20F99, 30F99

BULL. AUSTRAL. MATH. SOC. VOL. 33 (1986), 123-130.

A FAMILY OF HURWITZ GROUPS WITH

NON-TRIVIAL CENTRES

Marston Conder

In this paper a new family of quotients of the triangle group $\langle x, y, z | x^2 = y^3 = z^7 = xyz = 1 \rangle$ is obtained. It is shown that for every positive integer m divisible by 3 there is a Hurwitz group of order $504m^6$ having a centre of size 3, and as a consequence there is a Riemann surface of genus $6m^6 + 1$ with the maximum possible number of automorphisms.

The (2,3,7) triangle group Δ is the abstract group with presentation $\Delta = \langle x, y, z \mid x^2 = y^3 = z^7 = xyz = 1 \rangle$. A theorem of Hurwitz [4] states that a compact Riemann surface with genus g > 1 has at most 84(g - 1) conformal automorphisms, that is, homeomorphisms of the surface onto itself which preserve the local structure. Any surface with the maximum possible number of automorphisms must be uniformized by a normal subgroup N of the triangle group Δ , for the latter is the Fuchsian group with fundamental region of smallest hyperbolic area. Moreover, the conformal automorphism group is then isomorphic to the quotient group Δ/N . Conversely, any finite non-trivial quotient G of Δ gives rise to a compact Riemann surface (of genus $\frac{1}{84}|G| + 1$) with the maximum possible number of automorphisms, and G as its automorphism group. For these reasons, any finite non-trivial quotient of Δ is

Received 27 May 1985.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 \$A2.00 + 0.00.

called a Hurwitz group.

A good number of Hurwitz groups are known, particularly amongst the finite simple groups (see [2], [3], [7], [8] for example).

In a paper on certain normal subgroups of Δ , Leech [5] raised the question of whether there exists a Hurwitz group with non-trivial centre. He answered that question in the affirmative (in a note added in proof) and later [6] produced two infinite families of Hurwitz groups, the groups in these families having centres of size 2 and 4 respectively. The groups themselves had orders $504p^7$, with p running through the positive integers congruent to 2 modulo 4, and $1008p^7$, with p running through the positive integers divisible by 4. Every group in either family was obtained as an extension of a 7-generator group by the simple group PSL(2, 8).

In this paper we use similar methods to produce a family of Hurwitz groups each having a centre of size 3. Specifically, for every positive integer m divisible by 3, there is a Hurwitz group G which is an extension by the simple group PSL(2,7) of a 6-generator group K of order $3m^6$, such that the centre Z(G) of G is cyclic of order 3 and coincides with the commutator subgroup K' of K. As a consequence, for each such m there must be a compact Riemann surface of genus $6m^6 + 1$ with the maximum possible number of conformal automorphisms. (Actually this surface admits a covering projection onto Klein's quartic, with K being the group of covering transformations, but we do not pursue this matter here.)

The construction of our family proceeds as follows:

Let x, y and z be the usual generators of the group Δ , so that $x^2 = y^3 = (xy)^7 = 1$ and $\langle x, y \rangle = \Delta$. Now put $A = y^{-1}xyx$ and $B = (xy)^3$, so that the defining relations for Δ become $B^7 = (AB)^2 = (A^{-1}B)^3 = 1$, and our notation is made consistent with that used by Leech in [5].

Next define the elements $a_n (0 \le n \le 6)$ by $a_0 = A^4$ and $a_n = B^{-n} a_0 B^n$ (for $1 \le n \le 6$). According to Leech [5] these elements

124

 a_n generate a normal subgroup, say Γ , of Δ , with factor group PSL(2,7), the simple group of order 168. Moreover, the generators of Γ satisfy the relations $a_6a_5a_4a_3a_2a_1a_0 = 1$ and $a_6a_3a_0a_4a_1a_5a_2 = 1$, and, eliminating the redundant generator a_6 from these, we obtain the additional relation

$$a_{2}^{-1}a_{5}^{-1}a_{1}^{-1}a_{4}^{-1}a_{0}^{-1}a_{3}^{-1}a_{5}a_{4}a_{3}a_{2}a_{1}a_{0} = 1.$$

Also it is known that the element A acts by conjugation on the elements a_n as follows:

$$A^{-1}a_{0}A = a_{0}$$

$$A^{-1}a_{1}A = a_{6}$$

$$A^{-1}a_{2}A = a_{5}^{-1}a_{6}^{-1}$$

$$A^{-1}a_{3}A = a_{2}^{-1}$$

$$A^{-1}a_{4}A = a_{0}^{-1}a_{3}^{-1}a_{6}^{-1}$$

$$A^{-1}a_{5}A = a_{4}^{-1}$$

$$A^{-1}a_{6}A = a_{0}^{-1}a_{1}^{-1}$$

(and a convenient check on this list of conjugates is that each of the words $a_6a_5a_4a_3a_2a_1a_0$ and $a_6a_3a_0a_4a_1a_5a_2$ is conjugated by A to a conjugate of the inverse of the other).

Now let $\Sigma = [\Delta, \Gamma']$. This is the normal subgroup of Δ generated by all conjugates and inverses of elements of the form [a, [b, c]]where $a \in \Delta$ and $b, c \in \Gamma$. (Here the notation $[\alpha, \beta]$ stands as usual for the commutator $\alpha^{-1}\beta^{-1}\alpha\beta$ of the elements α , β , so that, for instance, $\Gamma' = [\Gamma, \Gamma]$ is the normal subgroup of Γ generated by commutators of elements $\alpha, \beta \in \Gamma$.)

We choose Σ specifically so that any quotient G of Δ/Σ has a normal subgroup K (namely the image of Γ) with the property that

 $G/K \cong \Delta/\Gamma \cong PSL(2,7)$, and also so that [G,K'] = 1, in other words $K' \subseteq Z(G)$. In particular we have $K' \subseteq Z(K)$, which means in group-theoretical language that K is nilpotent of class 1 or 2.

Well, let us now suppose that G is any such group. For notational convenience, let A and B and a_n (for $0 \le n \le 6$) now stand for the images in G of the corresponding elements of Δ . If K is the image of Γ , then since $K' \subseteq Z(K)$ it is easy to see that

$$[ab, c] = [a, c][b, c]$$
 and
 $[a, bc] = [a, b][a, c]$ for all $a, b, c \in K$,

and in particular (taking $c = b^{-1}$) also

$$[a,b^{-1}] = [a,b]^{-1} = [b,a]$$
 for all $a,b \in K$.

Thus commutators of elements of K behave very nicely. Indeed, it follows that every element of K' can be expressed as a product of commutators of the form $[a_i, a_j]$, even a product of powers of the elements u_i, v_j, w_j defined for $0 \le i \le 6$ as follows:

$$u_i = [a_i, a_{i+1}]$$
, $v_i = [a_i, a_{i+2}]$, $w_i = [a_i, a_{i+3}]$

(with subscripts treated modulo 7). Note for example that $[a_{i}, a_{i+4}] = [a_{i+4}, a_{i}]^{-1} = w_{i+4}^{-1}$ since $(i+4) + 3 \equiv i \mod 7$.

At this point we consider the conjugation action of the elements A and B on the normal subgroup K'. First $B^{-1}u_iB = [B^{-1}a_iB,B^{-1}a_{i+1}B] = [a_{i+1},a_{i+2}] = u_{i+1}$, and similarly $B^{-1}v_iB = v_{i+1}$ and $B^{-1}w_iB = w_{i+1}$ for $0 \le i \le 6$. On the other hand,

$$A^{-1}u_{2}A = [A^{-1}a_{2}A, A^{-1}a_{3}A] = [a_{5}^{-1}a_{6}^{-1}a_{2}^{-1}] = [a_{2}, a_{5}^{-1}a_{6}^{-1}]$$
$$= [a_{2}, a_{5}^{-1}][a_{2}, a_{6}^{-1}] = [a_{2}, a_{5}]^{-1}[a_{6}, a_{2}] = w_{2}^{-1}w_{6}$$
$$A^{-1}v_{1}A = [A^{-1}a_{1}A, A^{-1}a_{3}A] = [a_{6}, a_{2}^{-1}] = [a_{6}, a_{2}]^{-1} = w_{6}^{-1}$$

and

(and in fact the A-conjugates of the other generators of K' are also easy to determine). But we know that $K' \in Z(G)$, hence B and A actually centralize every u_i , v_i and w_i , so that

$$u_0 = u_1 = u_2 = u_3 = u_4 = u_5 = u_6$$
 and

 $v_{0} = v_{1} = v_{2} = v_{3} = v_{4} = v_{5} = v_{6}$ and $w_{0} = w_{1} = w_{2} = w_{3} = w_{4} = w_{5} = w_{6}$ and $u_{2} = w_{2}^{-1}w_{5}$ and $v_{1} = w_{6}^{-1}$.

From these we deduce that $u_0 = u_2 = w_2^{-1}w_6 = w_0^{-1}w_0 = 1$ and $v_0 = v_1 = w_6^{-1} = w_0^{-1}$, and as a consequence it is now clear that K' is cyclic, being generated by the element w_0 .

We leave it as an exercise for the reader to verify that the calculation of the conjugates of the other u_i , v_i and w_i leads to no further restrictions on K'. This could be interpreted as meaning that the factor group Γ'/Σ (that is, $\Gamma'/[\Delta, \Gamma']$) is cyclic of infinite order - however we find this is not the case, by considering the additional relation $a_2^{-1}a_5^{-1}a_1^{-1}a_4^{-1}a_0^{-1}a_3^{-1}a_5a_4a_3a_2a_1a_0 = 1$. Repeated application of the identity ab = ba[a,b] gives $a_5a_4a_3a_2a_1a_0 =$

 $\begin{aligned} a_3 a_0 a_4 a_1 a_5 a_2 u_3^{-1} v_3^{-1} u_6^{-1} v_0^{-1} w_4 v_5 u_4^{-1} u_1^{-1} w_5 &= a_3 a_0 a_4 a_1 a_5 a_2 w_0^{-3} \end{aligned} (since \\ u_i &= 1 \quad \text{and} \quad v_i &= w_0^{-1} \quad \text{and} \quad w_i &= w_0 \quad \text{for all } i), \text{ so the additional} \\ \text{relation simplifies to} \quad w_0^{-3} &= 1. \quad \text{Thus } K', \text{ and as a special case even} \\ \Gamma'/\Sigma \quad \text{itself, is cyclic of order } 3 \quad \text{or possibly trivial.} \end{aligned}$

Also the above observations give us information about the centre Z(K) of K. Since K' has order 1 or 3 it follows that $[a_i^3, a_j] = [a_i, a_j]^3 = 1$ for all i, j, and therefore a_i^3 commutes with each of the generators a_j of K, that is $a_i^3 \in Z(K)$ for all i.

Now for the moment let us see what happens when G is a non-trivial finite group. The generators a_i of K, being conjugate under the element B, must all have the same (finite) order, say m. If m is not divisible by 3, then we can replace each generator a_i by its cube a_i^3 , and find $K = \langle a_i \mid 0 \leq i \leq 6 \rangle = \langle a_i^3 \mid 0 \leq i \leq 6 \rangle \subseteq Z(K)$, so K

is Abelian. It then follows that G is an extension by PSL(2,7) of an Abelian group of rank 3 or 6 (and exponent m), as considered by Cohen in [2], and in particular the centre Z(G) of G is easily found to be trivial in that case.

On the other hand, suppose *m* is a positive integer divisible by 3. In this case let us take *G* to be the infinite group Δ/Σ , and consider the subgroup K^m generated by the elements a_i^m (for $0 \le i \le 6$). First as $a_i^{3} \in Z(K)$ for all *i*, we find that K^m is central in *K*. Next it is easy to see that $B^{-1}a_i^{\ m}B = (B^{-1}a_i^{\ m}B)^m = a_{i+1}^{\ m}$ for all *i* (modulo 7), so that *B* normalizes K^m . Just as easily we obtain $A^{-1}a_0^{\ m}A = a_0^m$ and $A^{-1}a_1^{\ m}A = a_6^m$ and $A^{-1}a_3^{\ m}A = (a_2^{\ m})^{-1}$ and $A^{-1}a_5^{\ m}A = (a_4^{\ m})^{-1}$, from the known action of conjugation by *A* on the generators of *K*. But further, whenever $a, b \in K$ we find $(ab)^m = a^m b^m [b, a]^{\frac{1}{2}m(m-1)}$ using the fact that $K' \subseteq Z(K)$, and indeed $(ab)^m = a^m b^m$ since [b, a] must have order *1* or *3*. Application of this identity gives:

$$A^{-1}a_{2}^{m}A = (a_{5}^{-1}a_{6}^{-1})^{m} = (a_{5}^{-1})^{m}(a_{6}^{-1})^{m} = (a_{5}^{m})^{-1}(a_{6}^{m})^{-1}, \text{ and}$$

$$A^{-1}a_{1}^{m}A = (a_{0}^{-1}a_{3}^{-1}a_{6}^{-1})^{m} = (a_{0}^{-1})^{m}(a_{3}^{-1})^{m}(a_{6}^{-1})^{m} = (a_{0}^{m})^{-1}(a_{3}^{m})^{-1}(a_{6}^{m})^{-1}, \text{ and}$$

$$A^{-1}a_{6}^{m}A = (a_{0}^{-1}a_{1}^{-1})^{m} = (a_{0}^{-1})^{m}(a_{1}^{-1})^{m} = (a_{0}^{m})^{-1}(a_{1}^{m})^{-1}.$$

Hence also conjugation by A preserves the subgroup K^m , which is therefore normal in G. In particular, $K^m = \Omega_m / \Sigma$ for some normal subgroup Ω_m of Δ (and indeed Ω_m is the normal subgroup of Δ generated by Σ together with the *m*th powers of the original elements a_n for $0 \le n \le 6$).

Now define G_m to be the quotient Δ/Ω_m . Obviously G_m is a Hurwitz group, but of course also G_m is an extension by PSL(2,7) of a 6-generator nilpotent group, say K_m , of class 1 or 2. We claim that in fact K_m has class 2, and moreover that K_m coincides with the centre $Z(G_m)$ which must have size 3.

Well, from the construction it is clear that $K_m' \in Z(G_m)$. On the other hand, the quotient G_m/K_m' is also a Hurwitz group, indeed it is an extension by PSL(2,7) of an Abelian group of rank $6 \cdot$ and order m^6 , again as considered by Cohen in [2]. Now using the known conjugation action of A and B on the elements a_i $(0 \le i \le 6)$, a routine calculation shows that no non-trivial element of the factor group K_m/K_m' can be centralized by both generators A and B of G_m ; hence G_m/K_m' has trivial centre. (Alternatively, this can be seen from Cohen's calculations in [2].) Consequently $K_m' \cap Z(G_m) \in K_m'$, in other words $K_m' = Z(G_m)$.

Next consider the special case where m = 3. The group G_3 has obviously the presentation

$$< A, B, a_0, w_0 \mid B^7 = (AB)^2 = (A^{-1}B)^3 = a_0^{-1}A^4 = a_0^3 = [a_0, B^{-1}a_0B] = w_0[a_0, B^{-2}a_0B^2]$$
$$= w_0^{-1}[a_0, B^{-3}a_0B^3] = [A, w_0] = [B, w_0] = 1 > ,$$

amongst others of course. Now to this presentation we may apply the Todd-Coxeter algorithm, for example to determine the index of the subgroup < B > in G_{q} .

I have implemented a lookahead version of the Todd-Coxeter algorithm, as described in [1], on an IBM 4341 using the language PASCAL. Approximately 15 Minutes are required by this program to find that in fact $\langle B \rangle$ has index 52488 in G_3 . (Those readers who have access to the CAYLEY group system may like to confirm this result themselves.) It follows that G_3 has order 367416, and then since $|G_3| = |G_3/K_3| |K_3/K_3'| |K_3'| = |PSL(2,7) |3^6| K_3'|$, we deduce that K_3' has order 3. Hence in particular, our claim is true in the case m = 3.

But now for any m (divisible by 3) it is obvious that $\Omega_m \subseteq \Omega_3$; indeed as we know that Ω_m/Σ , being generated by the mth powers of the generators of Γ/Σ , is a subgroup of index $(\frac{m}{3})^6$ in the central subgroup Ω_3/Σ of Γ/Σ , it is clear that Ω_m has index $(\frac{m}{3})^6$ in Ω_3 . Consequently $|G_m| = |\Delta/\Omega_m| = |\Delta/\Omega_3| |\Omega_3/\Omega_m| = |G_3| (\frac{m}{3})^6 = 367416 (\frac{m}{3})^6 = 504 \ m^6$. In particular, this means K_m' must have order 3, so our task is completed.

Actually when m is of the form 3k where k is coprime to 6, the group G_m is easily found to be a split extension (that is, a semidirect product) of an Abelian group of rank 6 and order k^6 by the group G_3 , and, as such, G_m can indeed be constructed in this way. We leave the verification of this claim to the interested reader.

References

- J.J. Cannon, L.A. Dimino, G. Havas and J.M. Watson, "Implementation and analysis of the Todd-Coxeter algorithm", *Math. Comp.* 27 (1973), 463-490.
- [2] J.M. Cohen, "On Hurwitz extensions by PSL₂(7)", Math Proc. Camb. Phil. Soc. 86 (1979), 395-400.
- [3] M.D.E. Conder, "Generators for alternating and symmetric groups", J. London Math. Soc. (2), 22 (1980), 75-86.
- [4] A. Hurwitz, "Über algebraische Gebilde mit eindeutigen Transformationen in sich", Math. Ann. 41 (1983), 403-442.
- [5] J. Leech, "Generators for certain normal subgroups of (2,3,7)", Proc. Camb. Phil. Soc. 61 (1965), 321-332.
- [6] J. Leech, "Note on the abstract group (2,3,7;9)", Proc. Camb. Phil. Soc. 62 (1966), 7-10.
- [7] A.M. Macbeath, "Generators of linear fractional groups", Number Theory, Proceedings of Symposia in Pure Mathematics 12 (American Mathematical Society, Providence, R.I., 1969), 14-32.
- [8] Chih han Sah, "Groups related to compact Riemann surfaces", Acta Mathematica 123 (1969), 13-42.

Department of Mathematics and Statistics,

University of Auckland,

Private Bag,

Auckland, New Zealand.