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Polycystic ovary syndrome (PCOS) is a common endocrinopathy in women. PCOS is characterized by anovulation, hyperandrogenism,
polycystic ovaries, insulin resistance, and obesity. Despite the finding that the genetic origin of PCOS is well demonstrated in previous twin
and familial clustering studies, genes and factors that can exactly explain the PCOS pathophysiology are not known. Objective(s). In this
review, we attempted to identify genes related to secretion and signaling of insulin aspects of PCOS and their physiological functions in
order to explain the pathways that are regulated by these genes which can be a prominent function in PCOS predisposition.Materials and
Methods. For this purpose, published articles and reviews dealing with genetic evaluation of PCOS in women from peer-reviewed journals
in PubMed and Google Scholar databases were included in this review. Results. /e genomic investigations in women of different
populations identified many candidate genes and loci that are associated with PCOS. /e most important of them are INSR, IRS1-2,
MTNR1A, MTNR1B, THADA, PPAR-c2, ADIPOQ, and CAPN10. /ese are mainly associated with metabolic aspects of PCOS. Con-
clusions. In this review, we proposed that each of these genesmay interrupt specific physiological pathways by affecting themand contribute
to PCOS initiation. It is clear that the role of genes involved in insulin secretion and signaling is more critical than other pathways.

1. Introduction

/emultigenicmultifactorial endocrinopathy that affects about
5–10% of women of the world in their reproductive age is
polycystic ovary syndrome (PCOS) [1]. /e most important
heterogeneous features of PCOS is infertility that originates
from anovulation, hyperandrogenism, polycystic ovaries, in-
sulin resistance, obesity, and cardiovascular diseases [2]. But,
due to the heterogeneity of PCOS, the exact pathophysiological
pathway that initiates the syndrome has not been known yet.
Metabolic disorders such as insulin resistance, glucose intol-
erance, and type 2 diabetes are also observed in PCOS patients
[3]./e role of different factors such as genetic, environmental,
and developmental origin was explained in PCOS etiology [4].

In many cases, the genes involved in the pathology of these
metabolic abnormalities were associated with PCOS and likely
with one or more physiological routes interrupted by alteration
of these genes. /erefore, the evaluation of these physiological
pathways is valuable to clear the etiology of PCOS.

In retrospect to the fact that the etiology of PCOS is not
known yet, we should consider two hypotheses hyper-
insulinemia and intrauterine environment changes that have
been well documented in PCOS formation by animal model
studies. /ey can also be mediated by the genetic back-
ground of the individual [5]. Because the reproductive and
metabolic implications are mainly observed in the first-class
relatives, PCOS is considered as a genetic disorder [6].
Furthermore, familial aggregation studies have confirmed
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the genetic basis of PCOS hyperandrogenemia (hyperse-
cretion of androgens in PCOS condition) and identified their
related susceptible genetic variant in PCOS [4]. Based on
twin studies, the heritability of PCOS is approximately 70%
[7]. In spite of the effects of the susceptible genetic variants
on PCOS that may be influenced by environmental factors, it
seems that PCOS develops as a result of a combination of
both genetic and environmental agents [4]. As noted, PCOS
has heterogeneous characteristics due to involvement of
either genetic or environmental factors, although the role of
genetic factors is more severe [8]. /e strong roles of in-
heritance and genetic background in PCOS development
were confirmed based on twin and familial clustering studies
[9, 10]. Unlike the increasing documents proving the her-
itability of PCOS and the effects of developmental origins of
insulin resistance on PCOS development, the exact patho-
physiological pathways in etiology of PCOS are not clear
[11]. According to genome-wide association studies
(GWAS) that identified risk loci for PCOS predisposition,
researchers believed that the PCOS inheritance model is
more likely to be oligogenic/polygenic than the autosomal
dominant [10]. GWAS as a new approach presented a way
for unbiased identification of genes without considering the
probable role of causative variants [11]. /e aim of the
present review is brief description of susceptible genes
contributed to PCOS development that are related to
metabolic pathways such as insulin secretion and signaling.
/erefore, according to the gene functions, the involved
physiological routes affecting PCOS etiology are explained
and novel hypotheses are categorized.

2. Materials and Methods

2.1. Focused Question. /is review was done to answer this
question: “What are the roles of insulin secretion and sig-
naling-related genes in pathophysiologic mechanisms of
polycystic ovary syndrome?”

2.2. Search and Study Selection. Key words and subject terms
included (“PCOS”AND “insulin”) OR (“PCOS”AND “insulin”
AND “gene”) OR (“PCOS” AND “insulin” AND “signaling”)
OR (“PCOS” AND “diabetes”) OR (“PCOS” AND “diabetes”
AND “gene”) OR (“PCOS” AND “diabetes” AND “signaling”).
/e search strategy was applied to PubMed, Elsevier, and
Google Scholar databases, focused on the patient-related
studies. English language research papers were considered. /e
review, abstracts without full manuscripts, the manuscripts
related to the animal models, or in vitro studies were excluded.
Data were collected from the full text of the articles as follows: (i)
insulin resistance and diabetes mellitus type 2 or (ii) insulin
secretion and signaling and (iii) the obtained results.

On the basis of physiological roles, identified genes
related to PCOS can be classified into six groups including
the following: a, gonadotropin secretion and actions; b,
steroid hormones biosynthesis and functions; c, insulin
resistance and type 2 diabetes mellitus; d, insulin secretion
and signaling; e, obesity and dyslipidemia; f, chronic in-
flammatory reactions. In our previous review paper, the

roles of genes involved in a, b, d, and f categories were
explained in detail [2, 12]. In this review paper, we aimed to
clarify the role of effective genes in the insulin secretion and
signaling pathway.

3. Results and Discussion

3.1. Insulin Resistance and Diabetes Mellitus Type 2. Since
insulin resistance is one of the underscored phenotypic
features of PCOS that can have a genetic source, genetic
variants of insulin resistance are also associated with PCOS
[13]. Insulin resistance and hyperinsulinemia in adolescents
are seen in the early stages of PCOS [14], and adolescents
girls with PCOS are exposed to the increased risk of im-
paired glucose tolerance and diabetes mellitus type 2 [15].
Intrauterine growth retardation (IUGR) leads to alteration
in the development of adipose tissue during fetal life [16],
while adipose tissue has an effective role in the expansion of
insulin resistance in adulthood [17]. /us, insulin resistance
resulting from IUGR can be a source of developmental and
preprogramming changes that lead to some abnormalities in
adulthood when the growth environment of the fetus is
impaired [4]. /e point is that PCOS and metabolic syn-
drome contain some common features such as having an
intrinsic origin or due to being out of chronic adult illnesses,
they are still originated from developmental age [18].

Obesity is another effective main factor of insulin re-
sistance in PCOS. It is well known that the abdominal
phenotype of obesity affects insulin resistance and subse-
quent compensatory hyperinsulinemia [19]. Obese and
nonobese PCOS women have had insulin resistance and
pancreatic beta-cell dysfunction, but this situation was not
related to glucose intolerance in all PCOS participants [20].

/e internal alterations of insulin function and hor-
monal environment may contribute to the development of
PCOS insulin resistance. For instance, the defect of receptor
auto-phosphorylation, stimulated by insulin, was exclusively
observed in PCOS women and not in other metabolic ab-
normalities such as obesity, insulin resistance and non-in-
sulin-dependent diabetes mellitus [21]. In some PCOS cases,
the auto-phosphorylation of receptors is normal and there is
a defect in postbinding receptor events of insulin signaling
pathway which lead to insulin resistance [21].

Hyperandrogenism can alter the sensitivity of peripheral
tissues to insulin, directly or indirectly, by increasing visceral
fat and reducing the secretion of adiponectin. Adiponectin is
a main insulin-sensitizing adipokine which contributes to
PCOS insulin resistance [6]. Furthermore, there is evidence
about heritability of hyperandrogenism and hyper-
insulinemia among sisters of PCOS women [22].

Insulin sensitivity is affected by three factors: insulin
receptor, peroxisome proliferator-activated receptor-
gamma (PPAR-c), and vitamin D [23]. Apa1 polymorphism
of vitamin D receptor in Iranian PCOS women is highly
associated with this syndrome [24]. A set of pathways
leading to insulin resistance are described in Figure 1.

Insulin resistance leads to compensatory increment of
insulin secretion from beta cells resulting in hyper-
insulinemia which in turn causes hyperandrogenism.
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However, when the beta cell is unable to compensate for
insulin resistance, hyperglycemia occurs and is followed by
glucose intolerance and type 2 diabetes [8]. /e reasons of
insulin resistance in PCOS are unknown, and it may be the
result of postreceptor insulin signaling defects [8]. In ad-
dition, several factors, secreted by adipose tissue such as
leptin, free fatty acids, interleukin-6, and tumor necrosis
factor α (TNFα), promote insulin resistance and are con-
sidered as candidate PCOS genes [25]. /e mistake of
binding insulin to the receptor or alteration of insulin signal
transduction is a forcible mechanism of insulin resistance
[26]. /e pathophysiological pathway through which
hyperinsulinemia leads to hyperandrogenism is explained in
Figure 2. Generally, abnormalities of insulin secretion and
sensitivity are related to genes involved in insulin signaling
and metabolism regulators which are explained in the
following.

3.2. ADIPOQ. Adiponectin is a protein that is specifically
and abundantly expressed in adipocytes. Adiponectin gene
polymorphisms affect the levels of this protein, obesity,
insulin resistance, and type 2 diabetes [27]. Adiponectin has
a special role in modulating insulin sensitivity [28]. Insulin
sensitivity is controlled by several genes and interaction of
gene products such as adiponectin and resistin (RETN). In a
study on PCOS Japanese women, this syndrome was as-
sociated with RETN polymorphisms but did not show any
association with ADIPOQ gene polymorphisms [29]. Adi-
ponectin gene polymorphisms are more common in PCOS
and had a significant correlation with glucose/insulin ratio
[27]. In addition, the SNP rs1501299 polymorphism in
adiponectin gene, specially based on its role in development
of obesity caused by PCOS, was associated with PCOS risk in

Chinese Han population [30]. Furthermore, G allele of
rs1501299 increased the risk of PCOS in Jordanian pop-
ulation [31]. On the other hand, in a study of Polish women
with PCOS, the SNP rs1501299 in the gene ADIPOQ was
associated with a reduced risk of disease [32]. A meta-
analysis by Liu et al. [33] demonstrated that rs1501299
polymorphisms are significantly associated with PCOS risk
in East Asians. But, a meta-analysis of Asian population
showed that women with the G276T polymorphism have
decreased susceptibility to PCOS [34]. /e strong associa-
tion between 45T/G, +456G15G (T/G), +276 (G/T),
11391G>A, and G276T variants of ADIPOQ and the
metabolic features of PCOS, such as insulin resistance,
central obesity, dyslipidemia, hypertension, and hypergly-
cemia, was reported in different populations suggesting that
ADIPOQ variants can be considered as the risk factors for
PCOS development (Table 1).

3.3. CAPN10. Calpain protein is a cysteine protease that
plays a role in pro-insulin processing and insulin secretion
and action [51]. Women with PCOS are at the risk of im-
paired glucose tolerance (IGT) or a 2–7-fold increase in type
2 diabetes incidence. /erefore, all genes associated with
type 2 diabetes mellitus can play an important role in the
pathogenesis of PCOS [8]. CAPN10 gene was the first gene
that was identified as type 2 diabetes risk gene [52]. /e
CAPN10 gene has multiple SNPs. In a meta-analysis study,
the association of UCSNP-63 and UCSNP-19 polymor-
phisms with PCOS was proved [45]. In another meta-
analysis study, the role of UCSNP-45 as well as UCSNP-63
and UCSNP-19 polymorphisms was confirmed as the risk
factors for PCOS, especially in Asian women [38]. In many
of the case-control studies, the association between various

Genetic
FTO

Epigenetic alterations
(IUGR)

Obesity / Adipose tissue
(TNFα, IL-6)

Environment
(Diet and exercise)

Post receptor-binding events
(INSR, IRs1-2, VitD, PPARγ)

Insulin resistance

Hyperinsulinemia

Hyperandrogenism

Figure 1: Insulin resistance, producing factors and effective gene in each pathway, and ultimately insulin resistance by the formation of
hyperinsulinemia and hyperandrogenism lead to PCOS. Insulin resistance can have different genetic, epigenetic (alteration during in-
trauterine development), and environmental origins or products derived from the adipose tissue. But, in PCOS condition, insulin resistance
is mainly derived from postbinding receptor defects.
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Figure 2: Mechanisms of direct and indirect effects of hyperinsulinemia on hyperandrogenemia. Insulin via increasing the sensitivity of
theca cells to LH and adrenal cortex to ACTH elevated the synthesis of androgens in these tissues. Also, insulin via direct effect on the liver
and by suppression of production of SHBG and IGF1BP leads to the increased serum level of androgens and eventually hyperandrogenemia.

Table 1: Candidate genes involved in etiology of polycystic ovary syndrome related to insulin resistance and type 2 diabetes mellitus.

Gene Genetic marker(s) Type of study Physiologic function Studied
population

Type of
polymorphism References

ADIPOQ,
RETN

SNPs at position −420 of the
RETN and/or −11377 of the

ADIPOQ
Case-control Insulin resistance and

obesity Japanese RETN−420G/G [29]

ADIPOQ rs1501299, rs2241766, and
rs266729 Case-control Insulin resistance Jordanian G allele [31]

ADIPOQ

rs17300539, rs266729,
rs822395, rs822396,
rs2241766, rs1501299,

rs2241767, rs3774261, and
rs17366743

Case-control Insulin resistance Saudi Arabian

rs2241766,
rs1501299,
rs2241767,

rs3774261, and
rs17366743

[35]

ADIPOQ SNPs Case-control Modulating insulin
sensitivity Minia

Higher genotyping
distributions of TG,

GG, and TT
[27]

ADIPOQ T45G and G276T Meta-analysis Insulin resistance,
obesity, and T2DM Asian G276T [34]

ADIPOQ rs1501299 Case-control Lipid profile Polish GG [32]

CAPN10 UCSNP-44, UCSNP-43,
UCSNP-19, and UCSNP-63 Case-control

Ca-mediated
intracellular signaling,
and insulin secretion

Spanish UCSNP-44 [36]

CAPN10 CAPN10 haplotypes
Haplotype-
phenotype
correlation

Ca-mediated
intracellular signaling,
and insulin secretion

Spanish UCSNP-44 [37]

CAPN10 SNPs
Meta-analysis,

meta-
regression

Ca-mediated
intracellular signaling,
and insulin secretion

Asian UCSNP-19, UCSNP-
63, and UCSNP-45 [38]

CAPN10 UCSNP-43, UCSNP-44,
UCSNP-19, and UCSNP-63

Cross-
sectional

population-
based

Ca-mediated
intracellular signaling,
and insulin secretion

Spanish UCSNP-44, UCSNP-
43, and UCSNP-19 [39]

CAPN10 UCSNP-43, UCSNP-19, and
UCSNP-63 Case-control

Ca-mediated
intracellular signaling,
and insulin secretion

Chilean UCSNP-43 [40]

CAPN10 UCSNP-43, UCSNP-19, and
UCSNP-63

Cross-
sectional

Ca-mediated
intracellular signaling,
and insulin secretion

Brazilian UCSNP-43 [41]
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polymorphisms of CAPN10 and metabolic traits of PCOS
was demonstrated and the diversity of populations was the
only difference between studies (Table 1). Accordingly,
CAPN10 which plays a role in insulin secretion and pa-
thology of type 2 diabetes can also be an important sus-
ceptibility gene for PCOS.

3.4. PPAR-c2. PPAR-c is a very important transcription
factor which plays a role in regulating glucose homeostasis,
lipid metabolism, and ovarian steroidogenesis [53]. /e
activation of the PPAR-c by the thiazolidinedione drug, used
to treat type 2 diabetes, induces differentiation of adipocytes
and also increases insulin sensitivity [8]. /e PPAR-c gene
contains a common SNP Pro12Ala [54]. /is gene is
expressed primarily in adipose tissue and stimulates the
differentiation of preadipocytes into adipocytes, and also, it
belongs to the family of nuclear hormone receptors [55].
Pro12Ala polymorphism of PPAR-c gene was proposed in
the women of South India as a PCOS susceptibility gene [49].
/e meta-analysis has showed that Pro12Ala polymorphism
in the PPAR-c has the potential to reduce the risk of
polycyclic ovarian syndrome in European patients, which
was not observed in the Asians [47]. /e Pro12Ala (exon 2)
polymorphism of PPAR-c had a protective effect on insulin
resistance and beta-cell function in a population of Southern

Mediterranean women with PCOS [50]. /erefore, the as-
sociation between PCOS and Pro12Ala variant of PPAR-c
has a racial difference and is mainly related to metabolic
abnormalities of PCOS.

3.5. Insulin Secretion and Signaling. Hyperinsulinemia is a
result of insulin hypersecretion which is caused by the re-
sistance of peripheral tissues to insulin. Also, insulin re-
sistance is mainly due to impaired insulin signaling
postbinding receptor pathway [6]. In addition, the glucose
homeostasis abnormalities are common in PCOS patients;
therefore, in PCOS condition, there is a defect in insulin
secretion as well as insulin signaling pathway dysfunction
[56]. On the one hand, human epidemiologic studies have
demonstrated a correlation between low birth weight and
metabolic diseases. On the other hand, IUGR leads to low
birth weight which in turn promotes the fetuses into adults
with metabolic diseases [57].

In PCOS, the initial defect in insulin secretion may
indicate the dysfunction of pancreatic beta cells which is
related to the occurrence of type 2 diabetes mellitus [58].
/ere is a basic overlapping link between type 2 diabetes and
PCOS [59]. Type 2 diabetes is more likely due to secretion of
impaired insulin from pancreatic beta cells. /is pathogenic
pathway for type 2 diabetes is well known [60], but in

Table 1: Continued.

Gene Genetic marker(s) Type of study Physiologic function Studied
population

Type of
polymorphism References

CAPN10
UCSNP-44, UCSNP-43,

UCSNP-56, UCSNP-19, and
UCSNP-63

Case-control
Ca-mediated

intracellular signaling,
and insulin secretion

Indian UCSNP-44 [42]

CAPN10 UCSNP-43 and rs3792267 Case-control
Ca-mediated

intracellular signaling,
and insulin secretion

Greek UCSNP-43 [43]

CAPN10 UCSNP-43 and rs3792267 Case-control
Ca-mediated

intracellular signaling,
and insulin secretion

Indian ND [44]

CAPN10 UCSNP-19, UCSNP-63,
UCSNP-44, and UCSNP-43 Meta-analysis

Ca-mediated
intracellular signaling,
and insulin secretion

Different
populations

UCSNP-19 and
UCSNP-63 [45]

PPAR-c

Gly482Ser, PPAR-α
Leu162Val, PPAR-δ

rs2267668A/G, PPAR-
δ−87T/C, PPAR-c2

Pro12Ala, and PPAR-c2-
−681C/G

Case-control,
meta-analysis

Glucose homeostasis,
lipid metabolism,

transport, and storage
Caucasian Gly482Ser and

Pro12Ala [46]

PPAR-c Pro12Ala Meta-analyses
Glucose homeostasis,
lipid metabolism,

transport, and storage

Different
population Pro12Ala [47]

PPAR-c2 Pro12Ala Case-control
Glucose homeostasis,
lipid metabolism,

transport, and storage
Chinese ND [48]

PPAR-c2 Pro12Ala Case-control

Glucose homoeostasis,
lipid metabolism, and

adipocyte
differentiation

South Indian Pro12Ala [49]

PPAR-c Pro12Ala (exon 2) and
His447His (exon 6) Case-control Insulin resistance and

adiposity
Southern

Mediterranean Pro12Ala (exon 2) [50]

Abbreviations: ADIPOQ, adiponectin; CAPN10, calpain 10; PPAR-c, peroxisome proliferator-activated receptor-gamma; ND, no data.
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previous studies, there is a controversy about the role of
beta-cellular impairment in PCOS [59]. /e beta-cell dys-
function can affect PCOS development in two ways; firstly,
the reduction of beta-cell activity can subsequently cause the
impairment of glucose tolerance and hyperglycemia, and
secondly, the elevation of beta-cell activity results in
hyperinsulinemia, which is followed by adverse effects on
peripheral tissues either alone or in combination, and affects
the pathogenesis of PCOS [23] (Figure 3).

Women with PCOS have higher levels of fasting insulin
and glucose-stimulated insulin, as well as less insulin sen-
sitivity than healthy women who are matched according to
age and body mass index [61]. Although the etiology of
hyperinsulinemia has not been distinguished yet, clinical
and molecular studies have believed that defects in insulin
signaling and postbinding receptor, likely due to increase in
insulin receptors and insulin receptor substrate-1 phos-
phorylation, affect metabolic pathways and lead to insulin
sensitivity and secretion abnormalities [6]. In addition to
pancreatic beta-cell dysfunctions, genes affecting the insulin
secretion and signaling also play a role in insulin resistance.
Genetic alterations and expression of these genes were in-
vestigated and explained in the following sections.

3.6. INS. /e variable number of tandem repeat (VNTR)
polymorphisms in the promoter region of the insulin gene
affects its expression [62]. /e results of the genetic eval-
uations of the insulin gene in relation to PCOS are highly
controversial. It is mainly due to differences in diagnostic
criteria for the identification of affected patients, VNTR
genotyping methods, and the racial and geographic back-
ground of the participants [8]. Nevertheless, due to the
impact of insulin resistance and hyperinsulinemia on
anovulation, there may be an association between insulin-
related genes and ovulation. While in a meta-analysis study,
no association between INS VNTR gene and PCOS was
observed [63], INS VNTR class III allele is correlated with
increased HOMA-IR and BMI in Kashmiri women with
PCOS [64]. A set of previous studies have shown that the
variable number of tandem repeat of INS gene is not likely to
be dependent on PCOS in different populations (Table 2).

3.7. INSR. Insulin receptor gene encodes insulin receptor
that plays a pivotal role in insulin signaling pathway, and
single nucleotide polymorphisms (SNPs) of this gene are
likely to have an effect on PCOS metabolic disorders such as
insulin resistance and obesity [13]. In various studies con-
ducted in different populations, there is a strong association
between the different varieties of INSR gene and PCOS
indicating that the INSR, regardless of ethnicity and race,
could be a good genetic marker for PCOS (Table 2). /e
reality is that a C/T polymorphism in the tyrosine kinase
domain of INSR gene can be a susceptible variant for PCOS
(Table 2). Furthermore, the rs2059807 and rs1799817 in
INSR gene were significantly associated with IR in PCOS
women in different populations [74, 78–80]. In fact, INSR
mediates the effect of insulin resistance on PCOS. But, we
should consider findings of studies of insulin resistance in

PCOS condition demonstrating that only the metabolic
tissues such as liver, skeletal muscle, and fibroblasts are
insulin-resistant, whereas the ovary and pituitary tissues
remain sensitive to insulin functions [96].

3.8. IRS-1 and IRS-2. Recent studies have shown that acti-
vation of phosphatidylinositol 3-kinase, being carried out by
insulin receptor substrate-1 (IRS-1) and IRS-2 mediators,
has an important role in the regulation of insulin-mediated
glucose transfer and carbohydrate metabolism [82]. In
PCOS women, there is an insulin receptor signaling defect,
being accompanied with a decrease in IRS protein, and is
related to phosphatidylinositol 3-kinase activity [97]. On the
one hand, the Gly972Arg variant of IRS-1 gene was asso-
ciated with low SHBG levels in adolescent girls with the
history of premature pubarche [98]. On the other hand, the
relationship between PCOS and insulin resistance is cor-
related with reduced SHBG-circulating levels leading to
increased blood testosterone levels [99]. It is thought that
decreasing the tyrosine phosphorylation of IRS-1 and in-
creasing the phosphorylation of IRS-2 Ser312 in PCOS may
be initial defects or possible molecular mechanisms in in-
sulin resistance in PCOS [100]. In a meta-analysis, Arg972
polymorphism in IRS-1 has been shown as a PCOS sus-
ceptibility allele and it mediates its pathogenesis via an
increased level of fasting glucose [81]. In another meta-
analysis, the IRS-1 Gly972Arg polymorphism was found to
be a risk factor for PCOS susceptibility [82]. /e mRNA
levels of IRS-1 and IRS-2 were significantly increased as the
result of hyperandrogenic environment in PCOS women
[101]. However, the value of IRS-1 and IRS-2 polymorphisms
in association with PCOS is not as the value of INSR gene
polymorphisms in PCOS etiology.

3.9. THADA. /e thyroid adenoma-associated (THADA)
gene has been initially identified in chromosomal defects of
this genomic region in benign adenoma of thyroid glands,
and its intron region was interconnected with peroxisome
proliferator-activated receptor-gamma (PPAR-c) [102].
Overtransmission of SNP rs13429458 in THADA suggested
that this gene has the capacity to be a new candidate for
PCOS [84]. Polymorphisms of THADA may be involved in
pathogenesis of both diabetes mellitus type 2 and PCOS [84].
An SNP of THADA, being associated with type 2 diabetes
mellitus, indicates that the THADA has the main role in
insulin secretion [103]. /us, further functional genetic
studies are required to clarify the exact role of THADA in
pathogenesis of both PCOS and diabetes mellitus type 2.
However, the SNP rs13429458 of THDAD gene may be a
genetic risk factor for PCOS in different populations
[76, 87–90].

3.10. MTNR1A and MTNR1B. /e action of melatonin is
mediated by melatonin receptors (MTNRs) which include
MTNR1A and MTNR1B, both of which belong to the
G-protein coupled-receptors superfamily [92]. MTNR1A is
mainly expressed in alpha cells and MTNR1B in beta cells of
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PCOS

Hyperinsulinemia Pancreatic beta
cells dysfunctions Hyperglycemia
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Figure 3: /e effect of pancreatic beta-cell dysfunctions on PCOS pathogenesis. Beta-cell dysfunctions lead to type 2 diabetes mellitus and
hyperinsulinemia that lead to PCOS by creating hyperandrogenism. However, it is not clear that the PCOS is an introduction to beta-cell
abnormalities and then resulted in insulin secretion dysregulation or vice versa.

Table 2: Candidate genes involved in the etiology of polycystic ovary syndrome related to insulin secretion and signaling.

Gene Genetic marker(s) Type of study Physiologic function Studied
population

Type of
polymorphism References

INS INS VNTR Case-control Insulin secretion Czech ND [65]

INS INS VNTR

Case-control, family-
based association,
quantitative trait

analyses

Insulin secretion British/Irish ND [66]

INS −23/Hph I Case-control Insulin secretion Korean ND [67]
INS INS VNTR Meta-analysis Insulin secretion Different ND [63]
INS INS VNTR Case-control HOMA-IR Kashmiri ND [64]
INSR C/T SNP Case-control Insulin signaling American Exon 17C/T SNP [68]
INSR D19S884 Case-control Insulin signaling Caucasian D19S884 [69]
INSR T/C SNP Case-control Insulin signaling Chinese T/C SNP [70]
INSR Nine SNPs Case-control Insulin resistance Korean +176477C>T [13]
INSR Exon 17C/T Case-control Insulin signaling Turkish ND [71]
INSR C/T SNP at exon 17 Case-control Insulin signaling Chinese C/T SNP at exon 17 [72]
INSR C/T polymorphism Case-control Insulin signaling Indian C/T polymorphism [73]

INSR
rs1799817, rs2059807,

rs8108622, and
rs10500204

Family association
study Insulin signaling Chinese Han ND [74]

INSR rs3786681, rs17253937,
and rs2252673 Family-based analysis Insulin signaling Chinese Han rs2252673 [75]

INSR Susceptibility loci Case-control Insulin signaling Europeans INSR [76]

INSR Genotype and allele
frequencies Case-control Insulin signaling Indonesian ND [77]

INSR rs1799817 Case-control Insulin signaling Saudi
Arabian Allele T [78]

INSR rs2059807 and
rs1799817 Case-control Insulin signaling Indian rs2059807 and

rs1799817 [79]

INSR rs2059807 GWAS Metabolic syndrome
and insulin resistance Han Chinese rs2059807 [80]

INSR INSR mutation Case report Insulin signaling Jamaican p.His1157Gln [3]
ΙNSR, IRS-1,
and IRS-2 Gly972Arg (G972R) Meta-analysis Insulin signaling Different Gly972Arg (G972R)

variant in IRSs [81]

IRS-1 and
IRS-2

Gly972Arg and
Gly1057Asp Meta-analysis Insulin signaling Different Gly972Arg 1 [82]

IRS-2 295 SNPs Case-control Insulin signaling Caucasian /ree SNPs [83]

THADA rs13429458 Case-control Regulation of energy
homeostasis Chinese Hui ND [76]

THADA 2p21 chr Case-control Regulation of energy
homeostasis European THADA [83]
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the pancreas [104]. /e MTNR1B gene is a new candidate
gene for type 2 diabetes [92], upregulation of which in the
pancreatic islets of diabetic patients is a document for the
main role of MTNR1B in T2DM pathogenesis [105]. /e
association of MTNR1B polymorphisms with PCOS has
been documented [91, 106]. /e rs10830963 SNP MTNR1B
was associated with higher insulin resistance and plasma
glucose levels and lower beta-cell function in Chinese PCOS
women [91]. In another study, it has been demonstrated that
the rs2119882 polymorphism of MTNR1A is also associated
with metabolic properties of PCOS and could have a causal
role in pathogenesis of PCOS [92]. Generally, launching the
MTNR1B signaling pathway in the pancreatic beta cells
reduces insulin secretion that resulted in elevated fasting
glucose levels in PCOS individuals [107]. /e MTNR1B
rs10830963 and MTNR1B rs2119882 have been involved in
the pathophysiology of insulin resistance in the Chinese
PCOS women [94] as well as in the meta-analysis of different
populations with PCOS [95], which indicates their in-
volvement in the metabolic aspect of PCOS. /erefore, due

to having an effective role in the pathology of diabetes,
MTNR1A and MTNR1B may be a predisposition factor for
metabolic disorders of PCOS.

4. Conclusions

/e genetic aspect of PCOS is highly supported by different
twin and investigations of familial aggregation. According to
most of the studies, the critical genes for PCOS development
were not reported yet, but scholars are in agreement with
INSR, IRS1-2, MTNR1A, MTNR1B, THADA, PPAR-c2,
ADIPOQ, and CAPN10 as more susceptible genes in PCOS
incidence. /e significant point is that these genes were
mostly associated with metabolic abnormalities of PCOS.
For instance, the role of MTNR1A and MTNR1B, THADA,
CAPN10, and PPAR-c2 in pathology of type 2 diabetes and
obesity has been confirmed./e animal transgenic model for
genes involved in diabetes and insulin resistance can better
interpret the physiological pathways involved in the onset of
PCOS. New research studies can find the downstream and

Table 2: Continued.

Gene Genetic marker(s) Type of study Physiologic function Studied
population

Type of
polymorphism References

THADA Susceptibility loci Case-control Regulation of energy
homeostasis Europeans THADA [76]

THADA

rs13429458,
rs12478601,
rs13405728,

rs10818854, and
rs2479106

Family-based analysis Regulation of energy
homeostasis Chinese Han rs13429458 [84]

THADA rs12478601 Case-control Pancreatic beta-cell
function Iraqi ND [85]

THADA rs13429458 GWAS Insulin resistance Han Chinese rs13429458 [80]
THADA rs13429458 GWAS Glucose metabolism Indian ND [86]

THADA rs13429458 Meta-analysis Regulation of energy
homeostasis Asian Minor allele (C) [87]

THADA rsl3429458 Case-control Glucose metabolism Xinjiang
Uygur Minor allele (T) [88]

THADA rs13429458 Meta-analysis Glucose metabolism Chinese rs13429458 [89]
THADA rs13429458 Case-control Glucose metabolism Indian rs13429458 [90]

MTNR1B rs10830963 and
rs10830962 Case-control

Regulator of circadian
rhythms and
reproductive
processes

Chinese Han rs10830963 [91]

MTNR1A rs2119882 Case-control

Regulator of circadian
rhythms and
reproductive
processes

Chinese Han rs2119882 [92]

MTNR rs2119882 and
rs10830963

Family association
study

Regulator of circadian
rhythms and
reproductive
processes

Chinese Han rs2119882 [93]

MTNR1A
MTNR1B

rs2119882 and
rs10830963 GWAS Glycolipid

metabolism Chinese
MTNR1A rs2119882

and MTNR1B
rs10830963

[94]

MTNR1A
MTNR1B

rs2119882 and
rs10830963 Meta-analysis Insulin resistance Different

populations

MTNR1B
rs10830963 and

MTNR1B rs2119882
[95]

Abbreviations: GWAS, genome-wide association study; HOMA-IR, homeostatic model assessment for insulin resistance; INS, insulin gene; INSR, insulin
receptor; IRS, insulin receptor substrate; MTNR1A, melatonin receptor 1A; THADA, thyroid adenoma associated; ND, no data.
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upstream agents regulating gene transcription and expres-
sion by genetic and bioinformatics studies. /en, they can
identify most genetic markers which are related to PCOS.
Generally, we proposed that after hyperandrogenism, the
role of insulin resistance in pathology of PCOS is muchmore
probable. In conclusion, in spite of complexity in finding the
root cause, we can claim that PCOS heterogeneity has
opened the way for many new research studies.
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ciation study of ADIPOQ, RBP4, and BCMO1 variants with
polycystic ovary syndrome and with biochemical charac-
teristics in a cohort of Polish women,” Advances in Medical
Sciences, vol. 63, no. 2, pp. 242–248, 2018.

[33] Z. Liu, Z. Wang, C. Hao, Y. Tian, and J. J. R. B. Fu, “En-
docrinology. Effects of ADIPOQ polymorphisms on PCOS
risk: a meta-analysis,” vol. 16, no. 1, pp. 1–6, 2018.

[34] R. E. Tiongco, F. J. Cabrera, B. Clemente, C. C. Flake,
M. A. Salunga, M. R. Pineda-Cortel et al., “G276T poly-
morphism in the ADIPOQ gene is associated with a reduced

risk of polycystic ovarian syndrome: a meta-analysis of Asian
population,” Taiwanese Journal of Obstetrics and Gynecology,
vol. 58, no. 3, pp. 409–416, 2019.

[35] I. Ezzidi, N. Mtiraoui, M. E. Mohmmed Ali, A. Al Masoudi,
and F. Abu Duhier, “Adiponectin (ADIPOQ) gene variants
and haplotypes in Saudi Arabian women with polycystic
ovary syndrome (PCOS): a case-control study,” Gynecolog-
ical Endocrinology, vol. 36, no. 1, pp. 66–71, 2020.

[36] A. Gonzalez, E. Abril, A. Roca et al., “CAPN10 alleles are
associated with polycystic ovary syndrome,” �e Journal of
Clinical Endocrinology & Metabolism, vol. 87, no. 8,
pp. 3971–3976, 2002.

[37] A. Gonzalez, E. Abril, A. Roca et al., “Specific CAPN10 gene
haplotypes influence the clinical profile of polycystic ovary
patients,” �e Journal of Clinical Endocrinology & Meta-
bolism, vol. 88, no. 11, pp. 5529–5536, 2003.

[38] W. Shen, T. Li, Y. Hu, H. Liu, and M. Song, “Calpain-10
genetic polymorphisms and polycystic ovary syndrome risk:
a meta-analysis and meta-regression,” Gene, vol. 531, no. 2,
pp. 426–434, 2013.
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[65] M. Vanková, J. Vrbı́ková, M. Hill, O. Cinek, and B. Bendlová,
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