A FAMILY OF HURFIITZ GROUPS KITH

NON-TRIVIAL CENTRES

Marston Conder

In this paper a new family of quotients of the triangle group $<x, y, z \mid x^{2}=y^{3}=z^{7}=x y z=1>$ is obtained. It is shown that for every positive integer m divisible by 3 there is a Hurwitz group of order $504 m^{6}$ having a centre of size 3 , and as a consequence there is a Riemann surface of genus $6 m^{\mathbf{6}}+1$ with the maximum possible number of automorphisms.

The $(2,3,7)$ triangle group Δ is the abstract group with presentation $\Delta=\left\langle x, y, z \mid x^{2}=y^{3}=z^{7}=x y z=1\right\rangle$. A theorem of Hurwitz [4] states that a compact Riemann surface with genus $g>1$ has at most $84(g-1)$ conformal automorphisms, that is, homeomorphisms of the surface onto itself which preserve the local structure. Any surface with the maximum possible number of automorphisms must be uniformized by a normal subgroup N of the triangle group Δ, for the latter is the Fuchsian group with fundamental region of smallest hyperbolic area. Moreover, the conformal automorphism group is then isomorphic to the quotient group Δ / N. Conversely, any finite non-trivial quotient G of Δ gives rise to a compact Riemann surface (of genus $\frac{1}{84}|G|+1$) with the maximum possible number of automorphisms, and G as its automorphism group. For these reasons, any finite non-trivial quotient of Δ is

Received 27 May 1985.

[^0]called a Hurwitz group.
A good number of Hurwitz groups are known, particularly amongst the finite simple groups (see [2], [3], [7], [8] for example).

In a paper on certain normal subgroups of Δ, Leech [5] raised the question of whether there exists a Hurwitz group with non-trivial centre. He answered that question in the affirmative (in a note added in proof) and later [6] produced two infinite families of Hurwitz groups, the groups in these families having centres of size 2 and 4 respectively. The groups themselves had orders $504 p^{7}$, with p running through the positive integers congruent to 2 modulo 4 , and $1008 p^{7}$, with p running through the positive integers divisible by 4. Every group in either family was obtained as an extension of a 7 -generator group by the simple group $\operatorname{PSL}(2,8)$.

In this paper we use similar methods to produce a family of Hurwitz groups each having a centre of size 3. Specifically, for every positive integer m divisible by 3 , there is a Hurwitz group G which is an extension by the simple group $P S L(2,7)$ of a 6 -generator group K of order $3 m^{6}$, such that the centre $Z(G)$ of G is cyclic of order 3 and coincides with the commutator subgroup K^{\prime} of K. As a consequence, for each such m there must be a compact Riemann surface of genus $6 m^{6}+1$ with the maximum possible number of conformal automorphisms. (Actually this surface admits a covering projection onto Klein's quartic, with K being the group of covering transformations, but we do not pursue this matter here.)

The construction of our family proceeds as follows:
Let x, y and z be the usual generators of the group Δ, so that $x^{2}=y^{3}=(x y)^{7}=1$ and $\langle x, y\rangle=\Delta$. Now put $A=y^{-1} x y x$ and $B=(x y)^{3}$, so that the defining relations for Δ become $B^{7}=(A B)^{2}=\left(A^{-1} B\right)^{3}=1$, and our notation is made consistent with that used by Leech in [5].

Next define the elements $a_{n}(0 \leq n \leq 6)$ by $a_{0}=A^{4}$ and $a_{n}=B^{-n} a_{0} B^{n} \quad($ for $1 \leq n \leq 6)$. According to Leech [5] these elements
a_{n} generate a normal subgroup, say Γ, of Δ, with factor group PSL(2,7), the simple group of order 168. Moreover, the generators of Γ satisfy the relations $a_{6} a_{5} a_{4} a_{3} a_{2} a_{1} a_{0}=1$ and $a_{6} a_{3} a_{0} a_{4} a_{1} a_{5} a_{2}=1$, and, eliminating the redundant generator a_{6} from these, we obtain the additional relation

$$
a_{2}^{-1} a_{5}^{-1} a_{1}^{-1} a_{4}^{-1} a_{0}^{-1} a_{3}^{-1} a_{5} a_{4} a_{3} a_{2} a_{1} a_{0}=1
$$

Also it is known that the element A acts by conjugation on the elements a_{n} as follows:

$$
\begin{aligned}
& A^{-1} a_{0} A=a_{0} \\
& A^{-1} a_{1} A=a_{6} \\
& A^{-1} a_{2} A=a_{5}^{-1} a_{6}^{-1} \\
& A^{-1} a_{3} A=a_{2}^{-1} \\
& A^{-1} a_{4} A=a_{0}^{-1} a_{3}^{-1} a_{6}^{-1} \\
& A^{-1} a_{5} A=a_{4}^{-1} \\
& A^{-1} a_{6} A=a_{0}^{-1} a_{1}^{-1}
\end{aligned}
$$

(and a convenient check on this list of conjugates is that each of the words $a_{6} a_{5} a_{4} a_{3} a_{2} a_{1} a_{0}$ and $a_{6} a_{3} a_{0} a_{4} a_{1} a_{5} a_{2}$ is conjugated by A to a conjugate of the inverse of the other).

Now let $\Sigma=\left[\Delta, \Gamma^{\prime}\right]$. This is the normal subgroup of Δ generated by all conjugates and inverses of elements of the form $[a,[b, c]]$ where $a \in \Delta$ and $b, c \in \Gamma$. (Here the notation $[\alpha, \beta]$ stands as usual for the commutator $\alpha^{-1} \beta^{-1} \alpha \beta$ of the elements α, β, so that, for instance, $\Gamma^{\prime}=[\Gamma, \Gamma]$ is the normal subgroup of Γ generated by commutators of elements $\alpha, \beta \in \Gamma$.

We choose Σ specifically so that any quotient G of Δ / Σ has a normal subgroup K (namely the image of Γ) with the property that
$G / K \cong \Delta / \Gamma \cong P S L(2,7)$, and also so that $\left[G, K^{\prime}\right]=1$, in other words $K^{\prime} \subseteq Z(G)$. In particular we have $K^{\prime} \subseteq Z(K)$, which means in grouptheoretical language that K is nilpotent of class 1 or 2.

Well, let us now suppose that G is any such group. For notational convenience, let A and B and a_{n} (for $0 \leq n \leq 6$) now stand for the images in G of the corresponding elements of Δ. If K is the image of Γ, then since $K^{\prime} \subseteq Z(K)$ it is easy to see that

$$
\begin{array}{ll}
{[a b, c]=[a, c][b, c]} & \text { and } \\
{[a, b c]=[a, b][a, c]} & \text { for all } a, b, c \in K
\end{array}
$$

and in particular (taking $c=b^{-1}$) also

$$
\left[a, b^{-1}\right]=[a, b]^{-1}=[b, a] \text { for all } a, b \in K
$$

Thus commutators of elements of K behave very nicely. Indeed, it follows that every element of K^{\prime} can be expressed as a product of commutators of the form $\left[a_{i}, a_{j}\right]$, even a product of powers of the elements u_{i}, v_{i}, w_{i} defined for $0 \leq i \leq 6$ as follows:

$$
u_{i}=\left[a_{i}, a_{i+1}\right], v_{i}=\left[a_{i}, a_{i+2}\right], w_{i}=\left[a_{i}, a_{i+3}\right]
$$

(with subscripts treated modulo 7). Note for example that $\left[a_{i}, a_{i+4}\right]=\left[a_{i+4}, a_{i}\right]^{-1}=w_{i+4}^{-1}$ since $(i+4)+3 \equiv i$ modulo 7.

At this point we consider the conjugation action of the elements A and B on the normal subgroup K^{\prime}. First $B^{-1} u_{i} B=\left[B^{-1} a_{i} B, B^{-1} a_{i+1} B\right]$ $=\left[a_{i+1}, a_{i+2}\right]=u_{i+1}$, and similarly $B^{-1} v_{i} B=v_{i+1}$ and $B^{-1} w_{i} B=w_{i+1}$ for $0 \leq i \leq 6$. On the other hand,

$$
\begin{aligned}
A^{-1} u_{2} A & =\left[A^{-1} a_{2} A, A^{-1} a_{3} A\right]=\left[a_{5}^{-1} a_{6}^{-1}, a_{2}^{-1}\right]=\left[a_{2}, a_{5}^{-1} a_{6}^{-1}\right] \\
& =\left[a_{2}, a_{5}^{-1}\right]\left[a_{2}, a_{6}^{-1}\right]=\left[a_{2}, a_{5}\right]^{-1}\left[a_{6}, a_{2}\right]=w_{2}^{-1} w_{6}
\end{aligned}
$$

and

$$
A^{-1} v_{1} A=\left[A^{-1} a_{1} A, A^{-1} a_{3} A\right]=\left[a_{6}, a_{2}^{-1}\right]=\left[a_{6}, a_{2}\right]^{-1}=w_{6}^{-1}
$$

(and in fact the A-conjugates of the other generators of K^{\prime} are also easy to determine). But we know that $K^{\prime} \subseteq Z(G)$, hence B and A actually centralize every u_{i}, v_{i} and w_{i}, so that

$$
u_{0}=u_{1}=u_{2}=u_{3}=u_{4}=u_{5}=u_{6} \text { and }
$$

$$
\begin{gathered}
v_{0}=v_{1}=v_{2}=v_{3}=v_{4}=v_{5}=v_{6} \text { and } \\
w_{0}=w_{1}=w_{2}=w_{3}=w_{4}=w_{5}=w_{6} \text { and } \\
u_{2}=w_{2}^{-1} w_{6} \text { and } v_{1}=w_{6}^{-1} .
\end{gathered}
$$

From these we deduce that $u_{0}=u_{2}=w_{2}^{-1} w_{6}=w_{0}^{-1} w_{0}=1$ and $v_{0}=v_{1}=w_{6}^{-1}=w_{0}^{-1}$, and as a consequence it is now clear that K^{\prime} is cyclic, being generated by the element w_{0}.

We leave it as an exercise for the reader to verify that the calculation of the conjugates of the other u_{i}, v_{i} and w_{i} leads to no further restrictions on K^{\prime}. This could be interpreted as meaning that the factor group Γ^{\prime} / Σ (that is, $\Gamma^{\prime} /\left[\Delta, \Gamma^{\prime}\right]$) is cyclic of infinite order - however we find this is not the case, by considering the additional relation $a_{2}^{-1} a_{5}^{-1} a_{1}^{-1} a_{4}^{-1} a_{0}^{-1} a_{3}^{-1} a_{5} a_{4} a_{3} a_{2} a_{1} a_{0}=1$. Repeated application of the identity $a b=b a[a, b]$ gives $a_{5} a_{4} a_{3} a_{2} a_{1} a_{0}=$ $a_{3} a_{0} a_{4} a_{1} a_{5} a_{2} u_{3}^{-1} v_{3}^{-1}{ }_{2:}{ }^{-1} v_{0}^{-1} w_{4} v_{5} u_{4}^{-1} u_{1}^{-1} w_{5}=a_{3} a_{0} a_{4} a_{1} a_{5} a_{2} w_{0}^{3} \quad$ (since $u_{i}=1$ and $v_{i}=w_{0}^{-1}$ and $w_{i}=w_{0}$ for all i), so the additional relation simplifies to $\omega_{0}^{3}=1$. Thus K^{\prime}, and as a special case even Γ^{\prime} / Σ itself, is cyclic of order 3 or possibly trivial.

Also the above observations give us information about the centre $Z(K)$ of K. Since K^{\prime} has order 1 or 3 it follows that $\left[a_{i}{ }^{3}, a_{j}\right]=\left[a_{i}, a_{j}\right]^{3}=1$ for all i, j, and therefore $a_{i}{ }^{3}$ commutes with each of the generators a_{j} of K, that is $a_{i}{ }^{3} \in Z(K)$ for all i.

Now for the moment let us see what happens when G is a non-trivial finite group. The generators a_{i} of K, being conjugate under the element B, must all have the same (finite) order, say m. If m is not divisible by 3 , then we can replace each generator a_{i} by its cube a_{i}^{3}, and find $K=<a_{i}\left|0 \leq i \leq 6>=<a_{i}{ }^{3}\right| 0 \leq i \leq 6>\leq 2(K)$, so K
is Abelian. It then follows that G is an extension by PSL(2, 2) of an Abelian group of rank 3 or 6 (and exponent m), as considered by Cohen in [2], and in particular the centre $Z(G)$ of G is easily found to be trivial in that case.

On the other hand, suppose m is a positive integer divisible by 3 . In this case let us take G to be the infinite group Δ / Σ, and consider the subgroup K^{m} generated by the elements a_{i}^{m} (for $0 \leq i \leq 6$). First as $\alpha_{i}{ }^{3} \in Z(K)$ for all i, we find that K^{m} is central in K. Next it is easy to see that $B^{-1} \alpha_{i}^{m} B=\left(B^{-1} a_{i} B\right)^{m}=\alpha_{i+1}^{m}$ for all i (modulo 7), so that B normalizes K^{m}. Just as easily we obtain $A^{-1} a_{0}^{m} A=a_{0}^{m}$ and $A^{-1} a_{1}^{m} A=a_{6}^{m}$ and $A^{-1} \alpha_{3}^{m} A=\left(a_{2}^{m}\right)^{-1} \quad$ and $A^{-1} a_{5}^{m} A=\left(a_{4}^{m}\right)^{-1}$, from the known action of conjugation by A on the generators of K. But further, whenever $a, b \in K$ we find $(a b)^{m}=a^{m} b^{m}[b, a]^{\frac{3}{2} m(m-1)}$ using the fact that $K^{\prime} \subseteq Z(K)$, and indeed $(a b)^{m}=a^{m} b^{m}$ since $[b, a]$ must have order 1 or 3. Application of this identity gives:

$$
\begin{aligned}
& A^{-1} a_{2}^{m} A=\left(a_{5}^{-1} a_{6}^{-1}\right)^{m}=\left(a_{5}^{-1}\right)^{m}\left(a_{6}^{-1}\right)^{m}=\left(a_{5}^{m}\right)^{-1}\left(a_{6}^{m}\right)^{-1}, \text { and } \\
& A^{-1} a_{A}^{m} A\left(a_{0}^{-1} a_{3}^{-1} a_{6}^{-1}\right)^{m}=\left(a_{0}^{-1}\right)^{m}\left(a_{3}^{-1}\right)^{m}\left(a_{6}^{-1}\right)^{m}=\left(a_{0}^{m}\right)^{-1}\left(a_{3}^{m}\right)^{-1}\left(a_{6}^{m}\right)^{-1}, \text { and } \\
& A^{-1} a_{6}^{m} A=\left(a_{0}^{-1} a_{1}^{-1}\right)^{m}=\left(a_{0}^{-1}\right)^{m}\left(a_{1}^{-1}\right)^{m}=\left(a_{0}^{m}\right)^{-1}\left(a_{1}^{m}\right)^{-1}
\end{aligned}
$$

Hence also conjugation by A preserves the subgroup K^{m}, which is therefore normal in G. In particular, $K^{m}=\Omega_{m} / \Sigma$ for some normal subgroup Ω_{m} of Δ (and indeed Ω_{m} is the normal subgroup of Δ generated by Σ together with the m th powers of the original elements a_{n} for $0 \leq n \leq 6$).

Now define G_{m} to be the quotient Δ / Ω_{m}. Obviously G_{m} is a
Hurwitz group, but of course also G_{m} is an exiension by $\operatorname{PSL}(2,7)$ of a 6 -generator nilpotent group, say K_{m}, of class 1 or 2 .

We claim that in fact K_{m} has class 2 , and moreover that $K_{m}{ }^{\prime}$ coincides with the centre $Z\left(G_{m}\right)$ which must have size 3 .

Well, from the construction it is clear that $K_{m}^{\prime} \subseteq Z\left(G_{m}\right)$. On the other hand, the quotient ${ }^{\prime} G_{m} / K_{m}^{\prime}$ is also a Hurwitz group, indeed it is an extension by $P S L(2,7)$ of an Abelian group of rank $6 \cdot$ and order m^{6}, again as considered by Cohen in [2] . Now using the known conjugation action of A and B on the elements $a_{i}(0 \leq i \leq 6)$, a routine calculation shows that no non-trivial element of the factor group K_{m} / K_{m}^{\prime} can be centralized by both generators A and B of G_{m}; hence G_{m} / K_{m}^{\prime} has trivial centre. (Alternatively, this can be seen from Cohen's calculations in [2].) Consequently $K_{m}^{\prime \prime} \cap Z\left(G_{m}^{\prime} \subseteq K_{m}^{\prime}\right.$, in other words $K_{m}^{\prime}=Z\left(G_{m}\right)$.

Next consider the special case where $m=3$. The group G_{3} has obviously the presentation

$$
\begin{aligned}
<A, B, a_{0}, w_{0} \mid B^{7} & =(A B)^{2}=\left(A^{-1} B\right)^{3}=a_{0}^{-1} A^{4}=a_{0}^{3}=\left[a_{0}, B^{-1} a_{0} B\right]=w_{0}\left[a_{0}, B^{-2} a_{0} B^{2}\right] \\
& =w_{0}^{-1}\left[a_{0}, B^{-3} a_{0} B^{3}\right]=\left[A, w_{0}\right]=\left[B, w_{0}\right]=1>
\end{aligned}
$$

amongst others of course. Now to this presentation we may apply the Todd-Coxeter algorithm, for example to determine the index of the subgroup $\langle B\rangle$ in G_{3}.

I have implemented a lookahead version of the Todd-Coxeter algorithm, as described in [1], on an IBM 4341 using the language PASCAL. Approximately 15 Minutes are required by this program to find that in fact $\langle B\rangle$ has index 52488 in G_{3}. (Those readers who have access to the

CAYLEY group system may like to confirm this result themselves.) It follows that G_{3} has order 367416, and then since $\left|G_{3}\right|=\left|G_{3} / K_{3}\right|\left|K_{3} / K_{3}^{\prime}\right|\left|K_{3}^{\prime}\right|=|\operatorname{PSL}(2,7)| 3^{6}\left|K_{3}^{\prime}\right|$, we deduce that K_{3}^{\prime} has order 3. Hence in particular, our claim is true in the case $m=3$.

But now for any m (divisible by 3) it is obvious that $\Omega_{m} \subseteq \Omega_{3}$; indeed as we know that Ω_{m} / Σ, being generated by the m th powers of the
generators of Γ / Σ, is a subgroup of index $\left(\frac{m}{3}\right)^{6}$ in the central subgroup Ω_{3} / Σ of Γ / Σ, it is clear that Ω_{m} has index $\left(\frac{m}{3}\right)^{6}$ in Ω_{3}. Consequently $\left|G_{m}\right|=\left|\Delta / \Omega_{m}\right|=\left|\Delta / \Omega_{3}\right|\left|\Omega_{3} / \Omega_{m}\right|=\left|G_{3}\right|\left(\frac{m}{3}\right)^{6}=367416\left(\frac{m}{3}\right)^{6}=504 \mathrm{~m}^{6}$. In particular, this means $K_{m}{ }^{\prime}$ must have order 3 , so our task is completed.

Actually when m is of the form $3 k$ where k is coprime to 6 , the group G_{m} is easily found to be a split extension (that is, a semidirect product) of an Abelian group of rank 6 and order k^{6} by the group G_{3}, and, as such, G_{m} can indeed be constructed in this way. We leave the verification of this claim to the interested reader.

References

[1] J.J. Cannon, L.A. Dimino, G. Havas and J.M. Watson, "Implementation and analysis of the Todd-Coxeter algorithm", Math. Comp. 27 (1973), 463-490.
[2] J.M. Cohen, "On Hurwitz extensions by PSL ${ }_{2}$ (7)", Math Proc. Camb. Phil. Soc. 86 (1979), 395-400. M.D.E. Conder, "Generators for alternating and symmetric groups", J. London Math. Soc. (2), 22 (1980), 75-86.
[4] A. Hurwitz, "Über algebraische Gebilde mit eindeutigen Transformationen in sich", Math. Ann. 41 (1983), 403-442.
[5] J. Leech, "Generators for certain normal subgroups of (2,3,7)", Proc. Camb. Phil. Soc. 61 (1965), 321-332.
[7] A.M. Macbeath, "Generators of linear fractional groups", Number Theory, Proceedings of Symposia in Pure Mathematics 12 (American Mathematical Society, Providence, R.I., 1969), 14-32.

Chih - han Sah, "Groups related to compact Riemann surfaces", Acta Mathematica 123 (1969), 13-42.

Department of Mathematics and Statistics, University of Auckland,
Private Bag, Auckland, New Zealand.

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 $\$ \mathrm{~A} 2.00+0.00$.

