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1. I n t r o d u c t i o n . Recently several topologists have called a t tent ion to the 
uniform structures (in most cases, the coarsest ones) under which every 
continuous real function is uniformly continuous (let us call the s tructures the 
[coarsest] uc-structures), and some impor tant results have been found which 
closely relate, explicitly or implicitly, to the uc-structures, such as in the 
vS of Hewit t (3) and in the e-complete space of Shirota (7). Under these 
circumstances it will be natural to pose, as Hi to tumatu did (4), the problem: 
which are the uniform spaces with the uc-structures? In (1 ; 2 ) , we characterized 
the metric spaces with such structures, and in this paper we shall give a solution 
to the problem in uniform spaces (§ 1), together with some of its applications 
to normal uniform spaces and to the products of metric spaces (§ 2). I t is 
evident t ha t every continuous real function on a uniform space is uniformly 
continuous if and only if the uniform structure of the space is finer than the 
uniform structure defined by all continuous real functions on the space. Our 
main theorem (Theorem 1) shows an internal aspect of this necessary and 
sufficient condition, and thus it permits us to construct the coarsest uc-
structures internally (Corollary to Theorem 1). Then it is shown tha t the 
coarsest uc-structures are equivalent to the e-structures of Shirota (7) on 
some kind of spaces (Theorem 2). The last section of this paper is devoted to 
characterizing, as it were, uniformly pseudo-compact spaces, a generalization 
of pseudo-compact spaces in which Theorem 1 is reduced to a known result, 
and the characterization is a generalization of Theorem 2 of (2). 

2. M a i n t h e o r e m . We shall first give some definitions used in this section. 
A function is a real-valued continuous mapping, a space S is, unless otherwise 
specified, a uniform space, and a space is said to be uc if every function on the 
space is uniformly continuous. A sequence of subsets is discrete if any point 
of the space has a neighbourhood intersecting a t most one member of the 
sequence, and it is uniformly discrete if there is an entourage V of the uniform 
st ructure such t h a t V(x) meets a t most one member of it for any point x of 
the space. A sequence of subsets {An) is discretely normally separated by a 
sequence of subsets {Bn} if {Bn} is discrete and there is a funct ion/ , 0 < / < 1, 
for each n with values 1 on An and 0 on the complement of Bn, let us call the 
function the characteristic function for n. {An) is uniformly separated by {Bn) 
if there is an entourage V with V(An) C Bn for all n. 

T H E O R E M 1. A uniform space is uc if and only if any sequence of subsets 
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{An}, discretely normally separated by some sequence of subsets {Bn}, is uniformly 
separated by {Bn}. 

Proof. Suppose the space is uc and fn a characteristic function for n, then 
/ = sup n inf(w, 2nfn) and g = supw/ ra are continuous, and so uniformly 
continuous, that is, there is an entourage V such that (x, y) Ç V implies 
I/O) -f(y)\ < § and \g(x) - g(y)\ < \. If x is in An, then n - \ <f(y) 
< n + \ and \ < g(y). g(y) ^ 0 follows y G J3m for some m, and thus 
we have g(y) = /ro(y), § <fm(y), w < 2mfm(y), f(y) =m1n-^<m<n 
+ J, m = n, which means F(^4W) C Bn. For the converse, suppose / is a 
function on the space, consider the following closed intervals in the real line 
(n and k are integers and positive integers respectively) : 

Af
n= [ ( 8 n + l ) / 6 £ , (8» + 5)/6fc], 

Bn = [4tt/3Jfe, (4n + 3)/3Jfe], 

and put 4W = f~l(An
r), Bn=f~l(Bn'). Since {̂ 4W} is discretely normally 

separated by \Bn), there is an entourage V\ with Vi{A^) C. Bn for all n. 
Similarly, for the closed intervals 

C'n = [(8w + 5)/6£, (8» + 9)/6&], 

D'n = [(4n + 2)/3*, (4n + 5)/3*]f 

and the sets Cri = f~l(Cn'), Dn — f~l(Dn'), there is an entourage V2 with 
F2(CW) C Dn. Any point of the space belongs to some An W Cn. Let (x, y) 
G F C Vi C\ V2, and let x belong to An, then 3; is in Bn and |/(x) — f{y)\ 
< 1/&; similarly for Cn. 

COROLLARY. For any topological space 5, the coarsest uc-structure °7i is 
generated by the relations 

U = (5 -\J An) X (S - U 4„) U UB (Bn X 5»), 

where {An} is any sequence of closed subsets, discretely normally separated by 
the sequence {Bn\ of open subsets. 

Proof* If U is as stated and V £ ^ taken such that V(An) C Bn for all n 
(by Theorem 1), then V C £7; in fact, if (x, 3/) Ç F and x or 3/ lies in VJ 4̂W, 
then (x, y) £ Bjc X Bk for some &, and otherwise (x, y) £ (S — W 4̂W) 
X (5 - \J An), this shows F C U, and hence 17 G ^1 On the other hand, 
if W = {(x, 3>); |/(x) — /(3OI < e) for some function f on S and some real 
e > 0, then there are, by the proof of Theorem 1, two relations U and U' 
of the type considered such that U C\ Ur C W. Since these W generate ^ , 
the same holds for the U. 

It is easily seen that the structure defined in this corollary is compatible 
with the original topology when the space is completely regular. 

*This proof, neater than the original, is due to the referee. 

https://doi.org/10.4153/CJM-1961-055-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1961-055-9


UNIFORM CONTINUITY OF CONTINUOUS FUNCTIONS 659 

Let us now give some spaces on which the coarsest uc-structure and the 
e-structure (7) are equivalent. 

DEFINITION 1. A topological space is normally disconnected if, for any open 
set G containing any closed set A, there is an open and closed set contained in G 
and containing A. 

THEOREM 2. A coarsest uc-structure is equivalent to an e-structure in a Ti-space 
S if the space is normally disconnected and at most one-dimensional. 

Proof. Obviously a normally disconnected TY-space is normal. Suppose 
that {Xn) is a countable normal open covering of a normally disconnected 
TYspace with at most one dimension, then we may assume {Xn} has at most 
order 2. There is, for every n, an open and closed set Hn contained in Xn and 
containing Xn — VJ i9±n Xt. K\ = Hi, Kn = Hn — KJi<nHi are open and closed 
sets which are disjoint from each other. Ltj = Xt C\ Xj — (Kt^J Kf) is 
open and closed, because, since {Xn} is of at most order 2 and a point included 
only in Xt belongs to Ki} Ltj = S — ^Jh9±ijXh — (Kt\J K0). Consequently, 
{Kiy Lif, i, j natural numbers} is an open and closed covering which refines 
{Xn} and is discretely normally separated by itself. 

3. Case of normal uniform spaces and others. Using the result of 
Dowker (5, Lemma 3), we get the following statement which is a slight 
modification of Theorem 1: In order that a normal space is uc it is necessary 
and sufficient that if {Bn} is a disjoint sequence of open subsets, if closed An C Bn 

for every n, and if KJ An is closed, then there is an entourage V such that V(An) 
C Bn for all n. Furthermore we have 

THEOREM 3. A normal uniform space is uc if and only if any discrete sequence 
of subsets is uniformly discrete. 

Proof. Let \An) be discrete in a normal uc-space, then we have, by a simple 
induction, a disjoint sequence of open subsets Bn containing An for every n, 
and, by the above remark, an entourage V such that V(An) C Bn, that is, 
V(Am) Pi An = 0 . To prove the converse, let {Bn} discretely normally 
separate {An} in a space S satisfying the property in the assertion, then there 
are entourages Vx and V2 with Vi(Bm)(~\Bn= 0 , m ^ n, F2(W An) 
r\(S -yj Bn) = 0 , and we have V(An) C Bn for V C V1 H V2 and for 
each n. 

DEFINITION 2. A sequence of subsets [An] is said to be shrinking (or uniformly 
shrinking) if An° (interior of An) D Ân+i (or An D V(An+1) for some entourage 
V) for every n. 

THEOREM 4. A normal uniform space is uc if and only if any shrinking sequence 
of subsets {An) with vacuous intersection is uniformly shrinking. 

Proof. Suppose a normal space 5 is uc and put Fn = Â2w-i — A^t then 
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{Fn} is discrete and there is a discrete sequence of open subsets {Gn} (5, 
Lemma 3) with Fn C Gn C A2n_<? — Â2n+h n > 1, A0 = S. Similarly, for 
the discrete {Hn\, Hn = Â2n — A2n+i°, there is a discrete {Kn} of open subsets 
with Hn C Kn C ^2W-i° — Â2n+2. There is, by Theorem 1, an entourage V 
with V(Fn) C Gn and F(i2"w) C Kn for all w. If a point x of An belongs to Am 

and not to Am+lj and when m = 2k — 1, then x G /% F(x) C Gk C -42/c_2
0 

= i m - i ° C -4„-i; when w = 2k, then x € Hk, V(x) C Kk C A2k-i° = Am^° 
C An-i. In any case, we have V(An) C ^L-i- Conversely, for a discrete 
sequence of closed subsets {An}, there is an open discrete [Bn] with Bn D 4̂W. 
For every n we can make up a sequence of 2n — 2 open sets CJ such that 
{£w, C»1, Cn\ . . . , CW

2W~2, ylw} is shrinking, and put 

\i>n / 

^2W = U Ci . 

Since {J5W} is discrete, {Fn\ is shrinking, so that there is an entourage V with 
V{Fn) C Ftt_i, that is, F(^m) H .4, = 0 . 

COROLLARY. 4̂ normal space is uc if and only if for any decreasing sequence 

F1 D Gi D . . . D ^ D Gw D • . . 
^/ closed Fn and open Gn with vacuous intersection, there is an entourage V with 
Gn-, D V(Fn) for n>2. 

We shall now apply Theorem 1 to find the condition under which the 
product space of metric spaces is uc. We already know the various equivalent 
conditions a metric space to be uc (1; 2), which are of course easily verified 
also by using the above theorems. Let us recall some of them for later use; for 
this, it is convenient to define the following. A subset A of a space 5 is said to 
be uniformly isolated in S if there is an entourage V in S such that for every 
point x in A, V(x) contains no point of S except for x. 

THEOREM 5 (2, Theorem 1). A metric space S is uc if and only if it satisfies 
one of the following equivalent conditions. 

(i) A set of all but finitely many members of a discrete sequence of points in S 
is uniformly isolated in S. 

(ii) A set of all but finitely many points of the subset which has no accumulation 
point in S is uniformly isolated in S. 

LEMMA. If a product space S = HaeZSa is uc, then so also is S' = UaeYSa 

for any Y C Z. 

Proof. We may suppose S' is a uniform subspace of S. We can make up, 
from a function / on S', an extension g over 5 by defining g{x) = f(xf) for 
every x of S, where x' is a projection of x on S. 

THEOREM 6. A product space S of infinitely many metric spaces Sa is uc if 
and only if 
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(i) 5 is compact, or 
(ii) all but finitely many factor spaces are one-point-spaces and (1) all are 

uniformly isolated or (2) all are finite except for one which is a non-compact and 
non-uniformly isolated uc-space. 

Proof. The verification of the "if" part is obvious, and is hence passed over. 
Let us suppose 5 is uc and not compact, and so there is a factor space, say 50, 
including a discrete sequence {xn} of points; we may then, by the Lemma and 
Theorem 5, assume that every xn is isolated. When there is a countable number 
of spaces Si, S2, . . . , every one of which includes two points at least, we 
take a neighbourhood Gn of a point yn in Sn for every n 9e 0 such that Sn 

includes a point which does not belong to Gn. 

Hn = (xn) X Gi X . . . X G„ X n S°> 
aeZ(n) 

where Z(n) is the set of all indices excepting 0, 1, . . . , n, is a neighbourhood 
of a point pn of 5 whose projection on So (or Su 1 < i < n) is xn (or yt). 
{pn} is discretely normally separated by {Hn}, but we cannot find an entourage 
V in 5 such that V(pn) C Hn for all n. Consequently all but finitely many 
factor spaces, for example, excepting So, Si, ... , Sn, are one-point-spaces. 
If Si, i 9^ 0, has an accumulation point, then So X St includes a discrete 
sequence of points which are not isolated, this, by Theorem 5, contradicts the 
Lemma. Therefore all St except So have no accumulation point, that is, 
uniformly isolated by Theorem 5. If So has no accumulation point, it is also 
uniformly isolated. If So has an accumulation point, Sit % 5̂  0, cannot have 
infinitely many points just as above. 

4. Remarks. The condition in order that every bounded function on a 
space is uniformly continuous is well known (6), so Theorem 1 is essentially 
new for a non pseudo-compact space. In a uc-space, pseudo-compactness 
follows from precompactness, which is generalized in the following definition. 
The generalized concept closely relates to a property of a uniform space, which 
may be called uniform pseudo-compactness, as shown in Theorem 7, a 
generalization of Theorem 2 of (2). 

DEFINITION 3. Let V be an entourage. The finite sequence of points 
Xo, Xi, . . . , xm satisfying (x^_i, xx) Ç V is said to be a F-chain with length m. 
If for any entourage V there are finitely many points pi, ... , pj and a positive 
integer m such that every point of the space can be bound with some pi by a V-chain 
with length m, that is, 

U Vm(pt) = S, 
i=l 

then the space is said to be finitely chainable. 

THEOREM 7. A uniform space is finitely chainable if and only if every uniformly 
continuous function is bounded. 
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Proof. The verification is essentially similar to that of Theorem 2 of (2). 
We shall verify the "if" part only. Suppose a uniform space is not finitely 
chainable, and so there is an entourage V such that for any finite number 
of points and any positive integer n there is a point which cannot be bound 
with any one of the points selected above by a F-chain with length n. Let 
A o° be a set consisting of a fixed point, and 

A\ = V{AVl), Vo = 7, VnVn C Vn-i, V'1 = Vn, 
m 

Ut = VnmVnrn_, . . . Vni,t = E 2~Wt, n1<n2< ... <nm 

then the function 

fn(x) 
_\sup{t;x(Ut(A

n
0-

1)} 
l0 on ^ ra-l 

0 

is uniformly continuous (cf. (8, proof of Theorem 1, p. 13)). 
(1) When A0

n ^ Aç?-1 for all n. Let us put f(x) = n - 1 +/»(*) for x 
belonging to A^ and not to Aon~l, then /(x) is uniformly continuous on 
A0 = Un^4on. To see this, let us suppose y is in Vm(x). Then y belongs to 
A^1 and not to ^0

n"2 . (i) If y is in ^o7*"1, then/(y) = n - 2 + fn^(y) < f(x) ; 
fn_!(y) < 1 - 2~m = * implies y Ç ^ (^o*" 2 ) , x G Fm^7,(^0

w-2) C ^o""1, a 
contradiction; so we have/n_i(y) > 1 — 2_m. Therefore |/(x) —/(y) | = f(x) 
-f(y) < 2"m+1. (ii) If y belongs to A0

n and not to A0
n~\ then/(y) = » - 1 

+ A(y), |/(*) -f(y)\ = \fn(x) -fn(y)\ < 2—+1. (iii) The remaining case for 
y is similar to (i). 

(2) When AQ
n = ^4on_1 for some w. If we can make up an unbounded 

function which is uniformly continuous on A\ constructed from a point of 
the complement of A 0 in the similar way to (1), our proof will be complete. 

(3) When we cannot get a desired function on Am obtained in the same 
way with (2) for every natural number rn, then we pu t / (x ) = m for x in Am 

and = 0 otherwise. Since the space is not finitely chainable, the function 
is unbounded and uniformly continuous. 
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