84, 0·88†
Waist:Height 0·54 0·52, 0·56 0·54 0·51, 0·57 0·54 0·51, 0·57

n % n % n %
BMI Classification ≥ 40 kg/m2 5 4·3 4 8·7 1 1·4

30–39·9 kg/m2 23 20·0 11 23·9 12 17·4
25–29·9 kg/m2 39 33·9 20 43·5 19 27·5
< 25 kg/m2 48 41·7 11 23·9 37 53·6

n 104 White (n 76) Black (n 28)
Mean 95% CI Mean 95% CI

Anthropometrics Height (cm) 170·5 168·4, 172·6 171·2 167·0, 175·5
Weight (kg) 77·1 73·4, 80·8 94·1 82·0, 106·1‡
BMI (kg/m2) 26·3 25·2, 27·4 31·8 28·0, 35·7†
Waist (cm) 89·4 86·6, 92·3 99·9 91·2, 108·6‡
Hip (cm) 102·5 100·3, 104·7 109·5 103·1, 116·1‡
Waist:Hip 0·87 0·86, 0·89 0·91 0·87, 0·94‡
Waist:Height 0·53 0·51, 0·54 0·59 0·53, 0·64‡

n % n %
BMI Classification ≥ 40 kg/m2 0 0·0 5 17·9

30–39·9 kg/m2 14 18·4 9 32·1
25–29·9 kg/m2 31 40·8 4 14·3
< 25 kg/m2 31 40·8 10 35·7

AA, African-American.
* Statistically significant at P< 0·001.
† Statistically significant at P< 0·010.
‡ Statistically significant at P< 0·050.
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P< 0·050) relative to the reference method for each application.
Conversely, HC was slightly overestimated across each mobile
application relative to the reference method with myBVI® dem-
onstrating the lowest MD (1·9 cm) followed by ME360 with neg-
ligible differences between smartphone types (all P< 0·050).
MD for WHR andW:HTwere similar across devices. Despite sig-
nificantly different MD, equivalence testing revealed that all
devices demonstrated equivalence to the reference method
using a 5 % equivalence region for WC, HC and W:HT (Fig. 1,
Table 3). The slight underestimation of WC and the slight

overestimation of HC resulted in a non-significant equivalence
test for WHR. ME360 demonstrated the highest RMSE for WC
(±6·5 cm for each) but the lowest RMSE for HC (±4·7 to ±5·1
cm). RMSE for WHR and W:HT was similar across applications.

Results for the Bland–Altman analysis for the total sample are
displayed in Table 3 and illustrated in Fig. 2. LOA ranged from
±9·0 to ±12·4 cm for WC and from ±6·7 to ±10·7 cm for HC.
For WHR and W:HT, LOA were similar across applications.
Significant proportional bias was observed forWC estimates pro-
duced by ME360 but not myBVI®. Conversely, significant

Table 3. Agreement between smartphone-based automated anthropometrics and reference tape measurements

n 115 Mean 95%CI* MD 95%CI* EQ RMSE 95% LOA SEE β R2

WC Tape Measure 91·4 88·5, 94·4
ME360Apple 89·1 86·6, 91·7 –2·3 –3·4, −1·2† Y 6·5 11·9 2·4 –0·15† 0·86
ME360Samsung 89·9 87·4, 92·4 –1·6 –2·7, −0·4§ Y 6·5 12·4 2·6 –0·15† 0·84
myBVI 88·9 85·9, 91·9 –2·5 –3·4, −1·7† Y 5·2 9·0 1·5 0·03 0·92

HC Tape Measure 103·9 101·7, 106·1
ME360Apple 107·0 105·0, 109·1 3·1 2·5, 3·8† Y 4·7 6·8 1·4 –0·07§ 0·91
ME360Samsung 107·6 105·5, 109·7 3·7 3·1, 4·4† Y 5·1 6·7 1·5 –0·06§ 0·92
myBVI 105·8 103·1, 108·4 1·9 0·87, 2·9† Y 5·8 10·7 2·1 0·20† 0·87

WHR Tape Measure 0·88 0·86, 0·89
ME360Apple 0·83 0·82, 0·84 –0·05 –0·06, −0·04† N 0·07 0·11 0·05 –0·06 0·48
ME360Samsung 0·83 0·82, 0·85 –0·04 –0·05, −0·03† N 0·07 0·11 0·05 –0·08 0·47
myBVI 0·84 0·83, 0·85 –0·04 –0·05, −0·03† N 0·06 0·09 0·03 –0·07 0·66

W:HT Tape Measure/Stadiometer 0·54 0·52, 0·56
ME360Apple 0·52 0·51, 0·54 –0·014 –0·021, −0·008† Y 0·04 0·07 0·01 –0·17§ 0·86
ME360Samsung 0·53 0·51, 0·54 –0·009 –0·016, −0·002‡ Y 0·04 0·07 0·02 –0·18§ 0·85
myBVI 0·52 0·51, 0·54 –0·015 –0·020, −0·010† Y 0·03 0·05 0·01 0·01 0·92

β, regression coefficient produced from linear regression as used to assess proportional bias; EQ, equivalence;HC, hip circumference; LOA, limits of agreement; MD,meandifference;
RMSE, root mean square error; SEE, standard error of the estimate; WC, waist circumference; WHR, waist:hip ratio; W:HT, waist:height ratio.
* Expressed as mean (95% CI).
† Indicates statistical significance at P< 0·001.
‡ Indicates statistical significance at P< 0·010.
§ Indicates statistical significance at P< 0·05.

Table 2. Precision analysis of smartphone-based automated anthropometrics

n 114 ICC* RMS-%CV PE†

WC Tape Measure 0·998 0·78 0·63
ME360Apple 0·998 0·69 0·54
ME360Samsung 0·996 1·11 0·87
myBVI 0·995 1·43 1·12
ME360Apple × Samsung 0·979 2·54 1·91

HC Tape Measure 0·997 0·70 0·65
ME360Apple 0·998 0·54 0·51
ME360Samsung 0·994 0·95 0·90
myBVI 0·982 2·07 1·91
ME360Apple × Samsung 0·979 1·72 1·59

WHR Tape Measure 0·984 1·05
ME360Apple 0·992 0·70
ME360Samsung 0·991 0·80
myBVI 0·933 2·43
ME360Apple × Samsung 0·952 1·98

W:HT Tape Measure/Stadiometer 0·997 0·79
ME360Apple 0·997 0·71
ME360Samsung 0·994 1·12
myBVI 0·995 1·42
ME360Apple × Samsung 0·978 2·51

HC, hip circumference; ICC, intraclass correlation coefficient (two-way random effects, absolute agreement and single measurement); PE, precision
error; RMS-%CV, root mean square coefficient of variation (%); WC, waist circumference; WHR, waist:hip ratio; W:HT, waist:height ratio.
* P< 0·001 for all measurements.
†Measurements are in cm.
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Fig. 1. Equivalence between smartphone-based automated anthropometrics and reference tape measurements. An illustration of the equivalence between waist cir-
cumference (WC), hip circumference (HC) and waist:hip ratio (WHR) produced by each mobile application and those produced by the reference is shown. Variables are
considered equivalent with the tape measurements when the entire 90%CI is within the equivalence region.

y = -0·15x + 11·03
-25

-20

-15

-10

-5

0

5

10

15

60 80 100 120 140 160

y = -0·15x + 12·02
-25

-20

-15

-10

-5

0

5

10

15

60 80 100 120 140 160

y = 0·03x - 5·60

-20

-15

-10

-5

0

5

10

15

20

60 80 100 120 140 160

y = -0·07x + 10·45

-15

-10

-5

0

5

10

15

80 100 120 140 160

y = -0·06x + 9·63

-10

-5

0

5

10

15

20

80 100 120 140 160

y = 0·20x - 18·62
-15

-10

-5

0

5

10

15

20

80 100 120 140 160

y = -0·06x + 0·001

-0·25

-0·20

-0·15

-0·10

-0·05

0·00

0·05

0·10

0·15

0·70 0·80 0·90 1·00

y = -0·08x + 0·024

-0·20

-0·15

-0·10

-0·05

0·00

0·05

0·10

0·15

0·70 0·80 0·90 1·00

y = -0·07x + 0·028

-0·20

-0·15

-0·10

-0·05

0·00

0·05

0·10

0·15

0·70 0·80 0·90 1·00

y = -0·17x + 0·081

-0·15

-0·10

-0·05

0·00

0·05

0·10

0·40 0·50 0·60 0·70 0·80 0·90

y = -0·18x + 0·085

-0·15

-0·10

-0·05

0·00

0·05

0·10

0·40 0·50 0·60 0·70 0·80 0·90

y = 0·01x - 0·020
-0·15

-0·10

-0·05

0·00

0·05

0·10

0·15

0·35 0·55 0·75 0·95

063
E

M(.ffi
D

nae
M

A
pp

le
-

)epa
T

063
E

M(.ffi
D

nae
M

g nus
m aS

-
) epa

T
I

V
By

m(.ffi
D

nae
M

®
-

)epa
T

Waist circumference Hip circumference Waist:hip ratio Waist:height ratio

Fig. 2. Bland–Altman plots of smartphone-based automated anthropometrics. Bland–Altman plots are presented. Solid diagonal line: relationship between the mean
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proportional bias was observed for HC estimates produced by all
methods.

Sex differences in agreement

Agreement analyses by sex groups are presented in Table 4.
When stratified by sex, there were no significant differences
between the WC estimates produced by each device and the
reference method for males (all P> 0·050); however, WC was
significantly underestimated for females across all devices (all
P< 0·001). Significant overestimations of HC were observed
for both males and females using ME360 (P< 0·001) but only
for males using myBVI® (P< 0·001). WHR was significantly
underestimated for both males and females across all applica-
tions (all P< 0·05). For WC, RMSE was lower for males across
all devices. RMSE for HC estimates was negligible betweenmales
and females using ME360 but were substantially higher for males
using myBVI®. RMSE for WHR was similar between males and
females other than WHR estimates produced by ME360Apple
which, for females, was more than double that of males.

Results for the Bland–Altman analysis by sex group are dis-
played in Table 4. LOA ranged from ±6·6 to ±12·9 cm for WC
and were smaller in males across all devices. LOA ranged from
±6·5 to ±10·1 cm for HC and were smaller in females across all
devices, albeit similar for ME360. ForWHR andW:HT, LOAwere
similar between males and females although all LOA were
slightly lower for males. Significant proportional biases were
observed for WC estimates produced by ME360 (all
P< 0·001), but not myBVI® (both P> 0·050) and were similar
betweenmales and females. Significant proportional biaseswere
observed for HC estimates produced by myBVI® and were sim-
ilar between males and females (both P< 0·050). For HC pro-
duced by ME360, no proportional bias was observed for
males, but was observed for females using ME360Apple
(P< 0·010) but not ME360Samsung (P= 0·058). Significant propor-
tional biases were observed for WHR produced by ME360 in
both males and females (all P< 0·050) but not for WHR pro-
duced by myBVI® (P< 0·050).

Racial differences in agreement

Agreement analyses by the race groups evaluated in this study
are presented in Table 5. WC estimates from ME360Apple, but
not ME360Samsung, were significantly underestimated for both
White and B/AA participants (P< 0·010). Although non-signifi-
cant, the MD for WC produced by ME360Samsung for B/AA par-
ticipants was more than double the MD for White participants.
myBVI® significantly underestimated WC for White participants
(P< 0·001) but not B/AA participants (P= 0·08). HC estimates
from each application were all significantly overestimated (all
P< 0·050); however, MD for HC estimates weremarkedly higher
for B/AA participants compared with White participants. WHR
estimates were significantly underestimated for all applications
(all P< 0·001) and were similar betweenWhite and B/AA partic-
ipants. For WC, RMSE was similar betweenWhite and B/AA par-
ticipants across devices; however, RMSE forHCwas substantially
higher for B/AA participants across applications. RMSE for WHR
and W:HT was similar between White and B/AA participants
across applications. T
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Results for the Bland–Altman analysis by race are displayed in
Table 5. LOA ranged from ±9·0 to ±13·4 cm for WC and were
similar for White and B/AA participants. For HC, LOA ranged
from ±5·5 to ±11·9 and were noticeably higher for B/AA partic-
ipants for each device. ForWHR andW:HT, LOAwere similar for
White and B/AA participants. Significant proportional bias was
observed for WC and W:HT estimates produced by ME360 (all
P< 0·050) but not myBVI® which were similar for White and
B/AA participants. For HC, significant proportional bias was
observed across all devices in White participants (P< 0·010)
but only for myBVI® in B/AA participants (P= 0·024); however,
coefficients for each device were similar between groups. There
was no significant proportional bias observed forWHR estimates
across devices, although the coefficients for WHR produced by
ME360 were non-existent for White participants and high for B/
AA participants.

Discussion

While traditional tape measurements are considered to be cost
effective and accessible, there are questions regarding their
social acceptance and reliability(24), particularly for those with
overweight or obesity(25). As such, this study sought comprehen-
sively evaluate the precision and agreement of automated and
clinically significant anthropometric variables across multiple
mobile applications, and smartphones, against a reference tape
measurement. The principle findings were (1) all variables pro-
duced by each mobile application and between smartphones
exhibited acceptable precision which were comparable with
tapemeasurements; (2)WC,HC andW:HT from all mobile appli-
cations demonstrated equivalence with tape measurements;
however, WC was slightly underestimated, whereas HC was
slightly overestimated; (3) the slight under- and overestimations
for WC and HC were small enough to demonstrate equivalence,
but resulted in non-equivalence for WHR across all automated
methods; (4) there were no differences between WC produced
by the automated methods and the reference in males, but WC
was significantly underestimated across all applications in
females and (5) some variation existed across applications,
but all variables demonstrated slightly lower agreement for B/
AA participants compared with White participants which may
be a product of the weight status differences between groups
or demographics of the populations used for method develop-
ment. Overall, the results of our study support the use of WC
and HC estimates produced from automated mobile applica-
tions, but demonstrates the importance of accurate automation
for WC and HC estimates given their influence on other
anthropometric assessments and clinical health markers.

First, eachmobile application used in our study demonstrated
acceptable precision for all automated assessments. There was a
slight drop-off in precision when estimates were compared
between smartphone types; however, precision remainedwithin
an acceptable range.While there are only a few studies that have
evaluated the precision of automated anthropometrics using
mobile applications(16,26), there is contention regarding the pre-
cision of traditional tape measurements citing inaccuracies
between self-measured and professionally measuredT
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assessments(27) and measurements for those of higher weight
status(27,28). Another method shown to produce reliable digital
anthropometrics is 3D optical scanning(29). However, 3D scan-
ners are generally unavailable for simple but important circum-
ference measures in clinical practice, especially for those in
lower socio-economic status or rural areas. Thus, the limitations
of other methods highlight the need for precise estimates that are
both accessible and cost effective. In our study, all automated
anthropometrics produced precision estimates that were similar
to the tape measurements performed in our study (which were
conducted professionally) and those produced by 3D scanning
in others(9,29). Interestingly, the ME360Apple application pro-
duced better precision estimates than those collected via tape
measure with ME360Samsung only marginally lower. It is possible
that these small differences are due to differences in the devel-
opmental software (i.e. iOS or Android®), where initial mobile
applications are built for a specific device (i.e. iPhone® or
Samsung®) with operating systems that require a particular cod-
ing language(30). Despite this, all ICC were> 0·930 and PE were
all≤ 2·0 cm. Considering that this degree of precision was pro-
duced simply from two two-dimensional pictures on highly
accessible mobile applications, it is plausible that these applica-
tions be considered reliable and comparable with traditional
methods.

Several investigations have evaluated the agreement
between automated anthropometrics from a mobile application
and traditional tape measurements and have demonstrated con-
siderable variation(16,26,31,32), likely due to the different mobile
applications employed in each study. Overall, WC, HC, and
W:HT across all mobile applications in our study demonstrated
equivalence to our reference method; however, there were
slightly significant under- and overestimations for WC and HC,
respectively, for each application. These bi-directional biases,
where an underestimated WC was divided by a larger overesti-
mated HC, resulted in significant underestimation of WHR for
each application that did not demonstrate equivalence. So, while
biases for WC and HC were relatively small, these small
differences manifested in discrepancies across other variables.
This relationship is also reflected in our results for W:HT, where
all mobile applications underestimated W:HT as an extension of
an underestimated WC. These small inconsistencies for WC and
HC are problematic considering that WC and HC estimates are
commonly used in other anthropometric screening tools to pre-
dict several health risks(10,33). This is especially concerning con-
sidering the proportional biases and large LOA observed in our
study. Specifically, we found that both ME360 applications dem-
onstrated significant proportional bias for WC, where WC was
underestimated to a greater degree in those with larger average
WC. Significant proportional bias was observed for HC produced
by both ME360 applications, but these biases were relatively
small and much smaller than the proportional biases produced
for WC using the same application. Because participants with a
higher average WC had greater underestimations of WC without
similar underestimations of HC, WHR was underestimated
using this application. Interestingly, there was no proportional
bias for WC using myBVI®; however, HC produced by
myBVI® demonstrated significant proportional bias, where HC

was overestimated for those at larger average HC. Similar to
ME360, albeit in differing directions, the overestimation of HC
without simultaneous overestimations inWC led to underestima-
tions ofWHR. Therefore, while automatedWC andHC estimates
from a mobile application may demonstrate equivalence, those
planning to employ these estimates as a part of a larger screening
battery should do so with caution; although WC estimates pro-
duced by each mobile application did show utility in correctly
determining abdominal obesity classification; a common cardio-
metabolic health risk assessment.

There are several issues that may explain our aforementioned
results. First, the artificial intelligence used to develop each
application is dependent upon the method used to train the
application. For instance, if the mobile application was trained
by a 3D scanner it is possible that comparisons to a tape mea-
surement would result in lower levels of agreement. However,
many mobile applications are trained by both 3D scanning
and traditional tape measures, and recent investigations show
agreement in body circumferences assessed by tape measure-
ments, 3D scanners, andmobile applications(16). Typically, these
studies determine agreement by comparing automated mea-
sures to tape measurements taken at sites specifically defined
by the mobile application(16,31). While this methodological
approach may result in better agreement, it may also limit
real-world application given that self- or professionally mea-
sured circumferences may be taken from considerably different
locations than from those suggested by the mobile application.
Moreover, measurement sites may be markedly different
between mobile applications making them difficult to compare.
Therefore, to determine their ‘real-world’ performancewe stand-
ardised the location of each tape measurement. It should be
noted, however, that while the automated WC and HC were
equivalent to tape measurements, this is specific to the perfor-
mance of our investigators and the location in which our tape
measurements were taken and thus, estimates taken by individ-
ual users, by other professionals, or at different locations may
lead to differing results.

In addition towhat has been previously suggested, our results
may also be explained by our sex and race comparisons. For
males, there were no significant differences between the WC
measures and the reference for any mobile application. In fact,
MD in WC for males were all ≤ −0·6 cm which is comparable to
the results for bothmales and females produced by Nana et al.(31)

using a single mobile application. Conversely, WC was signifi-
cantly underestimated by ≥ −3·0 cm across applications for
females. Size differences between our female participants and
those in the study by Nana et al.(31) may explain the differences
between studies, where our female participants had substantially
higher weight, WC, and HC. However, male participants in our
study were also much larger. As previously suggested by
Neufeld et al.(32), it is possible that differences in clothing
betweenmale and female participants, combined with the larger
size of our participants, may explain our findings. Specifically,
male participants wore only compression shorts/tights whereas
female participants wore tights and a sports bra. It is common for
females to wear high-waisted tights that cover a significant area
(and often the majority) of the abdomen where the automated
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WC would be collected. Although steps were taken to alleviate
this in our study, the automated landmarking procedures used
by each mobile application may be altered when a considerable
amount of abdominal mass is covered. Additionally, we
observed that clothing worn by females was often tighter fitting
than clothing worn by males. The tightness of the clothing, espe-
cially in female participants of larger body size, may alter the
natural body shape in areas around the abdomen. It is also pos-
sible that the discrepancies in WC between the automated
assessments and the reference in femaleswas due to the inherent
difficulty in measuring the female waist. As you descend the
body’s vertical axis, the variation in WC along that axis is more
exaggerated in females compared with males as a result of nor-
mal adult female body shape(34,35). Thus, it is possible that these
issues can introduce error into the automated measurement
process as each application attempts to detect specific landmarks
for its WC estimate.

The sex differences in HC for myBVI® may also explain a
number of our other findings. For males, myBVI® significantly
overestimated HC which was not observed for females.
Interestingly, the majority of our male participants had either
overweight or obesity, in addition to larger WC and HC, com-
pared with our female participants. Considering that the propor-
tional biases for HC frommyBVI® were nearly identical between
sexes, it is more likely that the larger WC and weight status con-
tributed to these differences. It is well known that males tend to
deposit more fat in the anterior abdominal area whereas females
tend to deposit more fat in the gluteal-femoral region(36) leading
to a larger WC for males. At higher degrees of overweight and
obesity, the excessive accumulation of fat in the abdominal area
is exposed to gravity and may extend well into the pubic region.
Given that the pubic area is within the normal assessment region
for HC, it is possible that the larger abdominal fat mass in male
participants extended into the HC area for the automated assess-
ments whereas tape measurements could avoid this interfer-
ence. This potential discrepancy can also be observed in our
comparisons by race. B/AA participants had significantly higher
weight, WC, and HC compared with their White counterparts
and 50 % of our B/AA participants had obesity, with all but
one of our participants with severe obesity being B/AA males
(the one participant was a B/AA female). Further, HC was over-
estimated to a greater degree for B/AA participants but without
differences in proportional biases. Given the large differences in
weight and WC and the lack of proportional bias in HC in this
group, it is possible that at the extremes of abdominal adiposity,
abdominal fat mass may impede the anterior area of the HCmea-
surement resulting in an automated HC measurement that
accounts for a portion of the waist, leading to HC overestimation.
The potential impedance of the abdomen in larger individuals,
coupled with the intrinsically larger distributions of fat in the
gynoid region for B/AA individuals(37), could result in largermea-
surement errors that may be exaggerated for B/AA males.

In conclusion, automated anthropometrics produced by two-
dimensional pictures from mobile applications are cost effective
and accessible tools that can be used to collect clinically signifi-
cant anthropometric information. Automated anthropometrics
from mobile applications demonstrate high levels of precision
regardless of the smartphone used. Mobile anthropometrics also

demonstrate agreement with traditional tape measurements (via
equivalence testing) for WC and HC estimates. However, slight
deviations in WC and HC, which may be due to technical issues
that are exaggerated in estimates for female and B/AA partici-
pants, may lead to inaccuracies for other measurements such
as WHR. As such, these data support the overall use of this tech-
nique for estimates of WC and HC, but individuals should
include these data in comprehensive health assessments with
caution given the range of individual error and over-and- under-
estimations. Despite this, WC estimates produced by each
mobile application demonstrate utility in assessing abdominal
obesity. These findings also support the potential use of this
assessment method in prospective studies, where participants
could self-assess across an intervention without the need for
additional laboratory visits. However, future research examining
the accuracy of self- and at-home assessments are necessary in
addition to studies examining accurate assessment over time.
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